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In the original paper, we introduced two spatiotemporal colored bounded noises, one of which was based on the zero-
dimensional Cai-Lin noise [1] described by the following stochastic differential equation (SDE):
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η(t) is a white noise. Namely, the spatiotemporal extension reads
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Recently, we discovered that Doering had previously defined, in a 1987 paper [2] (see also Ref. [3]), both Cai-Lin equation
Eq. (1) and our Eq. (2). Luckily, no other overlap exists between our paper and the paper [2] which investigated very interesting
analytical properties of the model (2) in the one-dimensional case. On the contrary, in the original paper we numerically studied
the properties of the two spatiotemporal noises in a two-dimensional (2D) lattice approximation as well as their impact on the
solutions of the Ginzburg-Landau model, again in 2D. It is a pleasure to recognize the priority of Doering in proposing model 2.
Finally, in the Appendix of the original paper, in a section on a method to generate bounded noises with a preassigned stationary
density from a scalar stochastic differential equation with additive noise, we mentioned en passant that, if the preassigned
stationary density is P (x) = (1/2) cos(x)+, then the drift of the generating SDE is proportional to − tan(x). This process (which
had no role in our paper, apart from being an example of a general method we proposed) has been defined and investigated in
Ref. [4], which we did not know when we wrote our paper.
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