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Local momentum and heat fluxes in transient transport processes and inhomogeneous systems
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This work examines existing formalisms for the derivation of microscopic momentum and heat fluxes. Both
analytical and simulation results are provided to show that the widely used flux formulas are not applicable to
transient transport processes or highly inhomogeneous systems, e.g., materials with atomically sharp interfaces.
A method is formulated for formally deriving microscopic momentum and heat fluxes through the integral
representation of conservation laws. The resulting flux formulas are mathematically rigorous, fully consistent
with the physical concepts of momentum and heat fluxes, and applicable to nonequilibrium transient processes
in atomically inhomogeneous systems with general many-body forces.
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I. INTRODUCTION

Flux is a basic and ubiquitous concept throughout physics,
chemistry, and engineering describing the flow of a physical
property in space. The nonequilibrium behavior of transport
processes is generally described by transport equations, i.e.,
conservation equations, in which flux is the measure of
transport. The momentum flux measures the rate of momentum
transfer across a surface per unit area, while heat flux
describes the rate of the conductive flow of internal energy
across a surface per unit area. A microscopic definition
of flux is required for an atomistic method to calculate a
transport property. The objective of this work is twofold:
(1) to provide an analysis of why the widely used atomistic
formulas for momentum and heat fluxes are not applicable to
inhomogeneous systems, and (2) to present a formalism for
deriving microscopic momentum and heat fluxes through the
integral form of conservation equations.

The paper is structured into four sections. In Sec. II, we
examine three main formalisms for deriving momentum and
heat fluxes and their applicability. In Sec. III, we present a
formalism and derive the atomistic formulas for momentum
and heat fluxes. The resulting flux formulas are validated
against nonequilibrium molecular dynamics (MD) simulations
of the equilibrium state, steady-state heat conduction, and the
transient propagation of a heat pulse in a superlattice in Sec. IV.
This paper is concluded with a summary and discussions in
Sec. V.

II. EXISTING FORMALISMS FOR FLUXES

A. Virial theorem and heat theorem

The virial theorem links the pressure in a many-body system
to the kinetic energy and the virial of the potential. It was
derived based on a uniform scaling of all particle coordinates
[1,2]. By making the shape of the volume, as well as the size,
variable [3,4], it can be used to find the average stress of a
many-body system under a uniform deformation.

A close relative of the “virial theorem” is the “heat
theorem.” It has been shown that both the virial and heat
theorems can be derived based on the fact that the averaged
time derivatives of a bounded quantity, (d/dt)

∑
i 〈mi r ivi〉

or (d/dt)
∑

i 〈r iEi〉, vanishes [3,4]. The formalism leads to a

single pressure tensor P and a single heat flux vector Q for
the entire system,

P = 1

V

〈∑
i

mivivi+
∑
i<j

r ij Fij

〉
, (1)

Q = 1

V

〈∑
i

Eivi + 1

2

∑
i<j

Fij r ij · (vi + vj )

〉
, (2)

where mi , r i , vi , Ei are the mass, position, velocity, total
energy of the ith particle, respectively, r ij = r i − rj , Fij is
the interparticle force, and V the volume of the system.

Since the virial stress and heat flux are formally written as
sums over particles and/or atoms, each individual term in the
formulas has been widely used to describe the atomic-scale
flux [5]. The applicability of the virial and heat theorems to
homogeneous systems (e.g., single crystals in steady-state heat
conduction [6,7]) has been demonstrated. However, one can
readily see from the formalism that the resulting flux formulas
are not applicable to inhomogeneous systems or transient
processes where the momentum and heat fluxes may vary on
the scale of atomic dimensions.

B. The Irving-Kirkwood formalism

The second formalism was developed by Irving and
Kirkwood for their nonequilibrium statistical mechanics for-
mulation of hydrodynamics equations [8], generally referred
to as the IK formulation. This formalism uses the infinitely
peaked Dirac δ function to define the densities of mass,
momentum, and total energy as ensemble averages. Fluxes are
then obtained as a result of the differential form of conservation
laws. Irving and Kirkwood did not obtain a closed form for the
fluxes but expressed them as a power series. The closed-form
expressions were obtained later, e.g., by Kreuzer [9], with the
difference between two δ functions being expressed as a line
integral,

δ(rk − x) − δ(r l − x)

= −∇x · rkl

∫ 1

0
δ(rkλ + r l(1 − λ) − x)dλ. (3)
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The resulting microscopic stress and heat flux are

σ̄ IK(x,t) = −
〈∑

k

mk ṽk ṽkδ(rk − x)

〉

−
〈

1

2

∫ 1

0

∑
k,l

Fkl rklδ(rkλ + r l(1 − λ) − x)dλ

〉
,

(4)

q̄IK(x,t) = −
〈∑

k

ṽk

[
1

2
mk(ṽk)2 + �k

]
δ(rk − x)

〉

−
〈

1

2

∫ 1

0

∑
k,l

(Fkl · ṽk)rklδ(rkλ+r l(1−λ)−x)dλ

〉
,

(5)

where ṽk = vk − v is the difference between the particle
velocity and the velocity field. It should be noted that the local
densities obtained in the IK formulation are point functions,
i.e., they are zero everywhere except at the locations of the
particles. “These point functions, though averaged neither
over space nor time, satisfy equations that are identical in
form to the equations of hydrodynamics” [8]. While the point
functions reflect the discrete nature of the particle systems, it
was noted by Irving and Kirkwood that they must be further
averaged in space and time for describing hydrodynamic local
properties.

C. Later developments that followed the IK formulation

The methods in the third category are those that aver-
age the IK formulation in space for practical applications
[10–29]. Except for the method of planes that is formulated
in reciprocal space and valid for systems with flow in one
direction [20–22] and a few generalizations [23,25], the
majority of the new developments replaces the infinitely
peaked Dirac δ with a continuous weighting function. Noll
introduced a probability density function and defined local
densities as volume integrals [24]. Hardy employed a lo-
calization function �10 and later introduced a bond func-
tion B(k,l,x) = ∫ 1

0 �[rkλ + r l(1 − λ) − x]dλ for fluxes [12].
The resulting formulas for stress and heat flux are volume
averages:

σ Hardy(x,t) = −
∑

k

mk ṽk ṽk�(rk − x)

− 1

2

∑
k,l

Fkl rklB(k,l,x), (6)

qHardy(x,t) = −
∑

k

ṽk

[
1

2
mk(ṽk)2 + �k

]
�(rk − x)

− 1

2

∑
k,l

(Fkl · ṽk)rklB(k,l,x). (7)

Numerous formulations have further followed the work
by Noll or that by Hardy and obtained volume-averaged
formulas similar in structure to these in Eqs. (6)
and (7).

FIG. 1. Left: Hardy and virial stress at zero temperature and
pressure at and away from a free surface [31]. Right: Heat flux
using Hardy’s formula as a function of averaging time computed by
averaging over 2 (solid), 6 (dotted), and 10 (dashed) volume elements
whose radius is 1.0 nm. The horizontal line is the prescribed value of
the heat flux [32].

D. An analysis of the volume-averaging methods

Comparing the formulas obtained from the three for-
malisms, it can be seen that there are two commonalities.
First, both σ and q contain two parts, the kinetic part
due to the motion of individual particles, and the potential
part due to the interaction between particles. The kinetic
parts from all three methods are similar, except for a few
erroneous formulations in the literature. Second, if the size of
the averaging volume exceeds the cutoff of the interparticle
potential, the volume-averaged fluxes become identical in
form to the fluxes defined in Eqs. (1) and (2). This is
consistent with various computational results demonstrating
that fluxes calculated using different formulas are similar when
a sufficiently large volume is used [30–33]; with a smaller
averaging volume they are different from each other and from
the prescribed values of fluxes [31–34]; cf. Fig. 1.

It is for inhomogeneous systems that different formalisms
lead to different values of the fluxes. The major departure
of the later developments from the original IK formalism is
to average the IK formulas over a volume element without
distinguishing densities that are defined per unit volume with
fluxes that are defined per unit area. This incurs the following
consequences.

(1) Although for homogenous systems the calculated fluxes,
if averaged over a large volume and a long time interval, may
converge [31–33], they do not converge to the prescribed fluxes
for inhomogeneous systems [34].

(2) The formula for the potential part of momentum flux is
commonly interpreted in terms of the dyadic products, Fij r ij ,
and for the potential part of heat flux in terms of the triple
products, Fij · vi r ij . This leads to various misinterpretations
such as “the microscopic stress is symmetric” [35] and “the
potential heat flux is the rate at which particle i is doing work
on particle j , multiplied by the distance over which this energy
is transferred” [36].

(3) The potential part of momentum flux does not have
the fundamental properties of Cauchy stress: (a) The Cauchy
stress vectors acting on the opposite sides of a surface at a given
point are equal in magnitude and opposite in sign, and (b) the
Cauchy stress vector acting on any plane at a point can be
determined by the normal vector to the plane and the Cauchy
stress tensor at the same point. Without these two properties,
the stress formulas cannot be used to predict the critical value

053309-2



LOCAL MOMENTUM AND HEAT FLUXES IN TRANSIENT . . . PHYSICAL REVIEW E 94, 053309 (2016)

of the stress vector on a specific plane such as a cleavage or a
slip plane.

(4) The volume-averaged flux formulas have also deviated
from the physical concept of heat flux as the rate of heat
flow through a surface per unit area. Without the size and the
orientation of the “surface” in the atomistic definition of the
flux, the formulas cannot be used to find the heat flux at a
given surface such as an oriented phase interface or a grain
boundary.

III. A DIFFERENT FORMULATION

A. The averaging method

The IK formalism employs the Dirac δ to link a local density
to its corresponding phase function. To define a continuum
field quantity, the IK point functions, i.e., the infinitely peaked
Dirac δ, must be averaged in space and time. In this work,
we derive three types of integrations of the Dirac δ to link a
phase function to a field quantity. For local densities that are
localized at a point due to the properties of individual particles,
we define an averaged Dirac δ over a volume element V (x) of
volume V as

δ̄V (rk − x) ≡ 1

V

∫∫∫
V (x)

δ(rk − x′)d3x ′

=
{

1/V, if rk ∈ V (x),
0, otherwise. (8)

The microscopic expressions of fluxes that arise from the
interaction forces between particles involve the difference
between two Dirac δ functions. In our previous work [37], we
have shown that the difference between two Dirac δ functions
can be expressed using the fundamental theorem for line

FIG. 2. Line Lkl in space (left) and path rk in time (right) intersect
with the surface element An(x).

integrals as

δ(rk − x) − δ(r l − x) =
∫

Llk

∇ϕδ(ϕ − x) · dϕ

= ∇x ·
∫

Lkl

δ(ϕ − x)dϕ, (9)

where Llk represents a line segment from r l to rk , and Lkl

represents a line segment from rk to r l ; cf. Fig. 2. Denote
nkl = (nx

kl,n
y

kl,n
z
kl) = nα

kle
α as the unit direction vector of Lkl

and introduce a scale φ such that ϕ − rk = λ(r l − rk) = φnkl ;
the line integral can be parametrized by

∫
Lkl

δ(ϕ − x)dϕ = nkl

∫ |rkl |

0
δ(φnkl + rk − x)dφ. (10)

To measure the interaction forces between particles on op-
posite sides of a surface element, the line integral needs to
be integrated over the surface element. For this purpose, let
us first consider a coordinate surface element Az(x), centered
at x = (x,y,z), with normal along the coordinate axis ez and
area Az. Using the sifting and the scaling properties of the
Dirac δ,

∫ a+ε

a−ε
f (x)δ(x − c)dx = f (c) and δ(cx) = δ(x)/|c|,

the area-averaged line integral of the Dirac δ over a coordinate
surface element Az(x) can be expressed as

∫
Lkl

δ̄z
A(ϕ − x)dϕ ≡ 1

Az

∫∫
Az(x)

d A ·
∫

Lkl

δ(ϕ − x′)dϕ = ez · nkl

Az

∫∫
Az(x)

dx ′dy ′
∫ |rkl |

0
δ(φnkl + rk − x′)dφ

= nz
kl

Az

∫∫
Az

dx ′dy ′
∫ |rkl |

0
δ
(
φnx

kl + rx
k − x ′)δ(φn

y

kl + r
y

k − y ′)δ(φnz
kl + rz

k − z′)dφ

= nz
kl

Az
∣∣nx

kln
y

kln
z
kl

∣∣
∫∫

Az(x)
δ

(
rz
k − z′

nz
kl

− rx
k − x ′

nx
kl

)
δ

(
rz
k − z′

nz
kl

− r
y

k − y ′

n
y

kl

)
dx ′dy ′

= 1

Az

nz
kl∣∣nz
kl

∣∣
{

1, if x ∈ Az and x ∈ [rk r l],
0, otherwise. (11)

The differential surface element d A can be represented using indicial notation as d A = ndA = nαeαdA = eαdAα , where
α(α = 1, 2, 3 or x,y,z) is a summation index. The area-averaged line integral of the Dirac δ over an arbitrary surface element
An(x) can then be expressed as∫

Lkl

δ̄n
A(ϕ − x)dϕ ≡ 1

An

∫∫
An(x)

d A ·
∫

Lkl

δ(ϕ − x′)dϕ

= 1

An

∫∫
Aα(x)

eαdAα ·
∫

Lkl

δ(ϕ − x′)dϕ = Aα

An

∫
Lkl

δ̄α
A(ϕ − x)dϕ = nα

∫
Lkl

δ̄α
A(ϕ − x)dϕ. (12)
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The integrals in Eq. (12) can also be evaluated using the
line-plane intersection theorem together with the defining
properties of Dirac δ: δ(x) = 0 for x �= 0 and

∫
V

δ(x)dV = 1.
The intersection of a line and a plane can be the empty set,
a point, or a line. The value of the integrals is zero if the
intersection is the empty set; otherwise, it is unity. In the case
that the intersection is a line, the integrals in Eq. (11) can be
evaluated by taking the limit as nz

kl → 0. The significance of
Eq. (12) is that it relates the area-averaged line integral of the
Dirac δ over an arbitrary surface element to that over three
coordinate surface elements.

The transfer of momentum and heat across a surface also
occurs through the motion of particles; this can also be
described as a line-plane intersection problem; cf. Fig. 2. Since
it takes a finite time for a particle to reach and cross a surface,
and also since in atomistic simulations the equation of motion
is solved step-by-step in discrete time intervals, we define an
area-time-averaged Dirac δ over a coordinate surface element
Az(x) and a time-step interval T as

δ̄z
AT (rk − x) ≡ 1

AzT

∫∫
Az(x)

d A
∫ T

0
δ(rk(t + τ ) − x′)dτ

= ez

AzT

∫∫
Az(x)

d2x ′
∫ T

0
δ(rk(t) + vkτ − x′)dτ

=
{ ez

AzT |vz
k | , if rk(t + τ ) ∈ Az(x) for τ ∈ T ,

0, otherwise.

(13)

Equation (13) can be generalized to arbitrarily oriented surface
element. Denote n as the normal of a surface element, it can
be shown that δ̄n

AT (rk − x) = nαδ̄α
AT (rk − x).

In summary, we have derived a volume-integrated Dirac
δ, δ̄V (rk − x), for local densities that are measured per unit
volume and an area-line-integrated Dirac δ,

∫
Lkl

δ̄n
A(ϕ − x),

as well as an area-time-integrated Dirac δ, δ̄n
AT (rk − x),

for fluxes that are measured per unit area and time, with∫
Lkl

δ̄n
A(ϕ − x) = ∫

Lkl
δ̄n
AT (ϕ − x) when T is a time-step in-

terval. It should be noted that the Dirac δ was defined by
Dirac through integration [38]. It does not itself have a
definite value. Only triple integrals of a three-dimensional
Dirac δ are well defined and hence can provide the unique
link between a field quantity and a phase function through
the sifting property. Further averaging a field quantity

FIG. 3. Internal forces in V (x) and surface forces on ∂V .

in space or time shall not change the microscopic expression
of the field quantity. In distinction from volume-averaging
methods that assume somewhat arbitrary weighting functions,
in this work the link is defined through integrating the Dirac δ.

B. Microscopic momentum flux

The mass density (mass per unit volume) can be defined
using Eq. (8) as

ρ(x,t) ≡ 1

V

∫∫∫
V (x)

∑
k

mkδ(rk − x′)d3x ′

≡
∑

k

mkδ̄V (rk − x). (14)

Consequently, the momentum density ρv is also a volume
average and may be further averaged over a time-step interval
T for the description of the flow of momentum across a surface
per unit area per unit time at point x and time t ,

ρv(x,t) ≡ 1

T

∫ T

0
dτ

1

V

∫∫∫
V (x)

∑
k

mkvkδ(rk − x′)d3x ′.

(15)

There are two types of forces acting on the volume element
V (x): forces exerted on V (x) from external sources, and forces
exerted on V (x) by the surrounding material as a result of the
interaction between particles inside and outside of V (x). An
important fact is that the total internal force in V (x) is equal
to the total force acting on the enclosing surface ∂V ; Fig. 3.

In the absence of external forces, the momentum conserva-
tion equation can be derived using Newton’s second law and
expressed in terms of two surface integrals as

∂

∂t
(ρv) ≡ ∂

∂t

{
1

T

∫ T

0
dτ

1

V

∫∫∫
V (x)

∑
k

mkvkδ(rk − x′)d3x ′
}

= 1

T V

∫ T

0
dτ

∫∫∫
V (x)

{∑
k

mk v̇kδ(rk − x′) +
∑

k

mkvk

∂

∂t
δ(rk − x′)

}
d3x ′

= 1

T V

∫ T

0
dτ

∫∫∫
V (x)

{∑
k,l

Fklδ(rk − x′) − ∇x′ ·
∑

k

mkvkvkδ(rk − x′)

}
d3x ′

= 1

V

∫∫
∂V

tdA − 1

T V

∫ T

0
dτ

∫∫
∂V

∑
k

mk ṽkvkδ(rk − x′) · ndA + 1

V

∫∫
∂V

ρvv · ndA

≡ 1

V

∫∫
∂V

σ pot · ndA + 1

V

∫∫
∂V

(σ kin − ρvv) · ndA, (16)
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where σ kin and σ pot are the kinetic and potential momentum
flux across ∂V ; t is the surface traction at a point of ∂V

due to the interaction force between particles on opposite
sides of ∂V ; t = σ pot · n or tα = σαβnβ , with n being the
surface normal. The time-step-averaged stress vector can then
be obtained using Eqs. (12) and (16) as

t(x,n) =
∑
k<l

Fkl

∫
Lkl

δ̄n
A(ϕ − x)dϕ

= nβ
∑
k<l

Fkl

∫
Lkl

δ̄
β

A(ϕ − x)dϕ. (17)

It follows

σ pot(x,t) =
∑
k<l

F α
kl

∫
Lkl

δ̄
β

A(ϕ − x)dϕeαeβ, (18)

in which, according to Eq. (11),

Fα
kl

∫
Lkl

δ̄
β

A(ϕ − x)dϕ

= Fα
kl

Aβ

⎧⎨
⎩

1, if rkl intersects Aβ(x) and eβ · nkl � 0,

−1, if rkl intersects Aβ(x) and eβ · nkl < 0,

0, otherwise.

Equation (18) indicates σ
αβ
pot (x,t) is the αth component of the

forces per unit area per unit time transmitting through the
βth coordinate plane at point x, with α being the direction of
the forces and β the normal of the coordinate plane. Thus, the
potential part of momentum flux defined in Eq. (18) is identical
to the mechanical stress.

Equation (16) also uniquely defines σ kin. As a result of
Eq. (16) holding for any �V,

1

T Aβ

∫ T

0
dτ

∫∫
Aβ

∑
k

mk ṽkvkδ(rk − x′) · eβdA

= − 1

Aβ

∫∫
Aβ

σ kin · eβdA. (19)

When T is a time-step interval, we have

σ kin(x,t) = σab
kineαeβ = −

∑
k

mk ṽkv
β

k δ̄
β

AT (rk − x), (20)

in which, according to Eq. (13),

mk ṽkv
β

k δ̄
β

AT (rk − x)

= mkṽ
α
k eαeβ

AβT

⎧⎨
⎩

1, if rk intersects Aβ(x) and eβ ·vk � 0,

−1, if rk intersects Aβ(x) and eβ ·vk < 0,

0, otherwise.

This means that the kinetic momentum flux σ
αβ

kin is the relative
momentum across a surface per unit area and per unit time
with respect to the velocity field, with α being the direction
of the momentum and β the normal of the coordinate plane.
Combining Eqs. (18) and (20), we obtain the atomistic formula
for momentum flux measured per unit area at point x and time
t as a time-step-interval average as

σ (x,t) = −
∑

k

mkṽ
α
k v

β

k eαδ̄
β

AT (rk − x)

+
∑
k<l

F α
kl

∫
Lkl

δ̄
β

A(ϕ − x)dϕeαeβ. (21)

Equation (21) is valid for any additive potential. For a specific
potential function, the interaction force Fkl can be derived
in terms of the total energy or the site energies [6,39]. For
example, for the general form of many-body potentials, � =∑

ij �2(r ij ) + ∑
ijk �3(r ij ,r ik) + ∑

ijkn �4(r ij ,r ik,r in) +
· · · = ∑

i �i , there are the following equivalent expressions
for Fkl :

Fkl = − ∂�

∂ rkl

= −∂(�l + �k)

∂ rkl

= −
(

∂�l

∂ rk

− ∂�k

∂ r l

)
=−Flk.

(22)

Substituting Fkl in Eq. (22) into Eq. (21) and using the
summation index interchange, the atomistic momentum flux
can then be expressed in terms of site potential energies as

σ (x,t) = −
∑

k

mkṽ
α
k ṽ

β

k eαδ̄
β

AT (rk − x)

−
∑
k,l

∂�l

∂rα
k

∫
Lkl

δ̄
β

A(ϕ − x)dϕeαeβ. (23)

It is noticed that the momentum flux formula in Eq. (23) is
formally different from the existing volume-averaged micro-
scopic formula for stress. A different derivation that averages
the IK point functions to obtain the potential part of stress and
a discussion on the equivalence of the atomistic and Cauchy
stress can be found in Ref. [37], in which the same potential
stress formula is obtained.

C. Microscopic heat flux

Similarly, the integral form of the energy conservation
equation over the volume element V (x) and over a time-step
interval T can be expressed as

∂

∂t
(ρE) ≡ ∂

∂t

{
1

T

∫ T

0
dτ

1

V

∫∫∫
V (x)

∑
k

Ekδ(rk − x′)

}
d3x ′

= 1

T

∫ T

0
dτ

1

V

∫∫∫
V (x)

{∑
k

Ėkδ(rk − x′) − ∇x′ ·
∑

k

Ekδ(rk − x′)vk

}
d3x ′

≡ 1

V

∫∫
∂V

(qpot + σ pot · v) · d A + 1

V

∫∫
∂V

(qkin + σ kin · v − ρEv) · d A, (24)
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in which the two surface integrals represent the potential and kinetic energy flow across the enclosing surface ∂V per unit time.
Since Eq. (24) is valid for any arbitrary ∂V , 1

T

∫ T

0 dτ
∫∫

A

∑
k Ek ṽkδ̄T (rk − x′) · ndA = − ∫∫

A (qkin + σ kin · v) · ndA must hold
for any coordinate surface element. As a result,

qkin + σ kin · v = −
∑

k

(
1

2
mk ṽ

2
k + �k + mkvk · v

)
ṽα

k δ̄α
AT (rk − x). (25)

The potential energy flux can also be identified using Eq. (24)
and can be further derived in terms of particle site energies
using Newton’s second law and force theorem. Note that∫∫∫

V (x)
d3x ′ ∑

k

Ėkδ(rk − x′)

=
∫∫∫

V (x)
d3x ′ ∑

k

[mkvk · v̇k + �̇k]δ(rk − x′)

=
∫∫∫

V (x)
d3x ′ ∑

k, l

{
−∂�l

∂ rk

· vk + ∂�k

∂ r l

· vl

}
δ(rk − x′)

= −
∫∫∫

V (x)
d3x ′ ∑

k, l(�=k)

∂�l

∂ rk

· vk (δ(rk − x) − δ(r l − x′))

=
∫∫

∂V

∑
k, l(�=k)

∂�l

∂ rk

· vk

∫
Lkl

δ(ϕ − x′)dϕ · nd2x ′ (26)

is valid for arbitrary ∂V . Thus

qpot + σ pot · v =
∑

k, l(�=k)

∂�l

∂ rk

· vk

∫
Lkl

δ̄α
AT (ϕ − x) dϕeα.

(27)

Substituting σ kin and σ pot in Eq. (23) into Eqs. (25) and (27)
and combining qpot and qkin, we obtain the heat flux as

q(x,t) = −
∑

k

ṽα
k

[
1

2
mk(ṽk)2 + �k

]
δ̄α
AT (rk − x)

+
∑

k,l(�=k)

∂�l

∂ rk

· ṽk

∫
Lkl

δ̄α
AT (ϕ − x)dϕeα. (28)

It is seen that our heat flux formula is also formally and
fundamentally different from the volume-averaged formulas
for heat flux. The kinetic part is the internal energy across a
surface per unit time and area through the microscopic thermal
motion of particles. The potential part of heat flux is the work
done per unit area and time by the interaction forces between
particles on the opposite of the surface through the microscopic
thermal motion of the particles. This is in sharp distinction
from the interpretation by volume-averaging methods as “the

FIG. 4. Illustration of the association of the components of stress
and heat flux with the coordinate surfaces.

rate of work done multiplied by the distance over which this
energy is transferred.” Also, as illustrated in Fig. 4, the αth
component of the heat flux vector at point x is the energy
transferred across the αth coordinate plane at x, whereas it is
the αth component of r ij (the distance between two particles)
in the volume-averaging formulations.

IV. A COMPARISON OF MD RESULTS OF HEAT FLUX
USING DIFFERENT FORMULAS

To provide a quantitative understanding of the consequence
of the formal difference between heat flux formulas, we
simulate a superlattice structure consisting of alternating layers
of two different materials and atomically flat coherent phase
interfaces, as shown in Fig. 5. The two materials have a face-
centered-cubic structure with lattice constant a = 2.628 Å.
The LJ (Lennard-Jones) potential is used to describe the
interaction between atoms in both materials, with a mass
of 47.98 g/mol, ε11 = 0.0104 eV, and σ11 = 3.4 Å for the
atoms in the red region, while a mass of 39.95 g/mol,
ε22 = 0.0520 eV, and σ22 = 3.4 Å for the blue region. The
LJ interaction between the two regions uses ε12 = 0.0233 eV
and σ12 = 3.4 Å. The length of the simulation cell is 1000 Å
with a cross section of 29 × 29 Å. The model is intended for
the measurement of one-dimensional transport and is periodic
in all directions.

The equilibrium state, steady-state heat conduction, and
the transient propagation of a heat pulse in a superlattice
are simulated using MD. The heat flux in the simulations is
measured using three completely different formulas:

(1) Surface: the surface-averaged heat flux formulas defined
in Eqs. (25), (27), and (28), with which the fluxes are calculated
locally in term of the positions and velocities of atoms.

(2) Volume: the volume-averaged energy flux formula de-
fined in Eq. (2), which is the heat flux formula implemented in
the large-scale stomic/molecular massively parallel simulator
(LAMMPS) and widely used in equilibrium MD simulations.

(3) Continuum: the energy flux formula derived based on
the hydrodynamics continuity equation through measuring the
change of the total energy in a region to quantify the flow

FIG. 5. MD model of a superlattice.
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FIG. 6. Heat flux at an interface in the equilibrium state averaged
over a time interval of 10 000 fs. The volume used for the volume-
averaged formula is 29 × 29 × 20 Å.

of energy across the entire surface enclosing the region. This
is the formula used in nonequilibrium MD simulations with
the heat-source-sink scheme to calculate the heat flux in one-
dimensional (1D) steady-state heat conduction [40–43]. It was
also used in the “method of plane” and was called “mesoscopic
derivation because it does not explicitly refer to molecular
quantities” [21]. Note that this is not a local heat flux formula
and cannot be used to find a local heat flux. It is used in this
work to calculate the energy flux across two symmetrically
located interfaces.

In Fig. 6 we plot the MD simulation result of the heat
flux as a function of time in the equilibrium state under zero
temperature, zero pressure. It is seen from Fig. 6 that both
the surface formula and the continuum formula accurately
reproduce the prescribed zero heat flux. By contrast, the
volume formula significantly overestimates the heat flux at
the interface. After averaging over a large volume and a large
time interval, pronounced oscillations are still present in the
computed heat flux by the volume formula. This result is in
agreement with other computational findings in the literature
[31–34].

In Fig. 7 we plot the steady-state heat conduction simulation
results as a function of time. The prescribed value of the heat

flux is 5.2 × 10−5 eV/Å
2
ps. It is seen from Fig. 7 that the

surface formula is able to reproduce the prescribed value of

FIG. 7. Heat flux at an interface in the steady-state heat conduc-
tion averaged over a time interval of 500 ps. The volume used for the
volume-averaged formula is 29 × 29 × 2.8 Å.

FIG. 8. Energy flux in the heat pulse simulation averaged over
time intervals of 10 fs and over the two interfaces in Fig. 5. The
volume used with the volume formula is 29 × 29 × 4 Å. The heat
pulse is applied in the middle of the specimen at time zero for 2 fs.
There is a high-frequency noise present in the continuum signal most
likely due to the finite time step used in its computation.

heat flux, but the volume formula underestimates the heat flux
at the phase interface.

The transient heat pulse simulation results are plotted
in Fig. 8. To compare with the continuum formula that
can only calculate the average energy flux through the two
symmetrically located interfaces in Fig. 5, the energy flux is
calculated locally at each interface using the surface formula
and then averaged over the two interfaces. It is seen from
Fig. 8 that the time-dependent energy flux at the interfaces
predicted by the surface formulas compares well with that
by the continuum formula during the propagation of the heat
pulse. The volume formula, on the other hand, significantly
underestimates the transient energy flux. It is evident that the
volume formula is incapable of describing transient energy
flux across the interfaces.

To summarize the three sets of MD simulation results, the
volume formula of heat flux fails to reproduce the prescribed
heat flux in the equilibrium and steady-state simulations of the
superlattice and significantly underestimates energy flux in the
transient simulation; the surface formula, on the other hand, is
shown to reproduce the heat flux prescribed in the equilibrium
and steady-state simulations and produce the same time history
of the heat flux as the continuum formula in the transient heat
pulse propagation simulation. The applicability of our heat flux
formulas, as well as the inapplicability of the volume-averaged
heat flux formulas, to nonequilibrium inhomogeneous systems
is thus demonstrated.

V. SUMMARY AND DISCUSSIONS

In this work we have formulated a method for formally
deriving microscopic expressions for momentum and heat
fluxes. Differing from the IK formalism that uses the differ-
ential form of conservation equations, our method derives the
flux formulas from the integral representation of conservation
laws. The formulation naturally leads to the expressions of
fluxes as a measure of the flow of a physical property through a
surface per unit area per unit time. Consequently, it removes the
ambiguity associated with the vanishing divergence of fluxes
in the differential form of conservation laws.
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In distinction from the volume-averaging approaches that
avoid the use of the Dirac δ function, this work takes advantage
of the rigorous mathematical concept of the Dirac δ. We
distinguish local densities that are measured per unit volume
with fluxes that are measured per unit area and time. In
addition, we use the fundamental theorem for line integrals
to express the difference between two Dirac δ functions. This
facilitates the mathematical representation of the fluxes across
a surface as a line-plane intersection problem. The resulting
atomistic formulas for fluxes are fully consistent with the field
concepts of momentum and heat fluxes, valid for systems with
general additive many-body potentials, and applicable to both
equilibrium state and transient thermal transport processes in
homogeneous or atomically inhomogeneous systems.

It is noticed that our formulas for local momentum and
heat flux can be reduced to the flux formulas derived using the
“method of planes” for systems with flow in one direction [20–
22]. However, our flux formulas are formally and fundamen-
tally different from those obtained using virial or heat theorems
or through volume averaging the IK point functions. The
physical concept of fluxes as the rate of transfer of a physical
property through a surface is simple and applicable at all scales.
The IK formulation is valid at the atomic scale. It is averaging
the IK point function over a finite-sized volume that makes the
volume-averaged formulas incapable of describing fluxes
in inhomogeneous systems. Although the volume-averaged
flux formulas remain valid for homogeneous systems such as
gaseous systems or single crystals in equilibrium or in steady
states, they become invalid for transient processes or for
solid materials that involve microstructural discontinuities,
such as defects, material phase interfaces, grain boundaries in

polycrystalline materials, etc. The applicability of these heat
flux formulas, as well as the inapplicability of the existing
volume-averaged heat flux formulas, to inhomogeneous
systems are demonstrated through nonequilibrium MD
simulations of the heat flux in a superlattice.

In the landmark paper, Irving and Kirkwood assumed, for
the purpose of mathematical simplicity, a single component
and single phase system composed of point molecules with the
internal degrees of freedom being ignored. The formulation of
this work, as well as the IK formulation, can be extended to
a two-level structural description of polyatomic materials by
including the internal degrees of freedom within molecules
or unit cells [18]. A crystalline (or a molecular) material is
then viewed as a continuous collection of lattice cells but
embedded within each lattice cell is a group of discrete atoms.
In that case, the volume element that contains only one atom
should be replaced by one that contains more than one atom but
one lattice point, whereas the smallest volume of the volume
elements is still that of the primitive unit cell, with which
the volume elements can completely fill the space the material
occupies and, in the absence of external forces, the distribution
of local densities are continuous and homogeneous from the
atomic to the macroscopic scale.
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