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Nonuniqueness of local stress of three-body potentials in molecular simulations
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Microscopic stress fields are widely used in molecular simulations to understand mechanical behavior. Recently,
decomposition methods of multibody forces to central force pairs between the interacting particles have been
proposed. Here, we introduce a force center of a three-body potential and propose different force decompositions
that also satisfy the conservation of translational and angular momentum. We compare the force decompositions
by stress-distribution magnitude and discuss their difference in the stress profile of a bilayer membrane by using
coarse-grained and atomistic molecular dynamics simulations.
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I. INTRODUCTION

The stress tensor is a fundamental quantity that connects
discrete molecular systems and continuum mechanics. The
calculation of the local stress field from molecular simulations
has a long history [1–14]. Irving and Kirkwood introduced the
microscopic stress tensor formula based on nonequilibrium
statistical mechanics [1], following which a rigorous mathe-
matical formula was proposed by Noll [2]. In the following,
we refer to their procedure as the Irving–Kirkwood–Noll
(IKN) procedure, as stated by Admal and Tadmor [8]. Hardy
introduced the spatial averaging of the stress tensor using
weighting functions to improve statistics [3]. However, these
procedures are limited to systems in which interactions consist
of pairwise forces.

The method to map the stress of multibody potentials into
the continuum space has been debated. Multibody potentials
have been frequently used in molecular simulations. Bending
and dihedral potentials, which are widely used, are three- and
four-body potentials, respectively. The interaction between
adjacent dihedrals is represented by five-body correction
map (CMAP) potential in the Chemistry at Harvard Macro-
molecular Mechanics (CHARMM) force field [13,15]. A
curvature potential in meshless membranes is a function of
three rotational invariants of the weighted gyration tensor
and produces n-body forces, where n depends on the local
density [16]. Since most of the multibody forces are not
central forces between particles, the IKN procedure cannot
be directly applied to them. Note that multibody hydrophobic
potentials as a function of the local hydrophobic particle
density for proteins [17] and membranes [16,18] give central
forces between particles so that their stress can be calculated
directly by using the IKN procedure.

Goetz and Lipowsky proposed a decomposition procedure
for multibody potentials [6] based on Schofield and Hender-
son’s procedure [4]. Multibody forces are decomposed into
pairwise (noncentral) forces, and the IKN procedure is applied
to each decomposed force pair. We refer to this method as
Goetz–Lipowsky decomposition (GLD). However, GLD does
not satisfy the strong law of action and reaction, as pointed out
by Admal and Tadmor [8,9], while it satisfies the weak law of
action and reaction: GLD conserves translational momentum
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but not angular momentum. Consequently, the stress tensor
is not symmetric. To overcome this problem, central force
decomposition (CFD) was proposed [8,9,11–13]. The forces
decomposed using CFD satisfy the strong law of action and
reaction so that the stress tensor is symmetric by construction.
The original CFD is limited to three- or four-body forces
because there exists a unique force decomposition for only
up to four-body forces. For n-body forces with n � 5, the
number of degrees of freedom, 3n − 6, is less than the number
of pairs, n(n − 1)/2, in the three-dimensional (3D) space. Very
recently, the generalization to more than four-body forces,
which is called a covariant CFD (cCFD), was introduced by
Torres-Sánchez et al. [13,14]. The application to a structural
coiled-coil protein with the five-body CMAP potential was
demonstrated [13].

In this paper, we discuss nonuniqueness in the force
decomposition of three-body forces in classical mechanics.
Three-body forces can be uniquely decomposed by CFD.
However, we will show different decompositions, which also
satisfy the strong law of action and reaction. A force center
can be uniquely defined for three-body forces, and the forces
are decomposed into central force pairs between interacting
particles and the force center. To combine this decomposition
and CFD, the position of the force center can be arbitrarily
taken. This nonuniqueness is related with the nonunique
potential-energy extension discussed in Refs. [8–10]. It is
a specific case of the degeneracy of four-body forces into
two-dimensional (2D) space. We will discuss the choice of this
center position by the stress distribution. Although two-body
forces can also similarly be decomposed, the IKN procedure
always gives the minimum stress distribution. In contrast, the
stress distribution of three-body forces depends on the type of
the forces. We will also discuss the influence of the resolution
of simulation models.

For an application of the force decomposition, we in-
vestigated a bilayer membrane by using coarse-grained and
atomistic molecular dynamics (MD) simulations. The stress
profile along the normal direction has been widely calculated in
the molecular simulations of lipid membranes. Two opposing
forces, interfacial tension and steric repulsion, produce the in-
homogeneous stress inside the bilayers [19]. This inhomogene-
ity is a key property of the bilayers because it determines the
area per lipid molecule [19], spontaneous curvature [20–24],
Gaussian curvature modulus [21–28], and function of the
mechanosensitive channel [29,30]. Since the stress profile
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cannot be obtained experimentally [31,32], estimation by
using molecular simulations is important. Recently, however,
Torres–Sánchez et al. reported that the stress profile is strongly
dependent on the force decomposition method [13]. The
dihedral forces give the largest contribution to the stress profile
by CFD. We show that the stress profile is largely dependent
on the decomposition of bending forces.

In Sec. II, we discuss the force decomposition method. After
introducing the existing decomposition method, we describe
the alternative decomposition method for three-body forces.
As an example, we show the decomposition for an area poten-
tial and a bending potential. The area potential is one of the
simplest three-body potentials and is connected to continuum
mechanics in a straightforward manner. The bending potential
is the most widely used three-body potential. In Sec. III, the
bilayer membrane is examined. The stress profile and Gaussian
curvature modulus are calculated for different decomposition
methods. The discussion and summary are given in Secs. IV
and V, respectively.

II. FORCE DECOMPOSITION

A. Irving–Kirkwood–Noll procedure

Stress averaged over the entire simulation box is given by
the virial as

σ = σ K + σ U, (1)

σ K = − 1

V

∑
i

〈mivi ⊗ vi〉, (2)

σ U = − 1

V

∑
i

〈fi ⊗ ri〉, (3)

= 1

V

N∑
n=2

∑
kn=1

n∑
i=1

〈
∂Ukn

∂rkn,i

⊗ (
ri − rkn,0

)〉
, (4)

where mi , ri , and vi are the mass, position, and velocity of
the ith particle and fi = −∂U/∂ri . The symbol ⊗ denotes
a tensor product and 〈. . .〉 denotes a statistical average. This
global stress is uniquely determined even for multibody forces.
The potential contribution σ U can be rewritten with Eq. (4) by
using cluster expansion [14] as

U (r1, . . . ,rN ) =
N∑

n=2

∑
kn=1

Ukn

(
rkn,1, . . . ,rkn,n

)
, (5)

where each Ukn
is an n-body potential that is invariant under

translation and rotation. The origin rkn,0 of the positions can
be taken differently for each Ukn

, as expressed in Eq. (4).
Each origin can be arbitrarily chosen but a position close to
interacting particles is preferred to reduce numerical errors,
particularly for large-scale simulations. When the origin is set
to the position of one of the interacting particles, the potential
stress of the pairwise potentials takes the well-known form

σ U,pair = − 1

V

∑
i<j

〈fij r̂ij ⊗ rij 〉, (6)

where fij = −∂Uk2/∂rij , rij = ri − rj , rij = |rij |, and r̂ij =
rij /rij . Under a periodic boundary condition, the periodic

image is used instead of the original position when the potential
interaction crosses the periodic boundary.

For pairwise interactions, the local stress at a position x is
given by the IKN procedure as [1,2]

σ (x) = σ K(x) + σ U(x), (7)

σ K(x) = −
∑

i

〈mivi ⊗ viδ(ri − x)〉, (8)

σ U(x) = −
∑
i<j

〈fij r̂ij ⊗ rijB(ri ,rj ,x)〉, (9)

where B(ri ,rj ,x) = ∫ 1
0 δ[(1 − s)ri + srj − x]ds. The force

propagates along the line segment between ri and rj . This local
stress tensor is symmetric: σαβ(x) = σβα(x) for α,β ∈ {x,y,z}.

B. Central force and geometric-center decompositions

When the multibody force is decomposed into pairwise
forces between interacting particles, the IKN procedure for
pairwise forces is applicable. Therefore, decomposition meth-
ods to pairwise forces have been focused upon. Goetz and
Lipowsky proposed a decomposition (GLD) fij = (fi − fj )/n

for n-body forces [6]. This decomposition conserves transla-
tional momentum but does not conserve angular momentum,
since the force fij is not generally parallel to rij .

To satisfy the conservation of the angular momentum
as well, Admal and Tadmor proposed the decomposition
to central forces between interacting particles (CFD) [8,9].
Three-body forces can be uniquely decomposed by CFD:

f1 = f12r̂12 + f13r̂13,

f2 = f23r̂23 + f12r̂21, (10)

f3 = f13r̂31 + f23r̂32.

Since the translational and angular momenta are con-
served, f1 + f2 + f3 = 0 and f1 × r1 + f2 × r2 + f3 × r3 = 0.
For f12 > 0, f12 is a repulsive force between r1 and r2. From
Eq. (10), f12 is given by

f12 = f1 · r̂12 − (f1 · r̂13)(r̂12 · r̂13)

1 − (r̂12 · r̂13)2
, (11)

or

f12 = 1

2

(
f1 · (r̂12 + r̂13)

1 + r̂12 · r̂13
+ f2 · (r̂23 + r̂21)

1 + r̂21 · r̂23
− f3 · (r̂31 + r̂32)

1 + r̂31 · r̂32

)
.

(12)

Similarly, f13 and f23 are given. Equation (12) is recommended
for numerical calculations, since it gives smaller numerical
errors when two angles of �123 are close to null and the third
is close to π . Alternatively, these force pairs can be derived
directly from f12 = −∂Uk3/∂r12|r13,r23 [8], as demonstrated
for the area and bending potentials in Appendixes A and B,
respectively. The CFDs of the area expansion and bending
forces are shown in Figs. 1(b) and 2(b), respectively. The
three interacting particles form a triangle and lie on a plane so
that the forces f1, f2, and f3 are along this plane owing to the
conservation of translational and angular momenta. Hence, we
can consider the 2D space without loss of generality.
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FIG. 1. Force decomposition for area expansion forces: (a)
original forces, (b) CFD, (c) FCD, (d) HD. The light gray (green)
sphere represents the force center, rc.

Alternatively, Heinz et al. proposed a decomposition
method that uses the geometric center,

∑n′
i ri/n′, of n′

interacting particles in a divided cell for an n-body potential
(n′ < n) [7]. In this decomposition, the angular momentum is
not conserved. The geometric center is determined only by the
positions and has no relation to the force balance. Hence, the
geometric center can significantly deviate from the positions
where the forces act. For example, when great forces act only

FIG. 2. Force decomposition for bending forces on θ123: (a)
original forces, (b) CFD, (c) FCD, (d) HD. The same color notation
as Fig. 1 is employed.

on two particles in n-body forces, i.e., |fi | � |fj | (i = 1, 2,
and j � 3), the resultant stress should be close to that of the
pairwise forces between r1 and r2. However, the geometric
center can be far from the line segment between r1 and r2.
Thus, a center position should be determined by the force
balance, or a specific force decomposition should be employed
for a chosen center position to satisfy the force balance. We
consider the center position with the decomposition to satisfy
the strong law of the action and reaction in Sec. II C.

One may consider the center of mass as an alternative
candidate for the center position. However, the potential stress
term σU is not dependent on mass distribution in thermal
equilibrium. One can calculate σU by using a Monte Carlo
simulation, in which the mass distribution is not required at
all. Since the values of the particle masses are arbitrary but
positive, the center of mass lies inside the convex polyhedron
(triangle for three-body forces) formed by interacting particles.
As described below, it is important whether the center position
for force decomposition is inside or outside the triangle for
three-body forces.

C. Force center and hybrid decompositions

We consider the alternative decompositions of three-body
forces. As mentioned above, the forces are uniquely deter-
mined by CFD for three-body forces. However, when one
more position is taken into account, the forces are not uniquely
determined. For three-body forces, three lines drawn along
the force vectors fi from the particle positions ri (i ∈ 1,2,3)
always meet at one position owing to the angular-momentum
conservation. We refer to this position as the force center, rc.
It is determined as

rc = 1

q
(f̃12f̃13r1 + f̃12f̃23r2 + f̃13f̃23r3), (13)

q = f̃12f̃13 + f̃12f̃23 + f̃13f̃23, (14)

where f̃ij = fij /rij and fij are the forces obtained by CFD.
The sign of the denominator q determines the region of the
force center as described later. By using the force center, the
forces are decomposed into three central force pairs ficr̂ic = fi
between ri and rc for i ∈ {1,2,3} [see Figs. 1(c) and 2(c)].
We refer to this decomposition as force-center decomposition
(FCD). Since these are central forces, the strong law of action
and reaction is satisfied and the symmetric local stress tensor is
obtained by the IKN procedure for these decomposed forces.

When three force pairs have the same sign (f12 > 0, f13 >

0, f23 > 0 or f12 < 0, f13 < 0, f23 < 0), the force center lies
in the interior region of the triangle �123 and q > 0. For an
expansion force as shown in Fig. 1, the decomposed forces in
CFD and FCD can be physically interpreted as line (surface)
tension on the edge of the triangular region and pressure of the
interior region on the particles, respectively.

The exterior region can be divided into six regions, as
shown in Fig. 3. When f12f13 > 0 and f12f23 < 0, the
force center lies in the region A or D for q > 0 or q < 0,
respectively. For bending potentials as a function of the angle
θ123 = cos−1(r̂12 · r̂32), rc always lies outside the triangle and
q < 0. As θ123 becomes closer to π , f1 and f3 approach parallel
lines so that rc becomes further from the particle positions. The
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FIG. 3. Six exterior regions (A–F) of the triangle �123. Shaded
and white regions correspond to q > 0 and q < 0, respectively.

details of decomposition for the area and bending potentials
are described in Appendixes A and B, respectively.

The force-center position can be moved by combining
FCD with CFD. We refer to this combined decomposition
as hybrid decomposition (HD). If necessary to distinguish
them, the force center in FCD is called the original force
center rc0. In HD, the force pair of each edge of �123 is
divided into FCD and CFD components as f all

12 = f FC
12 + f CF

12 .
The force center rc is determined by Eq. (13) with the FCD
components f FC

12 , f FC
13 , and f FC

23 . For example, Fig. 1(d) shows
the decomposition into three force pairs with rc and one force
pair along r12. When the contribution of force f12 to FCD
increases (decreases), the hybrid force center rc is further
(closer) to r3 than the original force center rc0 [see Eq. (13)].
Figure 2(d) shows HD combining FCD with two force pairs
along r12 and r23. If the force center lies on the edge of
the triangle �123, the resultant decomposition coincides with
CFD (if rc lies in the middle of the line segment between r2

and r3, then f1c = 0).
The hybrid decomposition can be applied to two-body

forces if two symmetric positions, r3 and r4, are employed
as shown in Fig. 4, where r14 = r13 = r24 = r23. Therefore,
the IKN procedure is not a unique solution to obtain the stress
tensor even for the two-body forces. However, the total length
(	sum = ∑

i<j rij ) and force norm sum (fsum = ∑
i<j |fij |)

FIG. 4. Force decomposition for two-body forces: (a) original
forces, (b) example of the hybrid decompositions, (c) stress distri-
bution magnitude 
 of two-body forces as a function of θ . It is
normalized by the magnitude 
0 obtained by the IKN procedure.

become greater than the IKN procedure. Thus, the IKN
procedure is the best decomposition method for two-body
forces.

D. Stress distribution

Although the force center can be set to an arbitrary
position in HD, positions that are excessively far away are
not physically suitable. Thus, we need a criterion to select the
decomposition. We consider the minimization of the stress
distribution as a candidate criterion. Hence, we define the
stress-distribution magnitude 
 as a summation over the cross
norm of the stress,


 =
∑
i<j

|fij |rij , (15)

where the summation is taken over all pairs (i,j ∈ 1,2,3,c for
the three-body forces).

For the two-body forces, the IKN procedure always gives
the minimum value of 
. Therefore, 
 can be employed as
the criterion for the two-body forces. For the decomposition
shown in Fig. 4(b), the magnitude is given as 
 = |f12|r12(1 +
2 tan2 θ ) and has the minimum at θ = 0 [see Fig. 4(c)].

In the following, we consider the minimization problem of

 for three-body forces. For CFD and FCD, 
CFD = |f12|r12 +
|f13|r13 + |f23|r23 and 
FCD = |f1c|r1c + |f2c|r2c + |f3c|r3c,
respectively. Interestingly, when the original force center
exists in the interior region of the triangle �123, these two
magnitudes take the same value: 
CFD = 
FCD. The force norm
sum fsum of CFD is less than that of FCD, while the total length
	sum of CFD is greater. For HD with rc lying in the interior
region of �123,


HD = 
FC
HD + 
CF

HD (16)

= (∣∣f FC
12

∣∣ + ∣∣f CF
12

∣∣)r12 + (∣∣f FC
13

∣∣ + ∣∣f CF
13

∣∣)r13

+ (∣∣f FC
23

∣∣ + ∣∣f CF
23

∣∣)r23. (17)

When the CFD and FCD components in each force pair have
the same sign, i.e., when f CF

12 f FC
12 > 0, |f all

12 | = |f CF
12 | + |f FC

12 |
so that 
HD = 
CFD. When f CF

12 f FC
12 < 0, |f all

12 | < |f CF
12 | +

|f FC
12 | so that 
HD > 
CFD. For the hybrid force center inside

the triangle �123, the decomposition with the same sign for
each force pair can be chosen. Thus, when rc exists inside or on
the edge of �123, 
 takes the minimum value 
CFD = 
FCD.
Figure 5 shows the minimum value of 
 for each force-center
position rc for an area potential. Here, HD into three FCD force
pairs and two CFD force pairs is used (f CF

12 = 0, f CF
13 = 0, or

f CF
23 = 0), since infinitely small values can be taken for all

FCD pairs if all six force pairs are allowed. For rc lying in the
interior region of �123, 
 is constant, while 
 is greater for
rc lying in the exterior region. Therefore, the 
 minimization
implies the restriction on the decomposition choices to the
interior region but does not give a unique combination.

When the original force center rc0 exists outside the
triangle, 
 typically has the lowest value at a single position
of rc. Figure 6 shows a typical example of 
 in the HD of a
bending potential on θ123 with f CF

13 = 0. The deepest minimum
of 
 appears between rc0 and the triangle �123 and local
minima appear in the other exterior regions. We consider the
case where rc0 lies in the region B, as shown in Fig. 3. We
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FIG. 5. Contour map of the stress distribution magnitude 
 with
respect to the force-center position rc(x,y) for the surface tension
karA123. The color bar shows the magnitude of 
/kar.

define the position rm, which is geometrically determined:

rm = r2 + √
r12r23r̂bv,

r̂bv = r̂12 + r̂32

|r̂12 + r̂32| , (18)

where r̂bv is a unit vector bisecting the angle θ123. The triangles
�12m and �m23 are similar. When rm is in the interior
or on the edges of the triangle �13c0 formed by r1, r3,
and rc0, 
 has the global minimum at rc = rm, where HD
is taken for five force pairs, f CF

12 , f CF
23 , f1m, f2m, and f3m.

This minimum appears not only for the bending forces but
also for the other three-body forces with rc0 lying in the
region B. The local minimum in the region E with f CF

13 = 0
appears at rlm = r2 − √

r12r23r̂bv. The derivations of these
global and local minima are described in Appendix C. The
stress cross norms are balanced at rm: |f1m|r1m = |f2m|r2m =
|f3m|r3m. For the bending forces, the condition for rm lying in
�13c0 is r12/r23 � cos2(θ123/2) and r23/r12 � cos2(θ123/2).
This condition is satisfied in typical simulation conditions,
including our present simulation. It is violated only when
r12/r23 significantly deviates from unity and θ123 is small.

FIG. 6. Contour map of the stress distribution magnitude 
 with
respect to the force-center position rc(x,y) for the bending potential
in Eq. (19). The color bar shows 
/kb. The positions of the original
force center rc0 and the force centers rm and rlm of the global and
local minima of 
 are shown in the left panel.

For general three-body forces, rm can be outside �13c0.
In this case, we do not have an analytical solution for the 


minimum, but it can be calculated numerically. In the next
section, we investigate how the stress profile of a bilayer
membrane depends on the decomposition.

III. BILAYER MEMBRANE

We simulate a tensionless bilayer membrane with various
decompositions of bending forces by using coarse-grained
and atomistic lipid models. In Sec. III A, the stress profile
and Gaussian curvature modulus are discussed by using
the dissipative particle dynamics (DPD) method [33–36].
DPD is one of the widely used coarse-grained lipid models.
In Sec. III B, the stress profile of an atomistic MD of
DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine) using the
CHARMM36 force field [37,38] is discussed.

We refer to HD with the global and local minima of 
 in
the regions B and E as HD (GM) and HD (LM), respectively.
In HD, we examine only the case f CF

13 = 0, since HD (GM)
and HD (LM) are obtained in this condition.

A. Coarse-grained model

1. Model description

An amphiphilic molecule is represented by a linear chain of
four particles: one hydrophilic (H) and three hydrophobic (T)
DPD particles. Neighboring DPD particles are connected via
the harmonic bond potential, Ubond(rij ) = (ks/2)(1 − rij /	0)2,
with ks = 150kBT , where kBT is the thermal energy. One of
the simplest bending potentials is employed at the second and
third particles of the amphiphile:

Ubend1(θijk) = kb(1 − cos θijk), (19)

with kb = 30kBT . A dihedral potential is not considered.
Water is represented by DPD particles labeled W. All particle
pairs interact through a soft repulsive potential: Urep(rij ) =
(aij /2)(1 − rij /rcut)2, which vanishes beyond the cutoff at
rij = rcut. We set rcut = 2	0 in this study. The repulsive
interaction parameters aij are listed in Table I.

The amphiphilic molecules form a bilayer membrane
with the bending rigidity κ/kBT = 18.3 ± 0.2, which is a
typical value for a bilayer membrane at room temperature
[39]. The details of the simulation method are described in
Appendix D 1.

2. Lateral pressure profile

The lateral and normal pressure profiles along the normal
(z) direction of the bilayer membrane for different force
decomposition methods are shown in Fig. 7. The pressure
profiles are calculated from the average stress for small slices

TABLE I. Repulsive interaction parameters aij with unit kBT .

W H T

W 25 25 200
H 25 25 200
T 200 200 25
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FIG. 7. Pressure and density profiles along bilayer normal (z) axis
obtained by the DPD simulation. (a) Total normal pressure profile
PN(z) and partial lateral pressure profile PL(z) given by the sum
of three contributions of the kinetic, repulsive, and bond potential
components. (b) Lateral pressure profile P bend1

L (z) given by bending
potential stress with four decomposition methods. (c) Number density
profile of four particles in the amphiphilic molecules. H represents
the first (hydrophilic head) particle. T1, T2, and T3 represent three
hydrophobic particles. The symbols and error bars are shown at
several data points.

along the xy plane with a width of �z = 0.2	0: PL(z) =
−[σxx(z) + σyy(z)]/2 and PN(z) = −σzz(z). The lateral profile
PL(z) strongly depends on the force decomposition meth-
ods, while the normal profile PN(z) is independent of the
decompositions and takes a constant value. The contribution
of two-body forces to PL(z) is only slightly dependent on z

[see Fig. 7(a)].
The contribution P bend1

L of the bending forces to the lateral
profile is significantly different for different decomposition
methods. The amplitude of P bend1

L of FCD is much larger
than those of CFD, HD (GM), and HD (LM), as shown in
Fig. 7(b). Surprisingly, the function shape of PL calculated
by HD (LM) has the opposite sign those calculated by the
other force-decomposition methods. In addition, the pressure
peaks of FCD slightly shift to the outside of the position of the
head particles of the bilayer [compare Figs. 7(b) and 7(c)]. As
mentioned in the previous section, for all force decompositions

P
 r

3 cu
t /

 k
B
T

z/rcut

λ/l0  = -2
λ/l0 = 0.2

λ/l0 = 2
λ/l0 = 4

-15

-5

 5

 4  8  12

FIG. 8. Length λ dependence of the bending potential contribu-
tion P bend1

L to the lateral pressure profile. The symbols and error bars
are shown at several data points. The density profile of hydrophilic
heads [the same data in Fig. 7(c)] is shown as the gray-filled curve in
arbitrary units.

shown in Fig. 7, linear- and angular-momentum conservation
are satisfied.

To further examine the dependence of lateral pressure on
the force decomposition, we systematically change the force
center rc:

rc = r2 + λr̂bv, (20)

where λ is the distance between rc and r2. For HD (GM) and
HD (LM), λ = √

r12r23 and λ = −√
r12r23, respectively. At

λ = 2r12r23 cos(θ123/2)/(r12 + r23), the decomposition corre-
sponds to CFD, since the force center is on the line segment
between r1 and r3. Figures 8 and 9 show the dependence of
P bend1

L on λ. As λ increases, the lateral pressure increases. A
linear relation between λ and P bend1

L (also λ and PL) is found
even for negative values of λ.

This linear dependence on λ is analytically derived when r̂bv

is along the x axis and r̂12 − r̂32 is along the z axis. Since the
force pair f2c contributes to the stress σxx(z) as f2cλδ(z − z2)/
Axy , the lateral stress produced by the bending potential on

-15

-5

 5

 15

-2 -1  0  1  2

P
r3 cu

t /
 k

B
T

λ/l0

z=10.05rcut
z=8.05rcut
z=6.05rcut

FIG. 9. Contribution of bending potential P bend1
L to the lateral

pressure at three xy planes with z/rcut = 6.05, 8.05, and 10.05 as a
function of λ.
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θ123 is given by

σ bend
xx (z) = f1r12

Axy sin ϕ
[sb1B(z1,z2,z)

+ sb2δ(z − z2) + sb3B(z3,z2,z)],

sb1 = − λ

r12
+ 2 cos ϕ − cos3 ϕ,

sb2 = r12 + r23

r12r23
λ − 2 cos ϕ,

sb3 = − λ

r23
+ 2 cos ϕ − cos3 ϕ, (21)

where ϕ = θ123/2 and Axy is the area of the xy plane. Equation
(21) clearly shows that σ bend

xx (z) is a linear function of λ for
z1 < z < z3. Our simulation results indicate that this linear
relation is approximately satisfied even when averaging the
conformations in which r̂bv are fluctuated around the xy plane.

3. Gaussian curvature modulus

The Gaussian curvature modulus κ̄ can be calculated
[24–26] as

κ̄ =
∫

[PN(z) − PL(z)]z2dz. (22)

From elastic theory, κ̄ is related with κ via [40]

κ̄ = (ν − 1)κ, (23)

where ν is the Poisson’s ratio of the bilayer membrane.
Although Poisson’s ratio is generally varied in the range of
−1 � ν � 1/2, κ̄/κ 
 −1 was reported in the simulations by
Hu et al. [24,27] and experiments [41,42]. Hu et al. calculated
κ̄ from the shape transition between a disk-shaped bilayer
patch and vesicle. They also calculated κ̄ using the pressure
profile with Eq. (22) but concluded that the pressure profile
yields unphysical results since the resultant κ̄ is positive
or has a small amplitude compared to κ . However, their
pressure-profile calculation was performed by using GLD;
hence, the pressure tensor does not satisfy angular-momentum
conservation. Recently, Torres-Sánchez et al. calculated κ̄

using CFD [13]. They reported that the calculated κ̄ agrees
well with experimental values.

As described in Sec. III A 2, the lateral pressure profile
is strongly dependent on the force-decomposition method.
Thus, κ̄ estimated with Eq. (22) also varies significantly upon
changing the force center in HD. Table II lists κ̄ and κ̄/κ for
four different decomposition methods. CFD, HD (GM), and
HD (LM) give −κ̄/κ � 1, and FCD gives −κ̄/κ > 1. None
of them satisfy κ̄/κ 
 −1. To further clarify the dependence

TABLE II. Gaussian curvature modulus κ̄ and its ratio to bending
rigidity κ̄/κ for different force-decomposition methods.

κ̄/kBT κ̄/κ

CFD −3.1 ± 0.2 −0.17 ± 0.01
HD (GM) −6.15 ± 0.09 −0.335 ± 0.006
HD (LM) 0.72 ± 0.07 0.039 ± 0.004
FCD −32.8 ± 0.1 −1.79 ± 0.02

-1

-0.5

 0

 0.5

 1

-2 -1  0  1  2  3  4

κ-  
/ κ

λ / l0

FIG. 10. Ratio of Gaussian curvature modulus κ̄ to bending
rigidity κ as a function of λ.

of κ̄ on rc, we calculated κ̄/κ as a function of λ. Figure 10
shows the linear dependence of κ̄/κ on λ. This linearity is
the consequence of the linearity of the pressure profile on λ.
When λ 
 4	0, κ̄/κ 
 −1 is obtained. However, this position
is too far from the positions of the interacting particles. Thus,
it does not seem to be physically plausible. Our results support
Hu’s conclusion that Eq. (22) gives an unphysical value of κ̄

in bilayer membranes.

B. Atomistic model

1. Model description

The DOPC molecules are modeled by the recent version
of CHARMM all-atom force field (CHARMM36) [37,38],
and water molecules are modeled by rigid TIP3P. We apply
CFD, FCD, HD (LM), and HD (GM) to the bending potential.
The four-body potential contribution to local stress field is
calculated by using CFD. The details of the simulation method
are described in Appendix D 2.

2. Lateral pressure profile

The lateral pressure profiles along the bilayer normal
direction are shown in Fig. 11 for four different force-
decomposition methods. The pressure profiles are calculated
for small slices with slice width �z = 0.1 nm in the same
manner as in Sec. III A. The dependence of lateral pressure
profile on the force decompositions is qualitatively similar to
that of the DPD model but its amplitude becomes much smaller
[see Fig. 11(b)]. The differences of force decompositions
affect the local pressure at the surface between water and
amphiphilic molecules. In the hydrophobic region, there
are no significant differences of stress profiles for different
force decompositions. Thus, in the higher-resolution model,
the decomposition methods of the bending forces modify the
pressure profile less than the lower-resolution (coarse-grained)
model.

IV. DISCUSSION

The total stress of each three-body potential is independent
of the decomposition method. However, the distribution of this
stress in 2D space significantly varies even under the strong law
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FIG. 11. Pressure and density profiles of DOPC membrane along
the bilayer normal (z) axis. (a) Total lateral pressure profile for four
force decomposition methods. (b) Partial lateral pressure profile given
by the bending potential. (c) Mass density profile of hydrophilic head
groups (phosphoric acid and choline groups).

of action and reaction. We introduced the stress distribution
magnitude 
 to evaluate the decomposition method. For
the area potentials, 
 has the minimum value in the entire
triangular region formed by the three particles, whereas 


has the minimum value at a single position for the bending
potentials. Hence, 
 can be used to reduce the candidates for
suitable decompositions but the best (unique) decomposition
is not determined by 
, at least for the area potential.

The discrete stress of a molecular simulation can be
mapped into the stress field in the continuum space. If the
corresponding stress field in the continuum space is known,
one can state that the decomposition producing the closest
stress is the best choice. In typical simulation conditions,
the resultant stress cannot be obtained a priori. However, if
a particle potential is constructed as a discretized version of
the potential in the continuum space, the corresponding stress
field in the continuum space is obtained from the original
continuum potential. The surface tension karA123 is one of
the discretized potentials. When a continuum surface with
area A is discretized to acute triangles, the surface tension of
karA is discretized to kar

∑
k Ak , where Ak is the area of the

kth triangle. When the triangle is on the xy plane, σxx(x) =

σyy(x) = kar/Lz and σxy(x) = 0 are given in the continuum
description, where Lz is the side length of the simulation
box in the z direction. Both CFD and FCD distribute the
stress into line segments so that they deviate from the constant
stress field. If HD with multiple force centers distributed on
the triangle is employed, a nearly constant stress field can
be constructed. Alternatively, Hardy’s spatial average with a
weighting function [3] also helps CFD and FCD to approach
the constant field.

For surface tension or other discretized potentials, the
resultant stress field becomes closer to the original continuum
field as the surface is discretized into smaller triangles.
Thus, it is related with the resolution of the simulation.
For classical molecular simulations, local interactions in a
length scale smaller than the diameter of atoms or particles
are not typically taken into account for coarse graining.
For all-atom simulations, the force fields between atoms are
constructed from ab initio quantum-mechanical calculations
[43–45]. Even from the viewpoint of classical mechanics,
each particle has a finite size. For a pairwise interaction
such as chemical bonds, the stress is distributed not only in
the line segment between two particle centers but also in a
cylindrical region with the diameter equal to the particle size.
Thus, one may have to determine the decomposition method
for multibody forces through comparison with the underlying
high-resolution potential interactions. For lipid membranes,
the pressure profile of the higher-resolution atomistic model
has much smaller dependence on the decomposition than that
of the lower-resolution (four-particle) DPD model. This also
supports our hypothesis on the resolution.

Let us go back to the discussion on the stress field of the
bending forces on θ123. CFD and HD (GM) of the bending
forces give the stress distribution on the edge of r13 or close
to the edge, respectively. If these positions are within the
interaction radius of the atom (or particle) at r1 or r3, they can
be employed as a force-acting point. However, FCD and HD
(LM) are unphysical since their force centers are far from the
triangle �123 in most of the case. For real bending potentials,
the stress distribution may strongly depend on the molecules,
but it is likely approximated to the interaction between two
chemical bonds (the middle points of r12 and r23). Thus, HD
with the force center rc lying in the middle of �123 may be a
physically reasonable decomposition, where 
 is greater than
those of HD (GM) and CFD but the stress profile of the bilayer
membranes is flatter.

A coarse-grained model often does not have a specific
underlying higher-resolution model. In such a case, one may
have to calculate the stress field without the higher-resolution
information. We describe our speculative consideration on the
choice of the decomposition when the force center rc0 lies in
the interior region of the triangle of three interacting particles
like in the area potential. In this case, FCD, CFD, and HD
which force center lying in the interior of the triangle has the
minimum value of 
. Among of them, FCD gives the minimum
of the total length 	sum, i.e., the minimum propagation path
of the stress. Therefore, the minimum total length may be
employed as an additional criterion so that FCD can be chosen.

For n-body forces with n � 4, all of the extrapolations
of the force vectors fi from ri do not typically meet at a
single position. Thus, FCD is not generally available for n � 4.
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However, FCD can be performed for specific potentials for
which all fi meet a single position. Let us consider potentials
Urg(r2

gw) on a weighted radius of gyration r2
gw = ∑n

i wi(ri −
rGw)2 for a center position rGw = ∑n

i wiri , where the weight
wi is normalized as

∑n
i wi = 1. Since all of fi meet at rGw,

these forces are decomposed by FCD with the force center
rc = rGw. If the force center rc = rGw or a force center for
three of the forces is used, HD is applicable for any n-body
force. The center position rc can be arbitrarily set by adjusting
wi in rGw. Multiple center positions may be useful. However, it
has many choices of the force decomposition for n � 4, and it
is currently unclear how the force decomposition can be tuned.

V. SUMMARY

We have proposed a decomposition method (FCD) of
three-body forces using the position, where three-force ex-
trapolations from the particle positions meet, and combined
it with CFD, which decomposes the forces into force pairs
between interacting particles. Our study has revealed that the
local stress field of three-body forces is strongly dependent on
these decomposition methods. We have discussed the choice
of the decomposition using the stress distribution magnitude 


and comparison with the stress fields in continuum fields and
in higher resolutions of discretization. We have not reached
a concrete conclusion for the best decomposition but rather
considered that it depends on the underlying higher-resolution
potential.
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APPENDIX A: AREA POTENTIAL

Here, we describe the force decomposition of the general
form of area potentials, Uar(A123), for the triangle �123. The
area is given by A123 = |r12 × r13|/2. The force f1 is given as

f1 = −∂Uar

∂r1
= − U ′

ar

4A123

[
r2

23r13 − (r13 · r23)r23
]
, (A1)

where U ′
ar = ∂Uar/∂A123. This force f1 is perpendicular to r23,

since the area does not change if r1 moves parallel to r23.
For the potential of the surface tension Uar(A123) = karA123,
U ′

ar = kar.
The force f12 in CFD is obtained by the decom-

position of f1 into components along r̂12 and r̂13 or
directly by using f12 = −∂Uar/∂r12|r13,r23 with Heron’s
formula A123 = √

b(b − r12)(b − r13)(b − r23), where b =
(r12 + r13 + r23)/2:

f12 = − U ′
ar

4A123
(r13 · r23)r12. (A2)

The other forces f2, f3, f13, and f23 are similarly obtained.
The original force center rc0 is the orthocenter of �123. Since
q = 1/4U ′

ar
2

> 0, rc0 lies in the interior region or exterior
region A, C, or E of �123 depicted in Fig. 3. When �123 is an

acute triangle, rc0 lies in the interior region. When the angle
θ123 is obtuse (r12 · r32 < 0), rc0 lies in the exterior region E.

APPENDIX B: BENDING POTENTIAL

Next, we describe the force decomposition of the general
form of bending potentials, Ubend(r̂12 · r̂32), for the angle
θ123 = cos−1(r̂12 · r̂32) of three particle positions r1, r2, and
r3. The forces on the three particles are given by

f1 = −U ′
bend

r12
[r̂32 − (r̂12 · r̂32)r̂12],

f2 = − U ′
bend

r12r32

[(
r12 · r32 − r2

12

)
r̂12

r12
+

(
r12 · r32 − r2

32

)
r̂32

r32

]
,

f3 = −U ′
bend

r32
[r̂12 − (r̂12 · r̂32)r̂32]. (B1)

The forces f1 and f3 are perpendicular to r12 and r32,
respectively, since θ123 is independent of the lengths r12 and
r32. For the bending potential of Eq. (19), U ′

bend = −kb.
In CFD, these forces are decomposed into the following

force pairs:

f12 = −U ′
bend

r12 · r13

r2
12r23

,

f13 = U ′
bend

r13

r12r23
, (B2)

f23 = −U ′
bend

r23 · r13

r12r
2
23

.

These force pairs can be obtained from Eqs. (B1) and
(12) or directly from f12 = −∂Ubend/∂r12|r13,r23 with r̂12 ·
r̂32 = (r2

12 + r2
23 − r2

13)/2r12r23. The original force center rc0

always lies in the exterior region of �123, since q =
−4A2

123/r4
12r

4
23U

′
bend

2
< 0. When the angles θ312 < π/2 and

θ231 < π/2, f12f23 > 0 and f12f13 < 0 so that rc0 lies in
the exterior region B depicted in Fig. 3. For θ312 > π/2
or θ231 > π/2, rc0 lies in the region D or F, respectively.
The stress distribution magnitudes 
 for FCD and CFD take
the same value for the bending potentials: 
FCD = 
CFD =
2r2

13|U ′
bend|/r12r23 for θ312 < π/2 and θ231 < π/2, and 
FCD =


CFD = 2r12 · r13|U ′
bend|/r12r23 for θ231 > π/2. For the typical

simulation conditions including our present simulation, θ312

and θ231 are small. Thus, we consider only the case of rc0

lying in region B in this paper.

APPENDIX C: MINIMIZATION OF STRESS
DISTRIBUTION MAGNITUDE FOR EXTERIOR

FORCE CENTER

Here, we consider the force center rc for the minimum
of the stress distribution magnitude 
, when rc0 lies in
the exterior region B, where f12f13 < 0, f12f23 > 0, and
q < 0. As mentioned in Sec. II C, 
 takes the lowest
value at the position rm given in Eq. (18) for HD with
f CFD

13 = 0, if rm is in the interior region surrounded by
three positions r1, r3, and rc0. This position is derived as
follows: We consider the minimization of the difference
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dif = 
 − 
CFD = 
FC
HD − (|f FC

12 |r12 + |f FC
13 |r13 + |f FC

23 |r23),
since the contribution of the CFD force pairs does not explicitly
appear in 
dif :


dif = 2f̃ FC
12 f̃ FC

23

|q|
(∣∣f̃ FC

12

∣∣r2
12 + ∣∣f̃ FC

23

∣∣r2
23 − ∣∣f̃ FC

13

∣∣r2
13

)
= 2

∣∣f̃ FC
13

∣∣r2
13g(x,y), (C1)

where

g(x,y) =
xy

[(
r12
r13

)2
x + (

r23
r13

)2
y − 1

]
x + y − xy

, (C2)

x = − f̃ FC
12

f̃ FC
13

and y = − f̃ FC
23

f̃ FC
13

. (C3)

The force ratios x and y for the minimum of g are obtained
from ∂g/∂x = 0 and ∂g/∂y = 0 as

g(xGM,yGM) = −
r12 + r23 −

√
(r12 + r23)2 − r2

13

r12 + r23 +
√

(r12 + r23)2 − r2
13

< 0, (C4)

with

xGM =
r12 + r23 −

√
(r12 + r23)2 − r2

13

r12
, (C5)

yGM =
r12 + r23 −

√
(r12 + r23)2 − r2

13

r23
. (C6)

The position rm in Eq. (18) is given by xGM and yGM. To
minimize 
dif , the factor |f FC

13 | in Eq. (C1) is taken as the
maximum value while maintaining |f FC

13 | + |f CF
13 | = |f all

13 |,
i.e., f CF

13 = 0. Hence, the lowest value of 
 is obtained for
HD with the force center of rm and f CF

13 = 0.
The local minimum in the region E (LM) is derived from

the minimization of 
 + 
CFD = −2|f̃ FC
13 |r2

13g(x,y), since
f CF

12 f FC
12 < 0, f CF

23 f FC
23 < 0, and f CF

13 = 0. The maximum of
g is given at

xLM =
r12 + r23 +

√
(r12 + r23)2 − r2

13

r12
, (C7)

yLM =
r12 + r23 +

√
(r12 + r23)2 − r2

13

r23
. (C8)

Hence, the local-minimum position is determined as rlm =
r2 − √

r12r23r̂bv from xLM and yLM.

APPENDIX D: SIMULATION METHOD

1. Coarse-grained model

In the DPD method, the particle motions are integrated in
the following Newton’s equation with the DPD thermostat:

m
dvi

dt
= −∂U

∂ri

+
∑
j �=i

[−w(rij )vij · r̂ij + √
w(rij )ξij (t)]r̂ij ,

(D1)

where U = ∑
i>j Urep(rij ) + ∑

bonds Ubond(rij ) + ∑
angles

Ubend1(θijk) and w(rij ) = γ (1 − rij /rcut), with the cutoff at
rij = rcut where γ = 4.5

√
kBT m/rcut. The Gaussian white

noise ξij (t) satisfies the fluctuation-dissipation theorem,
i.e., 〈ξij (t)〉 = 0 and 〈ξij (t)ξi ′j ′ (t ′)〉 = 2kBT (δii ′δjj ′ +
δij ′δji ′ )δ(t − t ′).

We discretize Eq. (D1) by using Shardlow’s S1 splitting
algorithm [46]. We employ the multi-time-step algorithm
[47,48], the time step of which, �t = 0.05τ , is different from
the integration time step δt = 0.005τ for a conservative force
−∂U/∂ri , where τ = rcut

√
m/kBT .

All simulations are carried out under the NV T ensemble
at the particle density N/V = 3/r3

cut with a periodic boundary
condition. The pressure profiles are calculated for a tensionless
membrane at Namp = 738, Nw = 9336, and the side lengths
of the simulation box Lx = Ly = Lz = 16rcut by using the
IKN procedure with the decomposition described in Sec. II,
where Namp and Nw are the numbers of amphiphilic molecules
and water particles, respectively. Amphiphilic molecules are
preformed into a flat bilayer to reduce the equilibration
time. After the equilibration time τeq = 10 000τ or 15 000τ ,
production runs are carried out during 5000τ . The bending
rigidity κ of the bilayer membrane is estimated at Namp = 2950
and Nw = 86 504 by using the undulation mode of a nearly
planar tensionless membrane [49–51], 〈|h(q)|2〉 = kBT/κq4,
with the extrapolation of the cutoff wavelength, qcut → 0
[52], where h(q) is the Fourier transformation of bilayer
height h(x,y). Error bars are calculated from five independent
runs.

2. Atomistic model

MD simulations are carried out in the NPT ensemble
using the standard version of GROMACS 5.1 simulation pack-
ages [53,54]. Bilayer membranes consisting of 400 DOPC
molecules surrounded by 20 000 water molecules are sim-
ulated under T = 303.15 ◦C and P = 1 bar. The tempera-
ture and pressure are controlled by the Nosé–Hoover and
Parrinello–Rahman methods, respectively. Newton’s equation
is integrated by using the leapfrog algorithm with MD
time step δt = 2 fs. A bond constraint is applied to the
bonds with hydrogens by using the linear constraint solver
(LINCS) algorithm. Long-range electrostatic interactions are
calculated via the particle mesh Ewald (PME) method. All
initial configurations and input parameters are generated using
CHARMM-GUI membrane builder [55,56]. The total simulation
time is 600 ns, and the first 360 ns is taken as the equilibration
time.

The obtained MD trajectories are fed into a customized
version of GROMACS-LS [57] to calculate the local stress
profiles. The dihedral contribution to local stress is cal-
culated by using CFD. The electrostatic contribution is
calculated by using the IKN procedure with cutoff length
rel

cut = 2.2 nm. Venegas et al. examined the electrostatic
contributions to the local pressure profile using the IKN
procedure with finite cutoff by changing rel

cut and re-
ported that the local stress profile shows little difference
at rel

cut > 2.2 nm [12].
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