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Reimar H. Leike and Torsten A. Enßlin
Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstrasse 1, 85748 Garching, Germany

and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
(Received 3 May 2016; revised manuscript received 21 October 2016; published 16 November 2016)

Signal inference problems with non-Gaussian posteriors can be hard to tackle. Through using the concept
of Gibbs free energy these posteriors are rephrased as Gaussian posteriors for the price of computing various
expectation values with respect to a Gaussian distribution. We present a way of translating these expectation
values to a language of operators which is similar to that in quantum mechanics. This simplifies many calculations,
for instance such as those involving log-normal priors. The operator calculus is illustrated by deriving a self-
calibrating algorithm which is tested with mock data.
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I. INTRODUCTION

Information field theory (IFT) [1] is a Bayesian formalism
for solving field inference problems. Given a prior probability
density and a data model IFT enables us to calculate posterior
field expectation values when data have been measured. A
common way to summarize the posterior is in terms of an
estimate of the signal posterior mean and its variance. One way
to obtain an approximation to those is provided by the Gibbs
free energy method [2,3], also called “variational Bayes” or
“mean field approximation.” The minimum of the Gibbs free
energy is an estimate of the posterior mean. The curvature of
this minimum encodes the posterior covariance. The involved
mathematical expressions contain Gaussian field averages over
many functions which can become very difficult to evaluate,
especially in the case of log-normal signal distributions,
interactive Hamiltonians, or nonlinear responses.

We present an alternative way to calculate such Gaussian
integrals; by translating them to operator calculations and
using well-known formulas from differential geometry we are
able to handle them efficiently. This is a general technique
for calculating expectation values over Gaussian distributions
which could have implications to other contexts as well. We
chose to apply it to the Gibbs formalism because on the one
hand Gibbs free energy inference is a very general tool for
tackling inference problems and on the other hand because in
this context the introduced operator formalism proves to be
exceedingly useful.

In Sec. II we give a short review of Ref. [3], introducing the
reader to the concept of Gibbs free energy inference and ex-
plaining its advantages and challenges. In Sec. III we introduce
a typical problem set of image reconstruction as an example.
In Sec. IV we translate expectation values over a Gaussian
distribution into the language of operators. We then show how
to leverage the power of our operator calculus with a certain
set of algebraic tools in Sec. V. The algorithm that is derived
using these algebraic tools is then implemented and tested for
mock data. The results are discussed in Sec. VI. We conclude
in Sec. VII. The derivation of the algorithm for the image
reconstruction problem introduced earlier is in the Appendix.

II. GIBBS FREE ENERGY INFERENCE

To give a better understanding of the benefit we get from
the operator calculus to be introduced in Sec. IV, we first give
a brief introduction to the Gibbs formalism [3].

In signal reconstruction we try to infer a signal s when given
the data

d = r(s,n) (1)

for a given response operator r and measurement noise n. Here

s : X → C,

x �→ s(x) = sx (2)

is a field over some measure space X. In order to infer the
signal, we use the posterior probability density

P (s|d) = P (d|s)P (s)

P (d)
= P (d|s)P (s)∫

ds P (d|s)P (s)
. (3)

For more complicated problems, this posterior probability
density is often not accessible because integrations like that
in the denominator might not be analytically solvable. In
most situations we do however have access to the so called
information Hamiltonian H (s,d) = −ln[P (s)] − ln[P (d|s)]
which contains all information available on the signal s. We
can ignore additive constants in the Hamiltonian that depend
only on d since they cancel when we reconstruct P (s|d) from
the Hamiltonian,

P (s|d) = e−H (s,d)

Z(d)
, (4)

where Z(d) =
∫

ds e−H (s,d) (5)

is the partition function. Thus we try to infer s using an
estimator that only uses the Hamiltonian. A simple way is
by minimizing H (s,d), but this yields suboptimal results for
asymmetric posterior distributions as well as unsatisfying error
estimates for posterior distributions that deviate strongly from
Gaussianity; see, e.g., [4]. There exist other estimators, but our
formalism of operator calculus is most suited for the Gibbs free
energy method and thus we will concentrate on this approach.
In the Gibbs formalism we approximate the posterior by a
Gaussian distribution

P̃ (s|d) = G (s − m,D) = e(1/2)(s−m)†D−1(s−m)

|2πD|1/2 (6)
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with mean m and covariance D that depend on the data in a
way still to be found. Here we use the scalar product of fields

a†b =
∫

dx a∗
xbx (7)

with ∗ denoting complex conjugation. For a Gaussian poste-
rior, calculating the partition function is possible (see Sec. II E
of Ref. [3]). This approach is also known in the literature
under the names of “variational Bayes” and “mean field
approximation” but we will call it Gibbs free energy because
it was historically the earliest of the three concepts.

Almost every scientific result is given as a pair of esti-
mate and standard deviation. Most people assume Gaussian
statistics when seeing a result like that, consistent with
its maximum entropy translation into a probability density
function. Thus approximating the posterior by a Gaussian
is basically common practice and information theoretically
supported [5]. While doing so, we might as well try to invent
the least amount of information through the approximation.
In order to obtain m and D we therefore minimize the
Kullback-Leibler divergence [6]:

dKL(P̃ ,P ) =
∫

ds P̃ (s|d)ln

(
P̃ (s|d)

P (s|d)

)

=
〈
ln

(
P̃ (s|d)

P (s|d)

)〉
G (s−m,D)

=〈ln(P̃ (s|d))〉G (s−m,D)

+ 〈H (s|d)〉G (s−m,D). (8)

The Kullback-Leibler divergence is therefore up to the
irrelevant constant ln[Z(d)] equal to the Gibbs free energy
G(m,D) = U − T S at temperature T = 1 with the Shannon
entropy [7]

S = −〈ln(P̃ (s|d))〉G (s−m,D) (9)

and the internal energy

U = 〈H (s,d)〉G (s−m,D). (10)

The posterior mean m is now given within our approximation
by the minimum of the Gibbs free energy

m :
δG

δm
= 0. (11)

From a Kullback-Leibler divergence perspective, the posterior
uncertainty dispersion is given by

D :
δG

δD
= 0. (12)

Derivatives with respect to operators can be difficult to handle.
Fortunately the thermodynamical relation

D =
(

δ2G

δmδm†

)−1

, (13)

which holds at the minimum of the Gibbs free energy, requires
only derivatives with respect to the mean field m.

Note that following the Gibbs free energy approach we
only need to calculate expectation values over a Gaussian
distribution and instead of the full posterior P (s|d) it suffices

to know the Hamiltonian H (s,d) of the joint probability of
data and signal.

III. A SELF-CALIBRATING SYSTEM AS EXAMPLE

Suppose now we have a measurement scenario where a real
field a contributes to the data via being exponentiated,

d = rea + n, (14)

P (a) = G (a,A). (15)

This corresponds to a linear data model with response operator
r and a log-normal prior which is the natural prior for
strictly positive signals that vary over orders of magnitude. For
example the galaxy densities in the cosmos show roughly log-
normal distributions as was supported empirically [8,9] and
theoretically [10–15]. Suppose additionally that the response
operator is unknown and we have an independent Gaussian
prior for it,

P (r) = G (r,R). (16)

Now we are actually dealing with a self-calibration problem,
as the unknown instrument response r has to be inferred from
the unknown signal observation. These are notoriously hard;
see [16] or [17].

We define a joint signal vector

s =
(

r

a

)
, (17)

P (s) = G (s,S) = G

[
s,

(
R 0
0 A

)]
(18)

for all quantities we would like to infer.
In the simple case of Gaussian additive noise P (n) =

G (n,N ) we get as the Hamiltonian

H (d,s) =H (s) + H (d|s)

= 1
2 s†S−1s

+ 1
2 (d − rea)†N−1(d − rea). (19)

The Hamiltonian thus contains the interacting signal terms
d†N−1rea and (rea)†N−1rea for which the expectation value
over the generic Gaussian distribution G (s − m,D) has to be
taken to calculate the Gibbs free energy. Although this can be
done by hand, calculations can get very tedious and require a
lot of time. We will be able to handle them quite nicely with
our operator formalism in the Appendix.

In the case of a nonlinear response or a signal depended
noise model we get even more exponentials and potentially
additional factors of polynomials in s.

Now that we have seen a typical problem set, let us proceed
by introducing the tools to translate expectation values over
Gaussian distributions to operator action.

IV. FORMULATING GAUSSIAN AVERAGES IN
OPERATOR CALCULUS

In this section we are concerned with the task of calculating
the expectation value

〈f (s)〉G (s−m,D) (20)
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for a Gaussian distribution in s with mean m and covariance
D.

Let us start with the much more simple task of calculating
〈s〉G (s−m,D). We let us guide by a calculation trick from
statistical physics where a lot of expectation values are
calculated by taking different derivatives of the partition sum
and thus try to obtain s by taking the derivative of G (s − m,D):

δ

δm
G (s − m,D) =D−1(s − m)G (s − m,D)

⇒
(

D
δ

δm
+ m

)
G (s − m,D)

=s G (s − m,D). (21)

Thus we have

〈s〉G (s−m,D) =
〈
D

δ

δm
+ m

〉
G (s−m,D)

. (22)

Here the linear operator D δ
δm

+ m does not depend on s, so
one may pull it out of the expectation value:

〈s〉G (s−m,D) =
(

D
δ

δm
+ m

)
〈1〉G (s−m,D) = m. (23)

This is not a surprising result. However, it is remarkable that
this works for any moment of the Gaussian

〈sn〉G (s−m,D) =
(

D
δ

δm
+ m

)n

1. (24)

We call � := D δ
δm

+ m the s operator. Let us look at the
expectation value of an arbitrary analytical function f . By
definition, an analytical function can be expanded locally in
a point s0 in a series f (s) = ∑∞

n=0 �n(s − s0)n that has a
positive convergence radius. We use a short notation for the
Taylor-Fréchet expansion of the function f ,

f (s) =
∞∑

n=0

�n (s − s0)n

=
∞∑

n=0

∫
dx1 . . .

∫
dxn

× �n(x1, . . . ,xn)(s − s0)x1 . . . (s − s0)xn
(25)

and calculate

〈f (s)〉G (s−m,D) =
∞∑

n=0

�n〈(s − s0)n〉G (s−m,D)

=
∞∑

n=0

�n

n∑
i=0

(
n

i

)
〈si(−s0)n−i〉G (s−m,D)

=
∞∑

n=0

�n

n∑
i=0

(
n

i

)
〈�i(−s0)n−i〉G (s−m,D)

=
∞∑

n=0

�n〈(� − s0)n〉G (s−m,D)

=
∞∑

n=0

�n(� − s0)n1 = f (�)1. (26)

Thus instead of calculating the expectation value of f (s) with
respect to a Gaussian distribution we can let the operator f (�)
act on 1.

When dealing with complex numbers we have to treat s

and s∗ separately and replace them with �′ := 2D δ
δm∗ + m

and �′∗ := 2D δ
δm

+ m∗ respectively. These two operators
commute [�′,�′∗] = 0 and calculations thus follow a similar
line for complex fields.

V. CALCULATING GAUSSIAN EXPECTATION
VALUES ALGEBRAICALLY

In order to highlight the benefit of this reformulation of
integrations to operator actions, we introduce the reader to
certain useful algebraic tools and show how to apply them.
The first step to all calculations is to separate

�x =
∫

dy Dxy

δ

δmy

+ mx = cx + bx. (27)

We call bx = mx the creation operator and cx = ∫
dy Dxy

δ
δmy

the annihilation operator. Our goal is to get the annihilation
operators to the right hand side because they cancel,

cx1 =
∫

dt Dxt

δ

δmt

1 = 0. (28)

To achieve this we use the commutation relations of the
creation and annihilation operators,

[bx,by] = [cx,cy] = 0, (29)

[cx,by] = Dxy. (30)

How exactly we bring the annihilation part to the right side
differs for different classes of functions. For polynomials we
can simply use distributivity of multiplication,

�x�y = (bx + cx)(by + cy)

= bxby + bxcy + cxby + cxcy, (31)

and then apply the commutation relations to obtain

�x�y = bxby + 2bxcy + [cx,by] + cxcy

= bxby + 2bxcy + Dxy + cxcy

⇒ �x�y1 = mxmy + Dxy. (32)

We can separate creation and annihilation parts for exponential
functions by making use of the Baker-Campbell-Hausdorff
(BCH) formula [18]

ebx+cy+(1/2)[bx ,cy ] = ebx

ecy

. (33)

Thereby, we can omit further iterations of the commutator
that appear in the full BCH formula because [bx,cy] = −Dxy

is central in the algebra of linear operators on functions
of m, i.e., it commutes with cy and bx . Applying this
yields

e�x = ebx+cx

= e−(1/2)[bx ,cx ]ebx

ecx

= e(1/2)Dxx ebx

ecx

. (34)
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Thus for certain functions f (�) we are able to separate the
annihilation part and the creation part of �,

f (�) =
∑

i

f b
i (b)f c

i (c), (35)

using algebraic tools. One major advantage of using that
approach instead of calculating the expectation value directly is
that now calculating the expectation value of the product of two
functions 〈f (s)g(s)〉G (s−m,D) simply amounts to calculating
the commutator,

〈f (s)g(s)〉G (s−m,D) =f (�)g(�)1

=
∑

i

f b
i (b)f c

i (c)
∑

j

gb
i (b)gc

i (c)1

=
∑
i,j

f b
i (m)gb

i (m)f c
i (0)gc

i (0)1

+
∑
i,j

f b
i (b)

[
f c

i (c),gb
i (b)

]
gb

i (0)1

=〈f (s)〉G (s−m,D)〈g(s)〉G (s−m,D)

+
∑
i,j

f b
i (b)

[
f c

i (c),gb
i (b)

]
gc

i (0)1,

(36)

of the two involved functions.
We can calculate those commutators using algebraic tools.

For example to exchange cx and eby

we use the fact that [cx, ]
has the algebraic properties of a derivation, meaning it is linear
and obeys the product rule

[cx,ab] = [cx,a]b + a[cx,b]. (37)

Thus

[cx,eby

] =
∞∑

n=0

[cx,(by)n]

n!

=
∞∑

n=0

n(by)n−1[cx,by]

n!

= eby

[cx,by]

= Dxye
by . (38)

We can calculate the commutator of two exponential functions
using the BCH formula twice:

[ecx

,eby

] = ecx

eby − eby

ecx

= eby+cx−(1/2)[by ,cx ] − eby

ecx

= eby

ecx

e−[by ,cx ] − eby

ecx

= eby

ecx

(eDxy − 1). (39)

If we just want to exchange the position of these exponentials
the formula (39) simplifies to

ecx

eby = eby

ecx

eDxy . (40)

Having aggregated these tools, calculating the Gibbs free
energy of the self-calibration problem introduced in Sec. III is
straightforward. This calculation is done in the Appendix.

VI. A NUMERICAL EXAMPLE

To conclude this paper we implemented and verified the
derived algorithm. For our implementation we use the slightly
altered data model

d = (r + r0)1ea + n, (41)

where 1 denotes the identity matrix and r is just a scalar.
This simplified model has the advantage of being easier to
implement because it is less degenerate and its results are easier
to visualize. The constant r0 encodes that we usually have some
rough idea about the typical response of our instrument. We
assume a Gaussian noise distribution

P (n) = G
(
n,σ 2

Nδij

)
that has a scalar covariance σ 2

N and also a Gaussian prior
distribution for a and r as in Eqs. (15) and (16). The only
difference is that the covariance matrix for r is now just a
constant. We take the signal prior covariance A to be diagonal
in Fourier space with known power spectrum. Analogously to
the derivation in the Appendix we arrive at

G(m,D) = − 1

2
tr[1 + ln(2πD)]

+ 1

2
m†S−1m + 1

2
tr(S−1D)

−
∫

di

(
d†

σ 2
N

)
i

[mr + r0 + (Dra)i](e
ma+(1/2)D̂aa )i

+ 1

2

∫
di (e2ma+2D̂aa )i

× {Drr + [mr + r0 + 2(Dra)i]
2}. (42)

Taking the derivative by m we arrive at the gradient in signal
direction,

δG(m,D)

δ(ma)i
=A−1ma −

(
d†

σ 2
N

)
i

× [mr + r0 + (Dra)i](e
ma+(1/2)D̂aa )i

+ (e2ma+2D̂aa )i{Drr + [mr + r0 + 2(Dra)i]
2}

(43)

and in the response factor direction

δG(m,D)

δmr

=mr

R
−

∫
di

(
d†

σ 2
N

)
i

(ema+(1/2)D̂aa )i

+
∫

di(e2ma+2D̂aa )i[mr + r0 + 2(Dra)i], (44)

respectively. Taking the derivative again we arrive at the
Hessian matrix

δ2G(m,D)

δ(ma)iδ(m†
a)j

=A−1
ij − δij

(
d†

σ 2
N

)
i

[mr + r0 + (Dra)i]

× (ema+(1/2)D̂aa )i + 2δij (e2ma+2D̂aa )i

× {Drr + [mr + r0 + 2(Dra)i]
2}, (45)
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δ2G(m,D)

δmrδ(ma)i
= −

(
d†

σ 2
N

)
i

(ema+(1/2)D̂aa )i + 2(e2ma+2D̂aa )i

× [mr + r0 + 2(Dra)i], (46)

δ2G(m,D)

δ2mr

= R +
∫

di(e2ma+2D̂aa )i . (47)

Using these in a Newton scheme to find the minimum, we
arrive at an algorithm that we implemented. In Fig. 1 we show
mock data that were generated by sampling from the prior
in comparison to the projected signal response (r + r0)ea and
the expected value of the signal response as was computed
by the Gibbs reconstruction algorithm. Notice that the signal
response varies over a few orders of magnitude due to its
log-normal nature. One can also see that the signal has
strong spatial correlations that were encoded into the prior.
Figure 2 shows the reconstruction of the signal we get from
our algorithm. These results only deviate slightly from the
results we get when using a maximum a posteriori (MAP)
estimator because the posterior is still relatively near to a
Gaussian. The response factor r + r0 was sampled to be 3.62,
the corresponding Gibbs estimate is mr + r0 = 3.11 ± 0.41,
and the MAP estimate of it is (mMAP)r + r0 = 3.15 ± 0.46.
Thus both deviate about one σ from the actual value. In this
case, the Gibbs result is comparable to the MAP estimator.
However, this inference problem was chosen to demonstrate
how the operator formalism works and not to highlight the
differences in the performance of the Gibbs estimator with
respect to that of the MAP estimator.

VII. CONCLUSION

With the help of the Gibbs free energy one can easily write
down expressions for the posterior mean and covariance. Using
the operator formalism introduced in this paper we formulated
expectation values as operators acting on 1 which eliminates
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FIG. 1. Original signal response (solid line), expected value of
the signal response given via the Gibbs estimate (dashed line) and
data that were sampled from the prior (points). The expected value
of the signal response was computed with the formula (r0 + mr +
Dra)ema+(1/2)D̂aa .
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FIG. 2. The signal reconstruction ma (dashed line) with position
dependent uncertainty range (shaded area). This uncertainty is given
by the square root of the diagonal of the covariance matrix D̂aa .
Notice that due to the log-normal nature of the problem, higher signal
values are reconstructed more accurately.

the need to calculate an integral over the Hamiltonian and
the Gaussian distribution. This process of translating the
expectation value to operators works generally, albeit possibly
entailing algebraic complexity. For expectation values over
products of exponential functions and polynomials which are
typical for problems with log-normal statistics, we aggregated
a collection of algebraic tools that enable us to nevertheless
calculate them in a few lines of straightforward calculation. We
demonstrated their usage by applying our operator calculus to
a signal inference problem with log-normal prior and unknown
but linear response operator for which we worked out all
the occurring terms with regard to the posterior mean. The
resulting algorithm was implemented and found to be working
for mock data.

Future research might be directed towards finding analogies
to the BCH formula for function classes other than the
exponential function which will allow us to apply the operator
formalism to an even broader range of problems.
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APPENDIX: FACILITATING CALCULATIONS
WITH OPERATORS

By making use of our operator formalism we are able to
quickly calculate expectation values of products of exponen-
tials and polynomials like those we encountered in Sec. III.
We calculate the Gibbs free energy from the Hamiltonian
we got at the end of Sec. III. Combining Eqs. (8) and (19)
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yields

G(m,D) =G

[(
mr

ma

)
,

(
Drr Dra

Dar Daa

)]

=̂〈ln(
P̃ (s|d)

)〉G (s−m,D) +
〈

1

2
s†S−1s + 1

2
(d − rea)†N−1(d − rea)

〉
G (s−m,D)

=̂
〈
− 1

2
(s − m)†D−1(s − m) + ln(|2πD|−1/2)

〉
G (s−m,D)

+
〈

1

2
s†S−1s

〉
G (s−m,D)

− 〈d†N−1rea〉G (s−m,D)

+
〈

1

2
(rea)†N−1rea

〉
G (s−m,D)

. (A1)

Here “=̂” denotes equality up to irrelevant constants, which are constants that do not depend on m or D.
Following the formalism introduced in Sec. IV we replace

a ↔ �a = Dax

δ

δmx

+ ma, (A2)

r ↔ �r = Drx

δ

δmx

+ mr, (A3)

s ↔ � = D
δ

δm
+ m. (A4)

We now evaluate the terms of Eq. (A1) one by one. The first two terms are simply second moments of a Gaussian distribution
and thus the calculation can easily be done by hand. For illustration we use our formalism anyway and focus on the second term:〈

1

2
s†S−1s

〉
G (s−m,D)

= 1

2

∫
didj

〈
siS

−1
ij sj

〉
G (s−m,D) = 1

2

∫
didj �iS

−1
ij �j 1. (A5)

We separate

�x
t =

(
D

δ

δmx

)
t

+ (mx)t = cx
t + bx

t (A6)

with

cx
t =

(
D

δ

δm

)
t

=
∫

dv Dtv

δ

(δmx)v
, bx

t = (mx)t , (A7)

where x labels “a,” “r ,” or no index and arrive at the commutation relations[
bx

i ,b
y

j

] = [
cx
i ,c

y

j

] = 0, (A8)[
cx
i ,b

y

j

] = (Dxy)ij . (A9)

Our goal is to get the annihilation operators to the right hand side because they cancel. Doing so one gets

1

2

∫
didjS−1

ij �i�j 1 =1

2

∫
didjS−1

ij (ci + bi)(cj + bj )1

=1

2

∫
didjS−1

ij ([ci,bj ] + bibj )1 = 1

2
m†S−1m + 1

2
tr(S−1D). (A10)

We proceed with the third term,

〈d†N−1rea〉G (s−m,D) = d†N−1�re�a

1. (A11)

To simplify �re�a

1 we apply the BCH formula:

(�re�a

1)j =
∫

di
(
br

ji + cr
ji

)
eca

i +ba
i 1

=
∫

di
(
br

ji + cr
ji

)
eba

i +(1/2)(Daa )ii eca
i 1. (A12)
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To exchange cr
ji and eba

i we use the fact that [cr
ji , ] has the algebraic properties of a derivation, thus

�re�a

1 =
∫

di
(
br

ji + (Dra)(ji)i
)
eba

i +(1/2)(D̂aa )i eca
i 1

=
∫

di ((mr )ji + (Dra)(ji)i)(e
ma+(1/2)D̂aa )i . (A13)

With D̂aa we denote the diagonal of the operator Daa . We used that if we Taylor expand eca
i only the first term will contribute

since all terms containing c cancel with the 1.
The last term of Eq. (A1) is 〈

1

2
(rea)†N−1rea

〉
. (A14)

Translating this into operator language we arrive at〈
1

2
(rea)†N−1rea

〉
= e�

†
a�†

rN
−1�re

�a 1 =
∫

didjdkdl(e�a )l(�r )kl(N
−1)kj (�r )ji(e

�a )i1. (A15)

First we separate the exponentials with the BCH formula as we have done with the previous term and get

(N−1)kj (e�a )l(e
�a )i(�r )kl(�r )ji1 = (N−1)kj e

ba
l +(1/2)(Daa )ll eca

l eba
i +(1/2)(Daa )ii eca

i(
cr
klb

r
ji + br

klb
r
ji

)
1 = (N−1)kj e

ba
l +(1/2)(Daa )ll eca

l eba
i +(1/2)(Daa )ii eca

i(
(Drr )(kl)(ji) + br

klb
r
ji

)
1 = (N−1)kj e

ba
l +(1/2)(Daa )ll eba

i +(1/2)(Daa )ii e(Daa )li eca
l eca

i(
(Drr )(kl)(ji) + br

klb
r
ji

)
1 = (N−1)kj e

ba
l +(1/2)(Daa )ll eba

i +(1/2)(Daa )ii e(Daa )li eca
l[

(Drr )(kl)(ji) + (
br

kl + (Dra)(kl)i
)
eca

i br
ji

]
1 = (N−1)kj e

ba
l +(1/2)(Daa )ll eba

i +(1/2)(Daa )ii e(Daa )li

× [
(Drr )(kl)(ji) + (

br
kl + (Dra)(kl)l + (Dra)(kl)i

)(
br

ji + (Dra)(ji)l + (Dra)(ji)i
)]

1

= (N−1)kj (ema+(1/2)D̂aa )l(e
ma+(1/2)D̂aa )i(e

Daa )li

× [
(Drr )(kl)(ji) + ((mr )kl + (Dra)(kl)l + (Dra)(kl)i)((mr )ji + (Dra)(ji)l + (Dra)(ji)i)

]
.

(A16)

For the Gibbs energy we therefore arrive at

G(m,D) = − 1

2
tr[1 + ln(2πD)] + 1

2
m†S−1m + 1

2
tr(S−1D) −

∫
didj (d†N−1)j ((mr )ji + (Dra)(ji)i)(e

ma+(1/2)D̂aa )i

+ 1

2

∫
didjdkdl(ema+(1/2)D̂aa )l[(Drr )(kl)(ji) + ((mr )kl + (Dra)(kl)l + (Dra)(kl)i)((mr )ji + (Dra)(ji)l + (Dra)(ji)i)]

× (N−1)kj e
(Daa )li (ema+(1/2)D̂aa )i . (A17)

We separately compute the derivative for the reconstructed signal,

δG(m,D)

δ(ma)i
=(A−1ma)i −

∫
dj (d†N−1)j ((mr )ji + (Dra)(ji)i)(e

ma+(1/2)D̂aa )i +
∫

djdkdl(ema+(1/2)D̂aa )l[(Drr )(kl)(ji) + ((mr )kl

+ (Dra)(kl)l + (Dra)(kl)i)((mr )ji + (Dra)(ji)l + (Dra)(ji)i)](N
−1)kj e

(Daa )li (ema+(1/2)D̂aa )i , (A18)

and response,

δG(m,D)

δ(mr )ij
=(R−1mr )ij − (d†N−1)j (ema+(1/2)D̂aa )i +

∫
dkdl(ema+(1/2)D̂aa )l((mr )kl + (Dra)(kl)l + (Dra)(kl)j )(N−1)ki

× e(Daa )lj (ema+(1/2)D̂aa )j . (A19)

To finalize the derivation we take the second derivative of the Gibbs free energy which will give us an estimate for D−1. Via the
relationship

D−1 = δ2G(m,D)

δmδm†
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we compute

δ2G(m,D)

δ(ma)iδ(m†
a)l

=A−1
il −

∫
dj (d†N−1)j ((mr )ji + (Dra)(ji)i)(e

ma+(1/2)D̂aa )iδil +
∫

djdkdn (ema+(1/2)D̂aa )n[(Drr )(kn)(ji)

+ ((mr )kn + (Dra)(kn)n + (Dra)(kn)i)((mr )ji + (Dra)(ji)n + (Dra)(ji)i)](N
−1)kj e

(Daa )ni (ema+(1/2)D̂aa )i(δil + δnl),
(A20)

δ2G(m,D)

δ(ma)kδ(m†
r )ji

= − (d†N−1)j (ema+(1/2)D̂aa )iδik +
∫

dmdldn(δkl + δkj )(ema+(1/2)D̂aa )l

× ((mr )nl + (Dra)(nl)l + (Dra)(nl)j )(N−1)nie
(Daa )lj (ema+(1/2)D̂aa )j , (A21)

δ2G(m,D)

δ(mr )klδ(m†
r )ji

=R−1 + (ema+(1/2)D̂aa )l(N
−1)kie

(Daa )lj (ema+(1/2)D̂aa )j , (A22)

where with δxy we denote the Dirac δ function. Now we arrive at a point where we have a fully operational reconstruction
algorithm. By using a minimization technique like gradient descent one can simultaneously reconstruct the signal field and
response operator for given data d.
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