
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 94, 060102(R) (2016)

Exact probability distribution functions for Parrondo’s games
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We study the discrete time dynamics of Brownian ratchet models and Parrondo’s games. Using the Fourier
transform, we calculate the exact probability distribution functions for both the capital dependent and history
dependent Parrondo’s games. In certain cases we find strong oscillations near the maximum of the probability
distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such
oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model
systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian
ratchets, molecular motors, and portfolio optimization.
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Parrondo’s games [1–8] are related to Brownian ratchets
[9–15] and exhibit interesting phenomena at the intersection
of game theory, econophysics, and statistical physics (see [8]
for interdisciplinary applications). In the case of Brownian
ratchets, a particle moves in a potential, which randomly
changes between two versions. For each there is a detailed
balance condition. However, for random switches between
the two potentials, there is on average a directed motion.
This phenomenon is fundamentally related to portfolio opti-
mization [16,17], and corresponds to the “volatility pumping”
strategy in portfolio optimization. For a two-asset portfolio
one half of the capital is kept in the first asset, and the other
half in the second asset with high volatility [18].

Parrondo invented a game-theoretic model of a Brownian
flashing ratchet, thus producing a discrete-time model of the
ratchet effect [1]. An agent tosses biased coins using one of
two strategies (games), and both strategies are losing. In some
cases a random combination of the losing games is a winning
game. Of course, the opposite situation is also possible; a
random combination of two winning games can give a losing
game.

The state of the system is characterized by the current
value of the capital X, and the choice of the strategy. X

is defined on a one-dimensional axis with discrete points, a
“chain.” In analogy to ratchets, there may be a periodicity
M in the rules, how capital X can increase or decrease.
This version corresponds to a particle moving on a ladder
geometry with several rungs [19]. Originally M = 3 games
were considered, then M = 2 versions of Parrondo’s games
were constructed [7,20]. For the history dependent versions
of the game the current rules of the game depend on the past,
whether there was growth of capital in the previous rounds
or not.

Later many modifications of the games were invented, i.e.,
games with different integers M for both games [21], the
Allison mixture [22] where random mixing of two random
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sequences creates autocorrelation [23], and two envelope
game problems [24]. Especially intriguing is an anti-Parrondo
effect or Verschlimmbesserung where reduced confidence in
a measurement results from an increase in the number of
observations that are in agreement [25].

As the variances of distributions (volatilities) are important
in economics, we calculated the variance for the history inde-
pendent case with specific parameters in our recent work [26].
And vice versa, for obtaining the unknown parameters of a
model that describes empirical data, the complete distributions
have to be available. This is the problem we address here by
applying a Fourier transform technique to solve exactly the
probability distribution function. This approach allows for an
efficient calculation of the long time asymptotics from saddle-
point contributions. We discover that under certain conditions
subleading saddle points become degenerate in absolute value
with the leading saddle point. Still, the degenerate saddle
points differ in phases which leads to strong fluctuations.

We apply this method to random walks on chains and
ladders corresponding to capital dependent Parrondo’s models.
We calculate the entire probability distribution for the capital,
then solve the same problem for history dependent games.

A biased discrete space and time random walk. As an
illustration let us consider the discrete time random walk on
a chain, where the probability of right and left jumps are p

and q, respectively. We can write the master equation for the
probability P (n,t) at position n after t steps:

P (n,t + 1) = pP (n − 1,t) + qP (n + 1,t)

+ (1 − p − q)P (n,t). (1)

The initial distribution is P (n,0) = δn,0.
For the motion on the infinite axis we can always write a

Fourier transform like

P (n,t) =
∫ π

−π

dk eiknP̄ (k,t),

P̄ (k,t) = 1

2π

∑
n

P (n,t)e−ikn. (2)
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For the initial distribution the Fourier transform is P̄ (k,0) =
1/2π .

Equation (1) transforms into

P̄ (k,t + 1) = [pe−ik + qeik + (1 − p − q)]P̄ (k,t). (3)

We obtain the solution

P̄ (k,t) = λt (k) · P̄ (k,0),

λ(k) = [pe−ik + qeik + (1 − p − q)]. (4)

As λ is a linear polynomial in eik and e−ik , λt is a polynomial
with monomials ranging from e−t ik to etik .

The Fourier transform from momentum to spatial represen-
tation yields

P (n,t) =
∫ π

−π

dk etV (ik)+iknP̄ (k,0),

V (κ) := ln[pe−κ + qeκ + (1 − p − q)], (5)

where we defined the function V (κ). Using that λt has a finite
expansion in powers of eik we obtain with P̄ (k,0) = 1/2π

P (n,t) = 1

2t

2t∑
m=1

etV (imπ/t)+imnπ/t . (6)

Also for the study of more involved models, we will use both
representations (5) and (6).

Note that Eqs. (5) and (6) are exact for any t and n. By use
of the saddle-point approximation we derive the large t and
n = xt asymptotics. We are allowed to move the integration
contour because of the analytic dependence of the integrand
on k resulting in (κ = ik)

P (n,t) = exp[tu(x)]√
2πtV ′′(κ)

,

x = −V ′(κ), u(x) = V (κ) + κx. (7)

As u(x) is the Legendre transform of −V (κ), we also have
V ′′(k) = −1/u′′(x) and hence

P (n,t) = 1√
2πt

exp[tu(x) + 1/2 ln |u′′(x)|].

Let us assume an expansion for V (κ),

V (κ) = rκ + Kκ2/2. (8)

It then follows that

〈n〉 = rt, 〈(n − 〈n〉)2〉 = Kt. (9)

Random walks with periodicity. Consider the case of a
random walk on an axis, using rules with period M . We divide
the entire x axis in intervals of length M , [(n − 1)M,nM[, and
label points by (n,l) where l = Mod(X,M). We represent the
sets of pX (the discrete probability distribution of the capital
value) by Pl(n,t),0 � l < M . The integer t represents time.
This bookkeeping allows us to consider the geometry with
periodicity M as a multirung ladder or as a chain of unit cells
containing M points.

We study the following master equation [5]:

Pl(n,t + 1) = pl−Pl− (n̂,t) + ql+Pl+ (n̄,t)

+ (1 − pl − ql)Pl(n,t), (10)

where l− = Mod(l − 1,M), l+ = Mod(l + 1,M), n̂ = n for
l − 1 � 0, and n̂ = n − 1 for l − 1 < 0; n̄ = n for l + 1 < M

and n̄ = n + 1 for l + 1 > M . Thus the model is characterized
by the parameters pl,ql , where pl and ql are the probabilities
to win and lose for capital X with l = Mod(X,M).

Again we consider the Fourier transform

Pl(n,t) =
∫ π

−π

dk eiknP̄l(k,t), (11)

and obtain

P̄l(k,t + 1) = pl−eik(n̂−n)P̄l− (k,t) + ql+eik(n̄−n)P̄l+ (k,t)

+ [1 − (pl + ql)]P̄l(k,t)

≡
M−1∑
m=0

Q̂lm(ik)P̄m(k,t). (12)

Using the eigenvalues and eigenvectors λm(κ),vml(κ) (m =
0, . . . ,M − 1), of the matrix Q̂(κ), we find

P̄l(n,t) =
∫ π

−π

dk eikn
∑
m

cm exp[tVm]vml, (13)

where Vm(κ) := ln[λm(κ)]. The factors cm(κ) are determined
by the initial distribution. For using Eq. (7), we choose as
V (κ) the eigenvalue function Vm(κ) with the largest saddle
point. For generic parameters and close to the maximum
of the distribution u(x), the choice is unique. Saddle points
with smaller value do not contribute to the large time
asymptotics. However, we will encounter the possibility of
several eigenvalues degenerate in absolute value. To compare
our results for the gain-loss rate with the formulas in [7] we
have to multiply the rate r in Eq. (9) for the case of the
multirung ladder with a factor M , as one step in n in our
approach equals M ordinary steps.

The eigenvalues ±1. Next we investigate more closely the
case of zero probability for holding the capital at the current
value, i.e., pl + ql = 1 for all l in (12).

Consider first the case of odd M: Q̂(0) has one eigenvalue
+1 with left eigenstate (1,1,1,1 . . .), and Q̂(πi) has one
eigenvalue −1 with left eigenstate (1,−1,1,−1 . . .). Hence, in
Fourier representation the two “momenta” κ = 0 and κ = πi

contribute to the asymptotic behavior.
Let us now consider the matrices Q̂(κ) and Q̂(κ + πi)

for arbitrary κ . It is easy to see that the spectra are simply
related. Let (x0,x1,x2, . . .)T be a right eigenvector of Q̂(κ) with
eigenvalue λ(κ), then (x0, − x1,x2, . . .)T is a right eigenvector
of Q̂(κ + πi) with eigenvalue −λ(κ).

Let us assume an expansion like Eq. (8) for the leading
V (κ) near κ = 0, then

V (π + κ) = πi + rκ + Kκ2/2. (14)

Let v+ and v− be the right eigenstates of Q̂(0) and Q̂(πi) with
eigenvalues +1 and −1. There are constants α and β such that

Pl(n,t) = αv+
l + (−1)n+tβv−

l√
2πKt

e−(n−rt)2/2Kt . (15)

We see oscillations caused by the rapid sign change of the
second term. The coefficients α and β are determined by the
initial probability distribution. If this was peaked at n = l = 0,
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then α = β (with v+ and v− related as pointed out above). In
this case Pl(n,t) is nonzero (zero) for even (odd) l + n + t .

Consider now the case of even M . Here, Q̂(0) has one eigen-
value 1 with left eigenstate (1,1,1,1 . . .) and one eigenvalue
−1 with left eigenstate (1,−1,1,−1 . . .). Hence, only the
“momentum” κ = 0 contributes in the Fourier representation
to the asymptotic behavior, but with two eigenvalues. Let
(x0,x1,x2, . . .)T be a right eigenvector of Q̂(κ) with eigenvalue
λ(κ), then (x0, − x1,x2, . . .)T is also a right eigenvector of
Q̂(κ), but with eigenvalue −λ(κ). Now we find similar to the
case above

Pl(n,t) = αv+
l + (−1)tβv−

l√
2πKt

e−(n−rt)2/2Kt . (16)

Note that the oscillating factor does not depend on n. For a
probability initially peaked at n = l = 0 we find Pl(n,t) is
nonzero (zero) for even (odd) l + t .

The findings in both cases, odd M and even M , can however
be summarized: Pl(n,t) is nonzero (zero) for even (odd)
l + nM + t .

It is quite interesting to consider the quantity

P̂ (n,t) =
M−1∑
l=0

Pl(n,t). (17)

It shows nonzero oscillations in dependence on n and t for
odd M . Such oscillations do not exist for even M . The reason
for this is easily understood: the term entering P̂ (n,t) with a
(−1)t factor is

∑
l v

−
l . This is the scalar product of (1,1,1,1 . . .)

with (x0, − x1,x2, − x3, . . .)T which are the left and right
eigenvectors of Q̂(0) with different eigenvalues +1 and −1,
and hence this product must be zero.

Explicit expressions for the capital growth rates. Consider
the capital depending Parrondo’s game with p1, . . . ,pM for
the winning probabilities and periodicity M . We find the
corresponding Q̂ matrix

Q̂(κ) =

⎛
⎜⎝

0 q2 · · · pMe−κ

p1 0 · ·
· p2 · qM

q1e
κ 0 · · · 0

⎞
⎟⎠. (18)

Applying the method of [7] gives

r =
∑

i(pi − qi)xi∑
i xi

. (19)

We prove that Eqs. (8) and (9) give the same result. Let
us denote by λ(κ) the largest eigenvalue of Q̂(κ) with left
and right eigenstates 〈y(κ)| and |x(κ)〉. For κ = 0 we have
λ(0) = 1 and 〈y(0)| = (1,1, . . . ,1). The growth rate r is the
first derivative of ln λ(κ) at κ = 0. As λ(0) = 1 we have
r = λ′(0), and hence

r = ∂

∂κ

〈y(κ)|Q̂(κ)|x(κ)〉
〈y(κ)|x(κ)〉 = 〈y(0)|Q̂′(0)|x(0)〉

〈y(0)|x(0)〉 , (20)

where the last equality follows from the Hellmann-Feynman
theorem. Using the explicit form of the matrix Q̂(κ), 〈y(0)| =
(1,1, . . . ,1), and |x(0)〉 = (x1,x2, . . . ,xM )T we find

r = pMxM − q1x1∑
i xi

. (21)

Now we prove the equivalence of Eqs. (19) and (21). The
eigenvalue equation for the right eigenstate (x1,x2, . . . ,xM )T

of Q̂(0) for eigenvalue 1 is

pi−1xi−1 + qi+1xi+1 = xi, (22)

for all i. From this we derive

pi−1xi−1 − qixi = xi − qi+1xi+1 − qixi = pixi − qi+1xi+1,

where the first equality is simply (22) and the second equality is
due to qi+1 = 1 − pi+1. Hence pi−1xi−1 − qixi is independent
of i and the sum over this term for all i is simply M times the
first term for i = 1. The sum over all terms can be written as∑

i

(pi − qi)xi = M(p0x0 − q1x1) = M(pMxM − q1x1), (23)

where we used the cyclic “boundary condition” x0 = xM . This
completes the proof.

The M = 3 Parrondo’s games. Let us apply the theory of the
previous section to the concrete case of the M = 3 Parrondo’s
game. We have two elementary games. The first game is a
random walk on the one-dimensional axis with probability
h for the right jumps and probability (1 − h) for the left
jumps. For the second game the jump parameters depend on
the capital value. The probability for the right jumps is h1

for mod(X,3) �= 0 and h0 for the case mod(X,3) = 0. We ran-
domly choose the game every round. For this we have an effec-
tive M = 3 Parrondo’s game with probability for right jumps
(h + h1)/2 for mod(X,3) �= 0 and (h + h0)/2 for the case
mod(X,3) = 0.

We solve the master equation (10) for calculating the
probability distribution after t rounds. The results of iterative
numerics are given in Figs. 1 and 2. We see that after t = 50
there is an oscillation near the maximum, then as time passes
the number of oscillations grows.

For the analytic solution with Eqs. (12) and (13) we obtain
the matrix Q̂(κ),⎛

⎝ 0 (1 − p1) p2e
−κ

p1 0 (1 − p2)
(1 − p1)eκ p1 0

⎞
⎠, (24)

where p1 = (h + h0)/2, p2 = (h + h1)/2.
The M = 3 game with zero probability for holding the

capital at the current value, has peculiar properties: the
probability distribution is nonzero for odd differences in
the capital after an odd number of time steps, and for
even differences after even time steps. We checked that
there are smooth limiting distributions for even and odd n’s
(see Fig. 2).

We have seen above that strong oscillations exist in the case
of zero probability for holding the capital at the current value,
pl + ql = 1. It is interesting and important to understand if
this—namely, the existence of degenerate saddle points—may
also appear under other conditions. We have to leave the answer
to this question to future work.

Consider the M = 2 case. Again, the first game is a random
walk on the one-dimensional axis with probability p for right
jumps and probability q for left jumps. For the second game
we have the right jump probabilities p1,p2 and left jump
probabilities q1,q2. For the random combination of the games
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FIG. 1. The probability distribution for the capital growth P̂ (n,t),
see Eq. (17), for t = 50,100,150,200 for the M = 3 Parrondo’s
model with p = 0.5 − ε, p1 = 0.75 − ε, p2 = 0.1 − ε, ε = 0.005
[cf. Eq. (24)]. For a proper illustration of the distributions we moved
the graphs horizontally. Without this shift, the maximum of the
distribution after t rounds is located at the point n = 0.0052t . Our
analytical results by Eq. (6) are identical to the results of the numerics.

we have the matrix Q̂(κ),(
1 − p1+q1+p+q

2
q+q2

2 + p+p2

2 e−κ

p+p1

2 + q+q1

2 eκ 1 − p2+q2+p+q

2

)
. (25)

Games with state dependence on history. Consider the case
of random walks with memory. We define the current state by
(X,α1,α2) where X is the current value of the capital, α1 is +
(−) if the last change of the capital was gain (loss), and α2 is
+ (−) if the second last change of the capital was gain (loss).
The parameters of the motion are allowed to depend on α1,α2

and we get

P (X, + ,α,t + 1) =
∑

β

P (X − 1,α,β,t)pα,β,

P (X, − ,α,t + 1) =
∑

β

P (X + 1,α,β,t)(1 − pα,β ). (26)

Let us introduce w(X,t),y(X,t),z(X,t),h(X,t) for the cases
(−,−),(−,+),(+,−),(+,+), with corresponding probabilities
of the right jumps p1,p2,p3,p4. Then we have the master
equations

w(X,t + 1) = w(X + 1,t)(1 − p1) + z(X + 1,t)(1 − p3),

y(X,t + 1) = w(X − 1,t)p1 + z(X − 1,t)p3,

z(X,t + 1) = y(X + 1,t)(1 − p2) + h(X + 1,t)(1 − p4),

h(X,t + 1) = y(X − 1,t)p2 + h(X − 1,t)p4. (27)

Performing the Fourier transform and subsequent analysis as
above we get

w(X,t) = v1 exp[tu(X/t)], y(X,t) = v2 exp[tu(X/t)],

z(X,t) = v3 exp[tu(X/t)], h(X,t) = v4 exp[tu(X/t)],

(28)
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FIG. 2. Illustration of p(x) = P̂ (n,t), x = n/t − r with t = 1000
for even n (upper two lines) and for odd n (lower two lines) of the
M = 3 Parrondo’s game with the same parameters as for Fig. 1. The
smooth lines are derived according to our asymptotic formulas and
Eq. (15); the dashed lines correspond to the numerics.

where u(x) is obtained from the largest eigenvalue λ of the
system of equations

λv1 = (1 − p1)eκv1 + (1 − p3)eκv3,

λv2 = p1e
−κv1 + p3e

−κv3,

λv3 = (1 − p2)eκv2 + (1 − p4)eκv4,

λv4 = p2e
−κv2 + p4e

−κv4. (29)

In conclusion, we considered general versions of Parrondo’s
games. For applications it is most important to find the
capital growth rate and the variance of the distribution. We
calculated not only these characteristics of the models, but
also found an exact distribution function. Furthermore, we
calculated analytically the asymptotics of the distribution u(x)
for large t . The function u(x) satisfies a highly nonlinear
differential equation, but has an explicit expression as the
Legendre transform of a computable function, where for
M > 1 we have to carry out an eigenvalue analysis. Before
our work, the simple matrix Q̂(0) has been used to analyze
Parrondo’s games [6]. The average growth of the capital is
determined by the eigenstate with the maximum eigenvalue
1. Here, we found that the matrix Q̂(π ) and its eigenvalue
−1 lead to fundamental changes of the characteristics of the
distribution function. The existence of this eigenvalue creates
oscillations in the probability distribution of the capital and
results in the existence of two limiting distributions. This
is a typical situation with real data of stock fluctuations in
financial markets, and it is interesting that our simple model
describes this phenomenon. How realistic is the Parrondo’s
phenomenon? As we underlined, it assumes the possibility
to use a simple switch to realize different degrees of mixing
between several strategies, either strengthening the system or
attenuating it. As we discussed in [27], the latter situation is
typical for sufficiently complex living systems.
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