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The distribution of ions near a charged surface is an important quantity in many biological and material
processes, and has been therefore investigated intensively. However, few theoretical and simulation approaches
have included the influence of concentration-induced variations in the local dielectric permittivity of an underlying
electrolyte solution. Such local variations have long been observed and known to affect the properties of
ionic solution in the bulk and around the charged surface. We propose a hybrid computational model that
combines Monte Carlo simulations with continuum electrostatic modeling to investigate such properties. A key
component in our hybrid model is a semianalytical formula for the ion-ion interaction energy in a dielectrically
inhomogeneous environment. This formula is obtained by solving for the Green’s function Poisson’s equation
with ionic-concentration-dependent dielectric permittivity using a harmonic interpolation method and spherical
harmonic series. We also construct a self-consistent continuum model of electrostatics to describe the effect of
ionic-concentration-dependent dielectric permittivity and the resulting self-energy contribution. With extensive
numerical simulations, we verify the convergence of our hybrid simulation scheme, show the qualitatively different
structures of ionic distribution due to the concentration-induced dielectric variations, and compare our simulation
results with the self-consistent continuum model. In particular, we study the differences between weakly and
strongly charged surfaces and multivalencies of counterions. Our hybrid simulations conform particularly the
depletion of ionic concentrations near a charged surface and also capture the charge inversion. We discuss several

issues and possible further improvement of our approach for simulations of large charged systems.

DOI: 10.1103/PhysRevE.94.053312

I. INTRODUCTION

The formation and structure of an electric double layer
(EDL) around a charged colloid immersed in an electrolyte
solution is largely determined by a high gradient of the
electric potential around the colloid. Such electric potential is
determined by fixed charges (e.g., surface charges), charges
of ions, and the solvent polarization. The distribution of
ions near the colloidal surface therefore characterizes EDL
structures. An EDL has a significant influence on the behavior
of microscopic and mesoscopic charged particles that are in
contact with solution. Understanding ionic distributions near
a charged surface and hence the structure of EDL is therefore
crucial to many applications, including energy-saving devices,
membranes, and biopolymers [1-3].

Computationally, all-atom simulations of mesoscopic sys-
tems are prohibitively expensive because of the repeated
energy or force evaluations for a system with large number of
particles. Alternative continuum approximations and coarse-
grained models are rather efficient, and the classical Poisson-
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Boltzmann (PB) theory [4-6] is a representative continuum
model of such efficient approaches. While this simple and
effective theory has been quite successful in predicting some
basic properties of an EDL structure, it is known to be
only accurate in the weak-coupling regime and with low
ionic concentrations. For instance, the PB theory is unable to
describe the ionic depletion near an air-electrolyte interface,
as well as over charging, charge reversal, stratification of
ionic concentrations, and ion-mediated like-charge attractions
[7-15]. It is believed that the main reason for the PB theory
to be quite restrictive is that it does not describe well the
many-body correlations.

A different and also widely used coarse-grained compu-
tational model is the primitive model [16,17]. In such a
model, the solvent (e.g., water) molecules, often of very
large numbers, are treated implicitly and collectively as a
continuum medium with a spatially homogeneous dielectric
constant. Mobile ions, however, are still explicitly treated as
discrete, charged particles. As the dielectric environment is
in general nonuniform, its approximation with a dielectric
constant can lead naturally to an issue of the dielectric
effect. In fact, the dielectric polarization effect has been
found to play an important role in a variety of systems, such
as colloid suspensions [18-21], cloud droplets [22,23], and
protein folding [24]. In order to investigate such a polarization
effect with the primitive model, one needs to account for
the effect of dielectric mismatch across an interface, the
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dielectric boundary, from a low dielectric material to the
high dielectric aqueous solvent. This can be done by solving
Poisson’s equation or Poisson-Boltzmann equation for the
electrostatic potential with a spatially piecewise constant
dielectric coefficient.

Computer simulation studies with the primitive model and
dielectric boundary Poisson’s model with piecewise dielectric
coefficient have confirmed that the dielectric boundary does
have a significant influence on many-body phenomena, such
as charge inversion, like-charge attraction, and electrostatics-
driven colloidal self-assembly [21,25-28]. Such an approach,
however, still has some obvious drawbacks. First, numer-
ically solving such dielectric boundary Poisson’s equation
for arbitrary geometries can be rather expensive, unless
the underlying system geometry is simple (e.g., a spherical
interface) and a corresponding efficient method (such as the
image charge method) is used [27]. In recent years, several
efficient techniques for general system geometries have been
developed. These include the induced charge computation
method [29-31], boundary element method [32], energy
functional approaches [33,34], and the local electrostatic
method based on the Maxwell equations [35]. However, the
efficiency is still an issue, particularly when such a method
is combined with Monte Carlo (MC) or molecular dynamics
(MD) simulations. Second, a more serious issue is that the
dielectric description is still far from reality. For instance, the
dielectric fluctuation effect due to the alignment of ordered
dipoles is ignored in these descriptions. Experimentally, the
solvent itself can be polarized, leading to its effective dielectric
permittivity being spatially varying as a function of the
salt concentration [36,37]. Heuristically, salt ions weaken
the ability of the realignment of solvent molecules with an
applied field. Thus, a locally high salt concentration effectively
decreases the dielectric permittivity in that region. This effect
has been less studied, mostly due to the difficulty in efficiently
solving Poisson’s equation with a spatially varying coefficient
coupled with particle based simulations.

In this work, we develop a hybrid MC simulations and
continuum electrostatics model to study an electrolyte so-
lution. This model allows us to self-consistently calculate
the equilibrium ionic distributions in a medium with salt-
concentration-dependent local dielectric permittivity. We de-
scribe this local dielectric permittivity by an analytic formula
that fits experimental data and all-atom MD simulation results
[38,39]. We combine the MC simulation scheme with a
harmonic interpolation method (HIM) [40] for rapidly solving
Poisson’s equation with spatially varying dielectric coefficient.
We also construct a self-consistent continuum model (SCCM)
that extends a previous model developed in [41,42]. This model
is in the form of Poisson’s equation together with generalized
Boltzmann distributions that account for self-energies. We
develop various efficient numerical methods to implement
our model. These include an approximation method using
a homogeneous dielectric permittivity and a method of line
image charge [43].

After we verify the convergence of our computational
methods, we apply them to investigate the effect of ionic-
concentration-dependent dielectric permittivity to the EDL
structure around a charged colloidal particle. In particular,
we consider both low and high charge densities of the
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colloidal surface, as well as multivalencies of counterions in
the electrolyte solution. Moreover, we compare our hybrid
MC simulation results with standard MC simulation results
in which a constant dielectric coefficient in the region of
electrolyte is used. We also compare our hybrid MC simulation
results with those obtained from calculations based on our
self-consistent continuum model. Our extensive computations
demonstrate the attractive performance of our method and
reveal several interesting phenomena arising from the ionic-
concentration-induced variations in the dielectric permittivity.

We organize the rest of our paper as follows. In Sec. II,
we describe our hybrid MC simulations and continuum
electrostatics model and provide details of the harmonic
interpolation method (HIM) for solving the continuum elec-
trostatics problem coupled in MC simulations. In Sec. III,
we introduce the self-consistent continuum model and our
method of implementation for this model. In Sec. IV, we
report simulation results with discussions. Finally, in Sec. V,
we draw conclusions and discuss some issues and possible
improvement of our approaches.

II. A HYBRID MONTE CARLO SIMULATIONS AND
CONTINUUM ELECTROSTATICS MODEL

We propose a canonical-ensemble Metropolis Monte Carlo
(MC) method for an extended primitive model that accounts
for the dielectric inhomogeneity arising from the dependence
of the dielectric coefficient on local, total ionic concentration.
By fitting experimental and simulations data [44,45], we obtain
the following formula of the dielectric coefficient (i.e., relative
permittivity) varying with the total ionic concentration [38]:

g(c) = 70e™ 022/ 4 10, (1)

where ¢ = 27:1 ¢; with M the number of species of ions
and c; the local concentration of the jth ionic species, and
co=1 M. In Eq. (1), we have implicitly assumed that the
dielectric coefficient e, (w for water) for the pure solvent (i.e.,
c=0)is &y, = €(0) = 80.

A. The Hamiltonian

We consider a negatively charged colloidal particle im-
mersed in an electrolyte solution (cf. Fig. 1). (There is no
particular reason, other than being specific, for us to consider
a negatively charged macroion.) The macroion is centered at
ro = O (the origin), has radius Ry,, and has a bare charge Q¢ =
Zye atits center, where Z is the valence and e is the elementary
charge. The electrolyte solution occupies a spherical shell
defined by Ry <7 < Rghenn for some radius Rgpep, Where
r = |r| [17]. We assume that there are N microions of M
different ionic species in the electrolyte solution. The ith ion
is located at r; (the center of ion), has radius «;, and carries
a charge ¢; = z;e at its center with z; its valence. An ion
of jth species has valence Z;. So, each z;(1 <i < N) is the
same as some Z; (1 < j < M). We also assume that the entire
charged system satisfies the electroneutrality condition. With
a given set of microions, we define the ionic concentrations
c¢j =cj(r)(j =1,...,M) and the total concentration c(r) =
27:1 ¢j(r). With our underlying system geometry, we shall
assume that all these concentrations are radially symmetric,
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FIG. 1. Schematic representation of a charged colloid immersed
in an electrolyte. Cations and anions are represented by solid red and
blue balls.

i.e., they only depend on » = |r|. We shall also use the notation
c=c(r) =c(r).

We divide our system region into three regions of concentric
spherical shells:

(1) The macroion region: r < Ry,. This region has the
constant dielectric coefficient &,,, same as that of the colloidal
particle.

(2) The EDL or electrolyte solution region: Ry, <r <
Rghen- In this region, the dielectric coefficient at a spatial point
ris given by € = &(c(r)) = &(c(r)), where ¢ = ¢(r) is the total
ionic concentration at r and ¢ = ¢(c) is defined in Eq. (1).

(3) The bulk region: » > Rgepr- In the bulk region far away
from the charged interface, the dielectric coefficient is assumed
to be a constant £5, = &(c(00)) where ¢(o0) is the bulk value
of the total concentration.

Note that all the microions are placed in the region R, <
r < Rghell-

We define the Hamiltonian U = U(ry,ry, ...,ry) of our
system to be
N
U="Uy+ Z U;; + Z Ufelf, 2
0<i<j<N i=0

where the indices i and j run over all macroions and microions
with i = O representing the macroion. Here, the first term Uy,
is the hard-sphere potential: Uy = oo if any two ionic spheres
(micro or macro) overlap, or the center of any microion goes
out of the region of electrolyte solution Ry, < r < Rgpen; and
Ups = 0 otherwise.

The second term in the Hamiltonian (2) sums over the
pairwise electrostatic interactions among all different charges,
including the macroion which is labeled by 0. We denote ry
the center of macroion, which is the origin, and zo = Z, and
qo = Qp.Giveni and j withi # j, the electrostatic interaction
U;; between the charges g; = z;e and g; = z;e located at r;
and r;, respectively, can be expressed as U;; = g;q;G(x;,r;).
Here, G(r,r’) is the Green’s function defined by

—V - e(r)egVG(r,r) = 8(r — 1), 3)
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where gy is the vacuum permittivity, § is the Dirac delta
function, and the dielectric coefficient £(r) is defined to be &y,
forr < Ry, e(c(r))for Ry < ¥ < Rgpent, and €0 fOrr > Rgper.
The Green’s function is defined in the entire space R>. It
satisfies that for a fixed r’ both G and &(r)d, G are continuous
functions with respect to r across the interfaces r = Ry, and
Rghen, and that G(r,x’) — 0 as r — oo.

The Green’s function G(r,r’) represents the electrostatic
potential due to a unit point charge at r’. It thus describes the
electrostatic interaction between two unit charges at r and r/,
respectively. With the radially symmetric dielectric medium,
we can decompose the Green’s function into

G(r,r') = Geou(r,r') + Gpol(r,1'), 4)

where the term Gcou(r,r’) is the direct Coulomb interaction
term, defined to be

Geoul(r,r') =

1
dreg/e(Me)r — |’ ©)
and the term Gp(r,r’) describes the polarization due to both
the dielectric jump at the surface of macroion and the dielectric
variation in the EDL region. Once G(r,r’) is known, then it
together with (4) and (5) determine Gpy(r,r') = G(r,r') —
GCoul(r’r/)-

The last term in the Hamiltonian (2) sums over all the
self-energies that arise due to the dielectrical inhomogeneity
of the medium, for which the free energy cost of inserting
an ion becomes space dependent [46]. Such a self-energy can
be divided into two contributions: (1) the polarization energy
due to the global dielectric variation and (2) the Born energy
[47] due to the local finite ionic size effect. Thus, the total
self-energy of the ith ion is given by

1
} ’ (6)

a4 IR
4me(ri)eoRy,;

2

where Ry, ; is the Born radius of the ith ion.

Ut = |:GPol(ri Xi) +

B. Harmonic interpolation method

We use the harmonic interpolation method (HIM) [40,48]
to solve Eq. (3) for the Green’s function G(r,r’). This method
is based on the following observation: if the square root of
dielectric coefficient function is harmonic, then the Green’s
function can be transformed by a change of variable to a
new Green’s function that is defined with a constant dielectric
coefficient. A key idea in the HIM is then to use a piecewise
interpolation of the variable dielectric coefficient in Eq. (3) so
that the square root of the interpolated dielectric coefficient
function is piecewise harmonic.

We divide the radially symmetric simulation region
0 < 7 < Rgyenn into small layered shells I; = [r;—;,r;] (I =

1,...,L)forsome L, wherery = 0,71 = Ry, and Ry, = Rgpey-
Let us denote ¢; = &(r;) the dielectric coefficient at r; (j =
0,1,...,L). We then approximate the dielectric coefficient

function by the following piecewise defined function &ypp, =
Eappr(1): Eappr = Em if ro <7 < 1, and

6‘appr(r) = El(r)

r

E 2
=<&,+ ’) it o <r<mil=2,....L (1)
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where the coefficients 4; and b; are given by

. VeI — Jei=iri-1 b — NN

aj and ] = .
=T 1/rp—1/r_

These coefficients are so determined to ensure the continuity
of &qppr(7).

Now, let Gappr(r,r/) be the Green’s function corresponding
t0 Eappr, 1.€., Gappr(r,1’) satisfies Eq. (3) with &(r) replaced
by appr(r). We denote G/ (r,1') = Goppi(r,¥) if r = |r| € I; =
[r;—1,77]. Let the source charge r’ be located in I; for some
k: 1<k<L,ie,r =|r| el =[ri_1,r]. Then, we have
that [40]

—V2[el(r)eoG (r,1)]

1 .
= S(r—r) if

Notice that, if we set v; = Vel £0G', then the left-hand side
of the above equation on ; is just —V?v;. The equation is
then Poisson’s equation with a constant dielectric coefficient,
in contrast to Eq. (3) that has a variable dielectric coefficient.

We use the spherical coordinates, and denote the angle
between r and r’ by 6. Then, within the layer ;, the Green’s
function can be expanded into a series of spherical harmonics

roi<r<r,l=1,...,L.

! > TA)F" + Bi(m)r " Py(cos )

Vel 15
ik 1
A E— T
where §j; is the Kronecker delta and P, is the Legendre
polynomial of order n. Applying the spherical harmonics

expansion to the reciprocal distance 1/|r — 1’|, we can rewrite
the above expression as

4 eoGl(r,r) =

+

rG[[

[e.¢]
4egG(r,x') =Y Miu(r)Pu(cosd), r €,
n=0

where
Ai(n)r®" ! + By(n) Sur?
Vel (ryrt VE )Ryttt
and r_ (r-) is the smaller (larger) one of r and r’. All the

constants A;(n) and B;(n) are determined by the following
continuities:

G'(r,,r') = G"*'(x,x),
IG' (r,r) IG"t (1,1
— =) —

ar ar
The boundedness at the origin of the electrostatic potential
leads to By(n) = O for all n. The fact that the potential goes to
Oasr — ooleadsto A (n) = O for all n. By the orthogonality
of the Legendre polynomials, we have
M (r1) = Mig1,a(r1),

. L1

M, . (ry) IM 410 (r1) l ®)
') —2— =) ——,
ar ar

Ml,n(r) =

e'(r)
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for all n = 0,1.... For each n, this is a system of 2(L — 1)
linear equations for 2(L — 1) unknowns, and thus can be solved
by direct numerical methods as L is usually a small number.

C. Hybrid Monte Carlo and continuum simulations

We describe our simulations in three steps.

Step 1. Initialization. We input all the parameters: R, and
Rihen (radii), e, and &y, (dielectric coefficients), Z; (valence of
anion of the j ionic species), z; (valence of the ith ion), @; and
Ry, (radius and Born radius of the ith ion). (We set R, ; = a;
for all i.) L (number of shells in numerical discretization),
rj (j =0,1,...,L) (grid points), T (temperature), and p (a
truncated order in the spherical harmonic expansion). We
randomly distribute all the microions without overlap inside
the spherical-shell region of electrolyte solution. We also
generate an initial guess of the dielectric function &jy.

Step 2. MC iteration for equilibrating the ionic con-
centration. This step consists of the following three parts
MCI1-MC3:

(MC1) Given an approximation of the dielectric coefficient
function as defined in (7), we sample a certain number of
MC cycles to obtain the ionic concentrations within each
discretized radial interval. Each MC cycle is composed of
N moves, one for each of the N microions. After each of
such a move, we calculate the total energy U and decide to
reject or accept the move, all as in a standard MC simulation.
Each calculation of the Hamiltonian U involves solving for
the Green’s function with the HIM. Note that, since only one
ion is moved each time, we need only to update part of the
total Hamiltonian that is related to the moved ion.

(MC2) Calculate the ionic concentration c; of the jth

ionic species, the total ionic concentration ¢ = ZM: 1€
and the dielectric coefficient ¢ = e(c(r)) by Eq. (I). As
approximation, each concentration c¢; = ¢;(r) is assumed to
be piecewise constant, i.e., constant value in each of the layers
Iy (I =1,...,L). This piecewise constant concentration c; is
determined by averaging over snapshots of the microions of
the jth ionic species with a certain number of MC cycles,
as described in MCI1. The resulting dielectric coefficient
& = g(c(r)) is also a piecewise constant. In order to improve
the HIM accuracy and convergence, we smooth this piecewise
dielectric coefficient by fitting it into the following smooth
exponential function:

=R/t Ry <7 < Rypenls (€

e(r) = a1 + aze
where a; and a, are some fitting constants, and £p, is the Debye
length defined by €3 = ey &0k T/(Z?’I=1 c?Z?ez) with c(} the
bulk concentration of ions of jth species. Note that we choose
the form (9) based mainly on our experience. According to
the form (1) of dielectric coefficient function ¢ = &(c(r)), we
find that it decays exponentially to the bulk value. Moreover,
from the mean-field theory we know that the decay rate should
be proportional to the inverse Debye length. Therefore, we
construct the function (9). Our numerical tests show that this
is a good fitting function in terms of convergence.

(MC3) If the dielectric coefficient function obtained in the
previous part does not converge, we then repeat the previous
two steps.
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Step 3. Data analysis. We use the autocorrelation function
(ACF) of the total energy to validate the convergence of
sequence of sample energies E,E,, ...,Eg for some K > 1.
(In our simulations, we choose K = 10°.) The ACF for lag k
is defined by

K—k

Y (Ei — EXEi1x — E)

ACF(k) = var(E)

1

K —k “ '

i=1
where var(E) and E are the variance and the mean of
the energies for the K samples, respectively. The ACF
reflects how the system decorrelates as a function of MC
sampling lags. It also shows the effective number of samples
needed for a Markov chain based sampling process. Since
we iteratively update the dielectric coefficient function, the
ACF also describes the relaxation time of the system in
response to the change of dielectric environment. Once the
system reaches an equilibrium by MC iterations, we start the
MC sampling for the interested physical quantities. These
include the macroion-microion radial distribution function
(RDF) and the integrated charge distribution function (ICDF).
The normalized RDF for the jth ionic species is defined to be
gj(r) =g;(r)/A, where

(Nj(r,r + Ar))

gi(n= and
&) sl + Ar)* — 3]
M Rihent
A=4n2f g](r)rzdr
j=1 v

The quantity in angular brackets (N;(r,r 4+ Ar)) is the average
number of ions of the jth species in the spherical shell between
r and r + Ar. The ICDF is defined by

M
Q)= Qo+ Y Zje(Nj(Rn.r)), R <r < Repen-
j=1

III. A SELF-CONSISTENT CONTINUUM MODEL

We now describe a self-consistent continuum model that
includes the effect due to the ionic-concentration-induced
variations of dielectric permittivity. We consider an electrolyte
solution occupying the spherical shell R, <7 < Rgen as
defined in the previous section. We assume again that there
are M species of microions in this region. An ion in the
Jjth species has the valence Z;, and thus carries the charge
Q; = Zje. We denote by c; the local concentration of the
Jjthionic species (1 < j < M), and by ¢ = le'./]:l c; the total
ionic concentration. We again assume all these concentrations
depend only on r = |r|. We also assume as before that the local
dielectric coefficient ¢ = £(c(r)) = e(c(r)) with e(c) given by
(1) forregionr > Rp,, andaconstantvaluee = g, forr < Ry,.

Let ® = ®(r) be the electrostatic potential, assumed to
be radially symmetric. The following modified Poisson-
Boltzmann (PB) equation for the electric potential is the main
equation of our self-consistent continuum model [41,49-51]:

M
— V. e()eVe =) 0, (10)
i=1

0,=BU=UN  j —1 ... M. (11

¢ =cje
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Here, the second equation describes generalized Boltzmann
distributions, where c(]? is the bulk concentration of the jth
ionic species, B = 1/(kgT) is the inverse thermal energy with
kg the Boltzmann constant and 7 temperature, and for each
JA << M),

Uj=Q;®+3Q%u; (12)
is the electrostatic energy with its bulk value U}’ [52-55].

In (12), u; =u;(r) (Rm <1 < Rgen) is the self-energy,
defined by [46,53,54]

uj(r) = im[G,;(r,r') — Go(r,r')], (13)
r'—r
where Gy is the free-space Green’s function defined by
—&oV2Go(r,r) =8(r —r) (14)

with Go(r,r’) - Oas |[r — 1’| — oo, and G| is the solution to
the following generalized Debye-Hiickel (DH) equation [56]:

=V . g;(r,r)egVG;(r,r') + 21;(r,r')G(r,r') = 8(r — 1),
(15)

together with the far-field condition G; — Oas |r — r'| — oo.
In this DH equation, the dielectric coefficient & ; (r,r’) and ionic
strength /;(r,1’) are determined by

1 if |r—r'|<aj,
g;jr,y)={en if |r| < Ry,
g(c(r)) otherwise,

Fepy < [0 i Ir=rl<ajorirl < Rn,
() = 1) = gzyzl Q%cj(r) otherwise,

where a; is an effective radius which is taken to be the same
as the radius of an ion of the jth species as in our hybrid
MC simulations model. Note that, with &;(r,r’) and /;(r,r’) so
defined, the self-energy u ;(r), defined in Eq. (13), is a smooth
function at every point.

We impose the following boundary conditions for the
potential ® = &(r):

_Emg()q),(Rm) =o and q)(Rshell) = q)ooa (16)

where o = Qo/(47rRﬁl) with Qq the charge at the center
(origin) of the macroion as set up in the MC simulations and
®, is a constant which we usually take it to be 0.

To solve the boundary-value problem of modified PB
equations (10) and (16), we need to first solve Eq. (15) to
get the functions G j(r,r/) (1 < j < M). Then, we can obtain
u; by (13) and hence U from (12) for all j. However, Eq. (15)
has variable coefficient and a delta source term, and is hard
to solve efficiently in general. Since our purpose is to obtain
u j(r), we generalize the method designed in [41] to decompose
u; into three terms:

uj=uj1+uj+iu;s,
where
uji(r) = rl,i_)mr[Gj(r,r/) - G(r,r)],
uj2(r) = lim [G;(r,x) — G(r,r)],

uj3(r) = lim [G'/(x,r) — Go(r.r')].
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The functions G'; and G’} are defined by

PHYSICAL REVIEW E 94, 053312 (2016)

-V. s}(r,r/)soVG/j(r,r/) + 2Ij(r,r’)G/j(r,r’) =8(r—r),
-V. e;f(r,r’)eoVG’]f(r,r’) =48(r —r),

respectively, where

1 if |r—r|<aj,
s}(r,r/) = {e(c()) if |r| < Rpn,
g(c(r))  otherwise

‘We now describe our approximations of uj y = u(r) (k =
1,2,3). By using the method extended from the WKB method
developed in [57], we obtain the following approximation of
Uji:

qx(r) +/rK Gline(X) dr. (D)
0

uir)y ————
51 4 ego|r — ri| 4esy|r — X|

where ¢ = &(c(r)),rk = rR2 /r?, x = xr/r, and the strengths
of the Kelvin and line images are given, respectively, by

611((7’) - (em — €)Rn e4rr££0'u“\r—rK\’
(&m +&)r
(em — &) (rK)rT dreeyilir—
- (x) = - e oulr le
qlme( ) (Sm + 8)2Rm X

with u defined later in (18). We can use Gauss quadrature to
approximate the numerical value of the integral in Eq. (17) as
the sum of potentials due to a finite number of image charges
[43].

As in [41], we approximate u j » by

u(r)

1 — 4me(e(r))eoii(ria;’
where 7 does not depend on a;. It is defined by

i(r) = im[G'(r,r') — G"(r,x)], (18)

ujo(r)~

where
—V - e(c(r)eoVG (r,r) + 211G (r,x) = 8(r — 1), (19)

-V. s(c(r’))soVé”(r,r’) =8(r—7r). (20)
Note that
1

5// , "N — )
0 = et eolr — 7]

We use the method developed in [41] to solve for u(r).
Briefly, we introduce H(r,r') = /e(c(r))e(c(r'))eoG (r,r'),
and transform Eq. (19) into V*(H — Hy) = v*H, and further
into

H(r’r/) - Ho(rvr/) = -

)

1 /1\2 /1
_f v(@”")y*H@",x') .

4 Ir —r’|
where
Ho(r,r') = e(c(r')eG (r,r)) = ;
4 |r — 1|
_ eon/e(c(r)V2/e(c(r)) + 21(r)

v(r)2

e(c(r)eo

and s}’(r,r/) = {

if |r—r|<aj,
otherwise.

1
&(c(r)

(
Replacing H on the left-hand side of the integral equation
by H™ and that on the right-hand side by H"~D, we get an
iteration scheme to compute an approximation of . Finally,
we obtain

u(r) =

1 / /
20 m[H(r,r) = Ho(r,r)).

Direct calculations lead to [41]

N L
uj’3(r)_47'[aj80 %_ '

This is the Born energy.

Our self-consistent continuum model consists of all the
equations and boundary conditions (10)—(16). To solve this
system of equations, we use a self-consistent iterative algo-
rithm that consists of the following main steps:

Step 1. Initialize the concentrations fields c&o) (=
1,...,M) and electrostatic potential ®©. Set k = 0.

Step 2. Compute c® = Z?’I: 1 c;k). Compute e(c,(.k)) by (1).
Calculate

*) (k) (k) (k)

u; :uj71+uj’2+uj’3, j=1....M

as described above.

Step 3. Use an iterative scheme to solve the modified PB
equation (10), together with the boundary condition (16):

(1) Set &% = ¢® Set = 0.

(2) Solve

M
—V - ellgg Vol gttt — 3™ gl gl

i=1

to get ®I+11 where

elll = (" (r)),
M [11
me |2t Qic ()]
T

n
clm(l’) C?e’ﬁwf 4/}’)’
1
l 1 2 (k
b,‘[]_— QiqD[] EQ,"/‘; )‘

Here, §p > 0 is a small number set to ensure the convergence
of iteration.

(3) Check if |®"+11 — ®ll] < §, for some given tolerance
8;. If not, set I :=1+ 1 and go to (2). If yes, set k :=k + 1
and ®® = @li+11,

053312-6



HYBRID MONTE CARLO AND CONTINUUM MODELING OF ..

1.2

1

0.8

0.6

0.4

Autocorrelation

0.2

0

LI L N I A L A [

-0.2

o

Number of MC sampling lags

Autocorrelation

PHYSICAL REVIEW E 94, 053312 (2016)

1.2

L

L L

1
10x10’
Number of MC sampling lags

FIG. 2. The autocorrelation function (ACF) with the surface charge density (a) 0 = —0.318 ¢/nm? and (b) 0 = —1.214 ¢/nm?, and with

different ionic valences.
Step 4. Compute ¢® = ij
Calculate
k) __
i=
Check if |u(.k) — u(jk_l)| < 8, for all j
given tolerance §,. If not, go to Step 3.

X cﬁ.k). Compute &(cP) by (1).

k)
j.l

(k)
j.2

(k)
53

u,; +u:,+u =1,...,M.

J

1,...,M for some

IV. SIMULATION RESULTS AND DISCUSSIONS

We perform NVT-ensemble Metropolis MC simulations
based on the hybrid scheme for the extended primitive model,
and study the effect of dielectric variations under different
system settings. The following parameters are assumed to
be constant throughout the paper: R, = 2 nm; Rg,ey = 7 nm
and the volume fraction of macroion remains to be the
constant ~2.3%; all a; = ajon, = 0.225 nm; ¢, = 2; & = 80;
ginit = 80; T =300 K; and p = 60. We choose p = 60 based
on some numerical tests as well as a rough estimate on the
error in the spherical harmonic approximation. The worst
case for the convergence of spherical harmonics series is
when an ion touches the interface. In this case, the expansion
coefficients for the self-energy are about Rlzrf‘ /(R + dion)™".
In the simulations, we have R, = 2 nm and a;,, = 0.225 nm.
Hence, with n = 60, this coefficient is 2.78 x 107°. A further
estimate on the truncation error for the self-energy leads to at
least a five-digit accuracy.

We use kg T as the energy unit, where kg is the Boltzmann
constant. We use 1:1, 2:1, and 3 : 1 salts; so, the coions
are always monovalent. We focus on studying the influence
of the variance of counterions. In the meantime, we fix the
concentration of coions to be 100 mM, allowing arelatively fair
comparison. Clearly, the presence of multivalent counterions
makes the underlying system strongly correlated. We thus
expect that an adequate treatment of electrostatic self-energy
is essential. Finally, we choose the macroion surface charge
density o to satisfy that 0 < —o < 3e/nm?, describing many
realistic biological and physical systems.

In each of our hybrid MC simulations, we begin with
a uniform dielectric coefficient &, = &y = 80. We then

iteratively update the dielectric coefficient function for 50
loops to make sure that we obtain the converged dielectric
coefficient function. Each loop consists of 103 MC cycles
followed by the calculation of the total ionic concentration
and the corresponding dielectric coefficient function &(c(r)).
In each cycle, we move all the N microions one by one.
Each single move is followed by the calculation of interaction
potential U and either acceptance or rejection of this move as
described in MCI1 in Sec. IIC. After the dielectric function
reaches convergence, we perform another 10° cycles for
equilibration of the ionic distribution, and then sample 10° N
cycles for statistics.

A. Convergence analysis

We first analyze numerically the convergence of our
iterative scheme. From the first K = 10° MC samples, we
compute the ACF of the total energies. Figure 2 shows the
ACFs with surface charge densities (a) 0 = —0.318 e¢/nm?
and (b) 0 = —1.214 e¢/nm?, respectively. For each of these
two cases, we plot three ACF curves corresponding to three
different counterion valences, respectively. For the case of
low surface charge [Fig. 2(a)], the ACFs decay to less than
0.2 at about 1500 sampling lags. Furthermore, by comparing
the three different curves, we find the ACF for trivalent ions
shows the slowest decay. This is reasonable because of the
strongest electrostatic coupling in this case, leading to a longer
relaxation process for the system to decorrelate. Meanwhile,
in the case of higher surface charge [Fig. 2(b)], all the three
ACEF curves decay to less than 0.2 at more than 3000 sampling
lags, and even more than 5000 for the trivalent counterions.
Clearly, a stronger surface charge density will lead to a much
slower system decorrelation. Finally, the ACF curves help us
understand how many numbers of moves are needed within
each iteration for updating the dielectric coefficient function.

Obviously, more steps are needed for o = —1.214 ¢/nm? than
that for 0 = —0.318 e¢/nm?, especially when trivalent ions are
present.
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FIG. 3. (a) The integrated charge distribution functions (ICDFs) for three different rates of updating dielectric coefficient function: every
50, 1000, and 10000 MC cycles. (b) The evolution of dielectric coefficient function at different iteration loops with the dielectric coefficient
updated every 1000 MC cycles. Both (a) and (b) are calculated with the surface charge density 0 = —1.214 e¢/nm? and with 3:1 electrolyte

(trivalent counterions and monovalent coions).

In Fig. 3, we show that too fast updating of the dielectric co-
efficient function can lead to discrepancy in the final statistical
averaging. In Fig. 3(a), we consider the slowest convergence
ato = —1.214 ¢/nm? with trivalent counterions. We compare
the final equilibrium integrated charge distribution functions
(ICDFs) with respect to the three different rates of updating
the dielectric coefficient function: every 50, 1000, and 10 000
MC cycles. Clearly, if we update the dielectric coefficient
function every 50 MC cycles, then the resulting ICDF will
be different from the other two curves, even the total number
of samples is kept the same. In Fig. 3(b), we also present
the evolution of the dielectric coefficient function within
the iterative process, for the case of updating the dielectrics
every 1000 cycles. The dashed line is the initial dielectric
coefficient function, which is taken to be a constant. At the
second iteration loop, we find that the dielectric coefficient
function exhibits a significant change. This is actually already
quite close to the final equilibrated dielectric function. Then,
in the next loops, the dielectric coefficient function slowly
converges.

We remark that, with the adjustment of dielectric function
and step size, our Monte Carlo simulation algorithm can
be non-Markovian. Convergence and correct description of
ergodicity of a non-Markovian algorithm have been partially
established in [58]. Our extensive tests have shown that our
algorithm indeed converges.

B. Influence of surface charges and multivalent counterions

We now study the effect of concentration-dependent di-
electric permittivity e(c(r)) under the influence of surface
charges, with both low and high densities, and counterion
multivalences. We also compare our hybrid MC simulations
with the standard MC simulations in which the dielectric
coefficient in the region of electrolyte is taken to be ¢,, = 80.
The simulated radial distribution functions (RDFs) are shown
in Fig. 4.

We first consider the case of a weakly charged surface
with the surface charge density o = —0.318 ¢/nm?. We find
the following from the left three plots in Fig. 4: (1) The
counterion distribution decreases monotonically in the case
of 1:1 salt [Fig. 4 (a)], and become nonmonotonic when
the counterions are multivalent [Figs. 4(c) and 4(e)]. This
is mainly due to the stronger image charge repulsion that
scales quadratically with respect to the counterion valence,
resulting a depletion zone and thus the nonmonotonicity.
(2) There is a little discrepancy in the RDFs between the
case of concentration-dependent dielectric coefficient and
that of a constant dielectric coefficient, even when trivalent
counterions are present. Such discrepancy indicates that, when
the interface is weakly charged, the EDL structure is hardly
affected by variations in the local dielectric permittivity.
This is mainly due to the relatively small difference of the
ionic concentration near the interface compared with the bulk
value. It results a dielectric coefficient function without drastic
change according to Eq. (1).

We then consider the case of a strongly charged surface
with the surface charge density o = —1.214 e/nm?. The
corresponding RDFs are presented in the three plots of the
right column of Fig. 4. We can observe several interest-
ing phenomena: (1) The counterion distribution decreases
monotonically for both monovalent and divalent counterions
[Figs. 4(b) and 4(d)], and the depletion zone finally appears
when trivalent counterions are present [Fig. 4(f)]. Clearly,
comparing with the low surface charge density, it becomes
harder to form the depletion zone. This is mainly due to
the stronger attraction between the surface charges and the
counterions. Such attraction overwhelms the image charge
repulsion. (2) As shown in Fig. 4(f), even the coion distribution
profiles are nonmonotonic, indicating the occurrence of charge
inversion. This is also verified in their profiles of integrated
charge distribution function (ICDF) shown in Fig. 3(a): the
ICDFs change their sign from negative to positive at a certain
radial distance. (3) Comparing the counterion RDFs between

053312-8



HYBRID MONTE CARLO AND CONTINUUM MODELING OF ...

0.02

0.015

2 0.01

0.005

0.015

F

2 0.01

0.005

0
0.02

0.015

2 0.01

0.005

ol 1 L1 L1 ‘
0 1 2 3 4

r-R_ (nm)

PHYSICAL REVIEW E 94, 053312 (2016)

0.08

0.06

0.04

RDF

0.02

0.08

0.06

0.04

RDF

0.02

0.08F

0.06

0.04

RDF

0.02

FIG. 4. Counterion and coion radial distribution functions (RDFs) of the distance to the surface of macroion. RDFs for monovalent,
divalent, trivalent counterions, and coions with the ionic-concentration-dependent dielectric function e(c(r)) are denoted by g, g>+, g3+, and
g—, respectively. RDFs for monovalent, divalent, trivalent counterions, and coions with a constant dielectric coefficient & = 80 are denoted
by g‘j_, a3 - a3 ., and g°, respectively. The anion concentration is fixed to be 100 mM. (a) 1:1 electrolyte and o = —0.318 e/nm>. (b) 1:1
electrolyte and 0 = —1.214 ¢/nm?. (c) 2:1 electrolyte and 0 = —0.318 e/nm?. (d) 2:1 electrolyte and 0 = —1.214 e¢/nm?. (e) 3:1 electrolyte

and 0 = —0.318 ¢/nm?. (f) 3:1 electrolyte and o = —1.214 ¢/nm?>.

the case of concentration-dependent dielectric coefficient
and that of constant dielectric coefficient, we find a very
interesting phenomenon: as the counterion valence increases
from monovalent to trivalent, the effect of dielectric variation
changes from attraction into repulsion. This is mainly due
to the complicated interplay between the Born energy and
dielectric-boundary-induced repulsion and the correlation-
energy-induced attraction. The dielectric-boundary repulsion
energy scales as ~ z? with z being the valence. When the
valence is high, this energy cannot be completely screened by
the surface charge, and is also enhanced by the Born energy,
leading to a stronger depletion interaction.

C. Comparison between hybrid MC simulations and the
self-consistent continuum model

We now compare our hybrid MC simulations results with
the SCCM calculations as well as the classical PB model. All
parameters in the finite difference schemes for the SCCM and
PB calculations are consistent with those in MC simulations.
Note that if we drop the self-energy termin (11), then we obtain
the classical PB model. The computational region r — Ry, is
from O to 4 nm and is discretized with 1600 grid points in the
radial direction.

In Fig. 5, we compare the profiles of cation density (which
is the same as anion density) obtained by the MC simulations
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and our SCCM model for a 1:1 dilute electrolyte (13 mM) with
&(c(r)) = 80 around a neutral macroparticle (i.e., the surface
charge density o = 0). We find that the two profiles are almost
the same, indicating that our SCCM can capture the dielectric
boundary effect. Note that the PB equation would predict a
zero electrostatic potential and hence constant ionic density.
In Fig. 6, the scaled RDFs computed from the self-
consistent continuum model ( g[-CM) and the classical PB theory
(g})B) are plotted for two cases: (a) a weakly charged surface
with the surface charge density 0 = —0.318 ¢/nm? and 2 : 1
salts; (b) a strongly charged surface with the surface charge
density 0 = —1.214 e¢/nm? and 1 : 1 salts. In Fig. 6(a), the
results of self-consistent continuum model (SCCM) are in very
good agreement with those of the hybrid MC simulations. Note
that Fig. 4(c) has already shown that the effect of variable ¢
is not significant in this case. Thus, the dielectric boundary
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effect dominates here and the corresponding approximation
technique in Eq. (17) performs excellently. In the classical
PB theory where both correlation and dielectric boundary
effects are neglected, RDFs are shown to be monotonically
decreasing, qualitatively different from what is expected. This
indicates that when considering the dielectric boundary effect,
classical PB theory fails even when the surface is weakly
charged. In Fig. 6(b), with a high surface charge density,
the dielectric profile near the surface varies significantly. This
affects the accuracy of approximation for u; in the SCCM,
although the dielectric boundary effect is highly screened by
the dense ionic concentrations. This leads to a slight deviation
between the RDFs of the self-consistent continuum model and
the hybrid MC simulations at the vicinity of the interface.
Meanwhile, in the classical PB theory, the RDF of counterions
is much larger than both the SCCM and the hybrid MC
simulations since it ignores both the Born energy and dielectric
boundary effect in u; ;, These are in fact crucial in this case.

V. CONCLUSIONS

This work aims at understanding the effect of ionic-
concentration-induced dielectric variations to the electric
double layer (EDL) structure of an electrolyte solution near
a charged surface. Our starting point is the experimentally
observed dependence ¢ = ¢(c) of the dielectric coefficient &
on the local, total salt ionic concentration c; cf. Eq. (1). This
simple relation can be explained as a result of local molecular
polarization and inhomogeneous response to an applied field.
Yet, the many-body effect arising from such dependence is
quite delicate and often significant.

We have constructed a hybrid model combining Monte
Carlo (MC) simulations of ions and continuum description
of electrostatics. The Hamiltonian of ionic interactions con-
sists of the hard-sphere potential, pairwise charge-charge
interactions, and self-energies. Both the second and third
parts of this Hamiltonian are defined through Poisson’s
equation in which the dielectric coefficient varies with the
local ionic concentration. This is different significantly from

0.2

(b)

0.15

0.1

RDF

0.05

(=

FIG. 6. Counterion and coion radial distribution functions (RDFs) of the distance to the macroion surface from three different models: MC
simulations (g;), self-consistent continuum model (gFM), and PB model (g}’B). Two cases are considered here: (a) a 2 : 1 electrolyte with a low
surface charge density o = —0.318 e/nm? (a); (b) a 1 : 1 electrolyte with a high surface charge density 0 = —1.214 ¢/nm?.
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the equation with a uniform dielectric coefficient where the
interaction potentials have a simple analytic formula. We have
implemented the harmonic interpolation method to efficiently
solve Poisson’s equation within our underlying geometry. We
have also developed a self-consistent continuum model in the
form of a modified Poisson-Boltzmann (PB) equation that
includes various effects, such as the concentration-dependent
dielectric variations and self-energy due to the inhomogeneity
of dielectric environment. To obtain the self-energy efficiently,
we decompose it into different parts that correspond to
different dielectric coefficients, and hence different Green’s
functions. These Green’s functions can be obtained by analyt-
ical formulas and approximations.

We have verified the convergence of our numerical methods
implementing the hybrid MC and continuum model as well as
the self-consistent continuum model. By examining the ionic
radial distributions and integrated charge distributions with
our extensive numerical computations, we have also found
that the effect due to the ionic concentration dependence of
dielectric permittivity is quite strong if the surface charge
density is high. Otherwise, such effect is very small, if the
surface is weakly charged. Moreover, with a high surface
charge density, the effect is much stronger for a 3:1 than
1:1 electrolyte. In particular, with our hybrid approach, we
have captured the depletion of ions near the charged surface
and the charge inversion. Our continuum self-consistent model
produces results that agree quantitatively with the hybrid MC
simulations.

This work is the first step in developing hybrid models and
computational methods for complex systems of electrostatic
interactions. With several parameters and approximations, our
approach is somewhat ad hoc and is still in its early stage.
While our initial tests have shown that such an approach
can capture some of the many-body effects arising from the
interplay between the ionic concentration-induced dielectric
variations and ion-ion correlations, there is clearly much
needed to be improved. First, we have assumed a radially
symmetric geometry in our models and methods. This can
be limited to many applications that may need a more
general geometrical setup. Therefore, extending our approach
to general geometries will be of interest. The difficulty in such
an extension can be in the construction of efficient numerical

PHYSICAL REVIEW E 94, 053312 (2016)

methods for solving for the Green’s function, using ideas
similar to what have been used in this and previous works.
Second, we have included several effects in our models. But,
we have not done enough computations to understand which
effects are more significant than the others. For instance, it is
unclear how important the self-energy is in comparison with
the effect due to the ionic-concentration-dependent dielectric
variations. Third, we have not taken into account the ionic size
effect in our model. Such effects can be quite significant to
the EDL structure near a charged surface. It will be interesting
then to develop an efficient model to describe such effects
[49-51,59], particularly in terms of the ion-ion correlations,
and to couple them with other effects in a systematic way.
Improved treatments such as a modified fundamental measure
theory [60] can be useful for a more accurate description
of such correlations. Finally, we have applied different ap-
proximate techniques in solving Poisson’s or Debye-Hiickel
equation that define various Green’s functions. The accuracy
of these numerical methods depends on the smoothness of
the dielectric permittivity and ion concentration profiles in
electrolytes. Thus, for systems with strong coupling or large
gradients in dielectric profiles, we need to develop more robust
computational methods.
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