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Self-adjoint integral operator for bounded nonlocal transport
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An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on
both ends by material walls. The “jump” distributions associated with nonlocal transport are taken to be Lévy
α-stable distributions, which become naturally truncated by the bounding walls. The truncation process results in
the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral
operator as functions of the Lévy distribution parameter set [α, γ ] and the wall conductivity are presented. The
integral operator continuously recovers the features of local transport when α = 2. The self-adjoint formulation
allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial
variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse
propagation in nonlocal systems illustrate the capabilities of the methodology.
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I. INTRODUCTION

Currently there is considerable interest in the study and
manipulation of physical systems in which nonlocal transport
(i.e., not described by Fick’s law) occurs between confining
walls or boundaries. Examples of recent experimental efforts in
this area include studies of heat transport in semiconductor al-
loys [1], relaxation of photoexcited electrons in graphene [2,3],
and measurements of the nondiffusive thermal conductivity
in crystalline silicon [4]. In addition, there is a long history
of nonlocal transport processes observed in magnetically
confined plasmas surrounded by metallic walls [5–9]. The
cause of nonlocal transport is often related to underlying
dynamical processes in which relatively large displacements
or “steps” develop, and whose statistics are non-Gaussian.
By “large” it is understood to be relative to the spatial
extent of the system. A convenient and frequent choice for
probability distribution functions (pdfs), that can describe
important transport properties in such situations, is the class of
Lévy α-stable distributions. Although such distributions have
intrinsic features (nonfinite moments and infinite jumps) that
are obviously not physically permissible, they capture essential
features of experimental relevance, as has been well docu-
mented in detailed measurements of Lévy flights of light [10].

In implementing a practical mathematical procedure to
describe finite-size experiments based on a Lévy α-stable
pdf, some difficult issues need to be overcome. They are
related to the infinite extent of the jumps, as is extensively
discussed in the review by Zaburdaev et al. [11], and to
the interaction with the boundaries [12,13]. One approach
to handling the infinite extent of the jumps is to introduce
a sharp truncation of the pdf at a specified cutoff [14]. Another
method [15] is to introduce an exponential tempering of
the spatial fractional derivatives used in a fractional Fokker-
Planck equation. Recently, Vermeersch et al. [16] applied the
exponential tempering directly on the Lévy pdf to implement
a continuous time random walk model (CTRW) [17–20] of
thermoreflectance measurements.

The issue of a proper description of the coupling of the non-
local system to an external world through a boundary involves
the difficulties intrinsic to the infinite jumps, but there are other
subtleties. An approach based on the fractional Fokker-Planck

description is to postulate a “sheath” or insulating layer
whose dimension has to be judiciously chosen [21]. Another
methodology, proposed by Zoia et al. [22], is to discretize the
fractional Laplacian operator and solve an eigenvalue problem
for free and absorbing boundaries, and in principle, to represent
the solutions as a superposition of the eigenmodes. Diffusion
in an open Lévy system, with a legislated reflection coefficient,
has been explored by Lepri and Politi [23].

Another element for a successful modeling of a nonlocal
transport experiment using Lévy pdfs is the capability to
handle spatial variations in the parameters associated with
the distributions. This situation may arise in physical systems
because the internal dynamics switches character within
various regions of the system, as has been found in some
model comparisons [24]. Fractional diffusion in a composite
medium has been addressed by Stickler and Schachinger using
a finite-width boundary between layers of different fractional
order [25].

The manuscript is organized as follows. The form of the
integral operator is presented in Sec. II. Section III outlines the
concepts behind the construction of the matrix operator, with
the essential details for implementing numerical calculations
presented in Appendix C. Section IV uses numerical studies
to illustrate parameter dependencies in the steady-state case.
Section V gives the results from a time-dependent system,
following the effects of a cold pulse introduced into various
nonlocal configurations. Section VI discusses results and
presents conclusions. Subtle issues regarding the choice of grid
size are explored in Appendix A, with the limit of classical
transport (α = 2) treated as a special case in Appendix B.
Appendix D contains a discussion of profile scaling with the
ratio of distribution width to calculation grid size, γ /h.

II. TRANSPORT EQUATION

It is desired to compute the spatial profile resulting from
nonlocal transport of some scalar quantity (e.g., density or
temperature) in a one-dimensional (1D) system. Transport
is presumed to arise from physical entities (e.g., particles)
that experience a change or “jump” from one spatial location
to another. The Markovian master equation describing the
probability of a “particle” being at position x̄ at time
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t̄ ,P (x̄, t̄), is

∂

∂ t̄
P (x̄, t̄) = − 1

τ

{∫ ∞

−∞
dx̄ ′η(x̄ − x̄ ′)P (x̄ ′, t̄)

−
∫ ∞

−∞
dx̄ ′η(x̄ ′ − x̄)P (x̄, t̄)

}

= 1

τ

{∫ ∞

−∞
dx̄ ′η(x̄ − x̄ ′)P (x̄ ′, t̄) − P (x̄, t̄)

}
. (1)

The quantities x̄ , t̄ are spatial position and time measured
in physical units (e.g., meters and seconds). The probability
of a particle having moved in the time interval [0, t̄] is ψ(t̄)dt̄

and the probability of a particle jumping a distance |x̄ − x̄ ′|
from x̄ ′ to x̄ is η(x̄ − x̄ ′)dx̄ ′. The waiting time probability,
ψ(t̄), is assumed to be independent of position and the jump
probability, η(x̄), is assumed to be independent of time. The
initial condition is taken to be that all the particles are located
at x̄ = 0.

The pdf governing the displacement of particles is charac-
terized by a set of parameters, [p], and thus the notation in
Eq. (1) is expanded to η(x̄) → η([p], x̄). The basic form of
the jump distribution, η([p], x̄), is presumed to be peaked at
x̄ = 0. Its Fourier transform is written as η̃{[p(0)], k̄}, with
[p(0)] denoting the parameter values of the jump distribution
with a peak located at x̄p = 0. In constructing the transport
matrix presented next, the jump-distribution peak is required
to be at the spatial location x̄ = x̄p. In the process of inverting
the Fourier transform, the peak of the pdf can be moved to
the location x̄ = x̄p by multiplying the Fourier transform
η̃{[p(0)], k̄} by exp(−ik̄x̄p). Also, the parameter values
characterizing the jump distribution with the peak located at
x̄ = x̄p can be chosen to have the values [p(x̄p)]. Inverting
this modified Fourier transform, η̃{[p(x̄p)], k̄} exp(−ik̄x̄p), to
obtain the spatial form of the jump distribution with peak
at x̄ = x̄p, then gives a jump distribution with the spatial
form η[p(x̄p), x̄ − x̄p]. Thus, the parameter dependence of
the Fourier transform is thought of as a function of the
peak location x̄p. Particles jumping from the location x̄p

to x̄ have a jump pdf whose parameters are determined at
the spatial point corresponding to the distribution peak x̄p.
This concept is analogous to the Wentzel-Kramers-Brillouin
(WKB) formalism used in the study of wave propagation
through nonuniform media.

Solutions to Eq. (1) are computed, in this study, at N + 1
evenly spaced, discrete points, x̄i . In a discrete space, it is
convenient to introduce an expression for the transported scalar
in terms of individual probabilities, T (x̄, t̄) = ∑N

1 AiPi(x̄, t̄),
where each Pi(x̄, t̄) satisfies Eq. (1) with the initial condition
Pi(x̄, 0) = δ(x̄ − x̄i). The relevant equation becomes

∂

∂t̄
T (x̄, t̄) − 1

τ

{∫ ∞

−∞
dx̄ ′η[p(x̄ ′), x̄ − x̄ ′]T (x̄ ′, t̄) − T (x̄ ′, t̄)

}

= GS(x̄, t̄), (2)

where a source term GS(x̄, t̄) has been added. Physically, if
T is identified with “temperature,” this source represents the
external heating power density applied to a system whose
internal dynamics is nonlocal.

It is desired to describe a nonlocal system of finite size, so
the next assumption is that the jump distributions are nonzero

only over a limited interval. That is, the jump distributions
are assumed to have zero value outside the interval [0, L].
The “truncation” of the jump distributions is accomplished by
multiplying them by a “top hat” function,

fth(x̄) =
[

1 x̄ ∈ [0, L]
0 x̄ < 0; x̄ > L

. (3)

Since the jump distributions are probability densities, it is
required that the spatial integral of the distribution is unity. For
example, at constant x̄ ′,∫ ∞

−∞
dx̄η[p(x̄ ′), x̄ − x̄ ′]fth(x̄)

=
∫ L

0
dx̄η[p(x̄ ′), x̄ − x̄ ′] = 1, ∀x̄ ′ ∈ [0, L]. (4)

Normalizing the position vector to x = x̄/L, and the time
to t = t̄/τ , yields the model transport equation for T (x, t),

∂

∂t
T (x, t) −

{∫ 1

0
dx ′η′[p(x ′), x − x ′]T (x ′, t) − T (x, t)

}

= τGS(x, t); x ∈ [0, 1], (5)

where η′ = Lη denotes the dimensionless jump distribution.
The steady-state case, in which the time derivative in Eq. (5)

is zero, is useful for discussing the details of the integral
operator,

−
∫ 1

0
dx ′η′[p(x ′), x − x ′]T (x ′) + T (x) = τGS(x) = S(x).

(6)
The integral in Eq. (6) represents the processes of particles

jumping from all points x ′ in the system (0 � x ′ � 1) to a
particular spatial location, x ∈ [0, 1]. The second term (the
identity) represents the process of particles jumping from x to
other system points x ′, and the identity indicates that they are
certain to do this as indicated by Eq. (4). In the absence of a
source (S = 0) these two processes need to balance each other.
In Eq. (6) the source term S(x) is treated as a function that is
chosen by an external agent, and, in that sense, is arbitrary.
The coefficients Ai in the definition of T(x,t) can be found in
terms of the source term, but they are not needed to proceed
from Eq. (6) and thus are not computed.

The integral operator in Eq. (6) can be represented, in a
discrete system, by matrix multiplication. For example,∫ 1

0
dx ′η′[p(x ′), x − x ′]T (x ′) ≈

∑
j

mijTj ;

mij = hη′[p(xj ), xi − xj ]. (7)

The term mij is a component of a row vector representing
the jump distribution, η′[p(xj ), xi − xj ], and h is the grid
spacing, h = xn+1 − xn = 1/N , with N + 1 the number of grid
points. Tj is the j th element of the column vector representing
the profile T (x) at the point xj , Tj = T (xj ). The second term
on the left-hand side of Eq. (6) is obtained from a term similar
to Eq. (7), but the column number is constant and the row
number varies,

∑
i mijTj = Tj (the sum is over i rather than

j ), with the identity following from Eq. (4). The ith row of the
second term in Eq. (6) therefore has the form δij , that is zero
for all elements except the diagonal element. The left-hand

053302-2



SELF-ADJOINT INTEGRAL OPERATOR FOR BOUNDED . . . PHYSICAL REVIEW E 94, 053302 (2016)

side of Eq. (6) can thus be represented at all values xi ∈ [0, 1]
by a square matrix operator with elements

M ′
ij = δij − mij . (8)

By construction, in the absence of a source term, S = 0,
the sum of the columns of M ′,

∑
i M

′
ij = 0, ∀j , so that, for

the matrix columns, the requirement of particle conservation
is fulfilled. However, even for constant parameter values for
the jump pdf, the ith row of the m matrix is not the same as
the ith column, because of the truncation process. Therefore,
for both spatially uniform and nonuniform parameter values,
the conservation relationship does not hold for every row and
column unless the matrix operator is made self-adjoint and
the columns of the m matrix are then renormalized so that
their sum is unity. For a self-adjoint transport matrix, the
requirement that the spatial integral (sum) of each column of
the operator is zero when the source is zero, then assures that
the spatial integral of the rows is zero as well. With the integral
operator expressed as a matrix operator, Eq. (5) becomes

∂

∂t
T col(t) + M ′T col(t) = Scol(t). (9)

The variables in Eq. (9) are normalized time, t = t̄/τ , and
position, x = x̄/L. The notation T col indicates that the variable
T (x) is represented as a column vector, and Scol(t) is the source
column vector. A description of the procedures used to make
the M ′ operator self-adjoint is presented in Sec. III.

The present study focuses on effects associated with
Lévy α-stable distributions characterized by two parameters,
p(x) = [α(x), γ (x)], with alpha the order of the distribution,
1 � α � 2, and gamma the width of the distribution, 0 < γ .
The spatial form of the general Lévy α-stable distribution,
Lpdf , is computed numerically, using the standard fft (fast
Fourier transform) algorithm, from Lcf , the Lévy α-stable
characteristic function [26] modified as described in the
paragraph following Eq. (1),

Lcf {[α(xp), γ (xp)], k} = exp[−|γ (xp)k|α(xp) − ikxp], (10)

with k the normalized wave number, k = k̄L. The inverse
Fourier transform of Eq. (10) gives a distribution with a peak
value at x = xp, Lpdf{[α(xp), γ (xp)], x − xp}.

III. CONSTRUCTING THE M MATRIX

The matrix, M ′, is a square matrix of size (N + 1) ×
(N + 1) and its construction is based upon a position vector
with N + 1 points, with spacing h = 1/N . Each spatial
location is denoted as xn = nh, n = 1, 2, 3, . . . , N + 1. The
matrix operator, M ′, is constructed column by column because
the parameter values of the jump pdf are constant for fixed
column number. The values of the row elements of the matrix
arise from the column construction procedure. The ith row in
the matrix M ′ when multiplied by the profile column vector,
T , represents the integral operator terms [two terms on the
left-hand side of Eq. (6)] evaluated at the location xi . Each
spatial location along the position vector is represented by the
diagonal element of the square matrix M ′. For the ith row,
each element of the row can be thought of as representing the
integration variable xij , with i fixed and j ranging from 1 to
N. The product of the ith row of M ′ with the column vector

T is assigned to the position xi . Each member of the set of
parameters [α , γ ], characterizing the Lévy jump distribution
can be either constant or vary with position. For the case of
constant parameters [α , γ ], the jump distributions at every x

position vary only as regards their proximity to the ends of the
system and the effects of top hat truncation arising from the
finite length of the system. For spatially varying parameters,
the jump-distribution parameters vary with column number;
that is, they are a function of the integration variable x ′

ij . In
general, columns and rows are different for M ′ matrices (even
with constant parameter values), but this difference is rectified
when the matrix is explicitly made self-adjoint.

The details of the construction of the self-adjoint matrix,
M, are as follows. The ith row of the matrix m as given in
Eq. (7) consists of the elements of an integral convolution,
of the jump distribution, and the T profile. The m matrix,
whose elements are denoted by mij , is created, column by
column, by computing a Lévy α-stable distribution with
parameters [α(xj ), γ (xj )] by the inverse Fourier transform
of the Lévy characteristic function given in Eq. (10). The
columns of the matrix are computed since the jump pdf
parameters are constant for fixed column number j . The
peak of the distributions are at xj = xi , that is, along the
diagonal. The rows of the m matrix arise naturally from
the column-filling procedure. The jump distributions used
in this investigation are truncated by multiplication by a
top hat function [refer to Eq. (3)]. The end limits of the
nonlocal system at x = 0 and x = 1 provide a natural
top hat truncation to the Lévy distributions. The columns
containing the truncated distributions are then renormalized,
so that

∑
i fth(xi)mij = 1, ∀j [refer to Eq. (4)].

The rows of the m matrix generally do not satisfy the same
unity sum condition as the columns because of the truncation
process. This situation is rectified by making the m matrix self-
adjoint, and then requiring “detailed balance” at each point, xj .
By “detailed balance” it is meant that the number of particles
jumping to the point xj from xi �= xj is equal to the number
of particles jumping from xj to the other points in the system
for both rows and columns. Physically, this procedure prevents
the generation of fictitious sources or sinks resulting from the
spatial nonuniformity of the parameters.

Detailed balance is achieved by forming a self-adjoint
operator, M, from M ′ = I − m. By the column construc-
tion process just described, it is assured that C1 M ′ =
−C1

∑N
i=1 mij + C1 = 0, with C1 a constant row vector (i.e.,

all elements have the same numerical value). This relation
results from having normalized the truncated Lévy distribu-
tions along the columns of m to unity during construction
of the m matrix. The transpose of the M ′ operator does
not generally satisfy the detailed balance condition, and the
product M ′C†

1 = C1 M ′† �= 0 (the “dagger” symbol denotes
the transpose operation). Detailed balance can be achieved
by subtracting a diagonal matrix, Mdiag(Rc), from the self-
adjoint form of m, mSA = 1

2 (m + m†). The row vector, Rc,
is the product of the self-adjoint form of m with the unit
element column vector, I c, Rc = mSA I c. To be clear, I c is
the column vector of length N + 1 with all elements equal
to 1. The ith element of the vector Rc thus contains the
integration (summation) of the ith row of the matrix mSA. The
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self-adjoint matrix that satisfies the detailed balance condition
with spatially varying jump-distribution parameters is, then,

M = Mdiag(Rc) − mSA → I − m̄SA. (11)

The term Mdiag(Rc) indicates the (N + 1) × (N + 1)
matrix with the vector, Rc, along the diagonal. In order
that each row and column of the matrix mSA represents a
probability density function, it is modified so that the sum of
each row (and thus also the corresponding column) is unity.
Using the modified matrix m̄SA in place of mSA then gives a
Mdiag(Rc) matrix that is the identity matrix [the second form
of M in Eq. (11)]. The use of the Mdiag(Rc) technique may
therefore seem unnecessary, but it proves useful for forming
the matrix bounded by material walls (Appendix C). The form
of the matrix operator, M, given in Eq. (11) is self-adjoint,
and by construction satisfies the detailed balance condition,
M I c = I †c M† = 0. This condition ensures that the integral
(sum in discretized form) of all rows and all columns is zero.
Detailed balance, in the steady state with no source term
[S(x) = 0], means that all of the jumps out of position x to
other positions x ′, are balanced by jumps into position x from
other positions, x ′, ensuring that the constant vector C1 does
not change, with time, at x. When a source is present, detailed
balance ensures that the total flux out of the system is equal to
the source flux. That is, the self-adjoint matrix operator does
not contain spurious sources or sinks.

IV. STEADY-STATE BEHAVIOR

The steady-state (i.e., time-independent) behavior is de-
scribed by Eq. (9) with the temporal derivative set to zero and
M ′ replaced by M,

MT = S. (12)

The matrix operator, M, is computed numerically at discrete
points on a “calculation grid.” The calculation grid is set out
along the position variable (x axis) at N + 1 evenly spaced
locations (N intervals). The distance between points is denoted
by h with h = 1/N . The grid spacing, h, is dimensionless
because the position variable has been normalized to the
system length, x = x̄/L. An important question is the choice
of the number of grid points, N. The key considerations
in making this choice are the source scale length LS , and
the jump-distribution width γ . At a minimum, it is required
that the calculation grid resolve variations in the source,
h = 1/N � LS/L. Subtle issues regarding the choice of grid
size are presented in Appendix A for α �= 2, and for the special
case of α = 2 in Appendix B. It is shown in Appendix D that
the grid spacing must satisfy the condition γ � h in order to
obtain the desired transport scaling.

A. Bounding walls

Many physical systems have bounding walls that are part
of the transport environment. For the case of heat transport,
the role of the material walls at the ends of the system
can be modeled as standard heat conductors or insulators.
Walls suitable for a system describing density transport
would have different properties [e.g., emissive (recycling) or
absorbent] and such walls are not considered in this study. Heat
transport within conducting walls is local, and the associated

transport is represented by the second derivative operator. To
incorporate heat-conducting material walls into the transport
matrix representing the complete system, the elements of the
transport operator M near the ends of the system are modified
to have the form of a second derivative operator. The walls are
added to the ends of the system and increase its overall length.
The length of the nonlocal system remains L, and the position
vector is normalized to the length of the nonlocal system, not
the total length of the system, which is greater than L due to
the added wall material.

Top hat truncation of the jump distributions occurs at the
ends of the nonlocal system. Boundary conditions for the
entire system are set at the outer limits of the material walls.
Neumann or Dirichlet conditions are set at the first and last
rows of the M operator by the usual techniques. Specifically,
all elements of the first and last row are set to zero except for the
diagonal element for Dirichlet conditions (function value), or
the diagonal and neighboring element for Neumann conditions
(function derivative).

The extended transport matrix has a range of grid points at
both ends of the system, where the matrix rows have the form of
a second derivative operator, −τ κ̄ ∂2

∂2x̄
T = −(τ κ̄/L2) ∂2

∂2x
T =

−κ ′ ∂2

∂2x
T , with κ̄ the heat transport coefficient of the wall

material in physical units, κ ′ is the normalized heat transport
coefficient, and x is the normalized position. In matrix form,
the second derivative matrix operator has rows with the pattern
[−1, 2, −1]/h2, where 2 is the diagonal element. The M ma-
trix is actually not explicitly dependent upon the parameter h,
because the integral (sum) of each matrix row is normalized to
unity. That is, the term hη̄[p(xj ), xi − xj ] appearing in Eq. (7)
is normalized by the term

∑
j hη̄[p(xj ), xi − xj ], so that the

explicit h dependence is eliminated. With this normalization,
the matrix rows representing material walls should have the
form [−1, 2, −1] rather than [−1, 2, −1]/h2. The model wall
conductivity, κ , is thus related to the normalized conductivity
κ ′, as

κ ′ = h2κ. (13)

This relationship is useful when comparing calculations
performed on grids of different size.

In the language of the jump distribution, in which informa-
tion is communicated by jumps between grid points, the second
derivative operator communicates information only between
neighboring grid points. That is, all jumps in the wall material
are of length h, and jumps from a grid location can only occur
to the left or right neighbor. In contrast, jumps in the nonlocal
system can occur between grid locations many grid steps, h,
apart. The property of localized, or one-step jumps in the wall
material, is used to interface the wall with the nonlocal system.

Fuzzy wall

The nonlocal system and material walls have very different
characteristics, and it is important to achieve a suitable
match between the two. This requirement is accomplished by
employing an interface between the two systems referred to
as a “fuzzy wall.” For reasons discussed in Appendixes A, B,
and D, the relationship between the jump-distribution width γ ,
and the grid spacing h, is restricted to the regime γ � h. With
this restriction in mind, the fuzzy wall is defined as a region
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overlap
region

overlap
region

FIG. 1. (a) The fuzzy wall is an overlap region, one gamma in
width, between the material wall (not shaded) and nonlocal system
(shaded). Point A has both right and left jumps from the material
wall. Point B has only a right jump from the wall, but both right and
left jumps from the nonlocal system. (b) The minimum-width fuzzy
wall, or h-gap wall occurs in the case γ = h. Points A and B in panel
(a) coalesce to the point A-B. Arches denote jumps connecting row
elements. Only wall jumps to point A-B in the nonlocal system are
permitted (dotted green arch). Point C is too far from the wall (two
grid points) to receive jumps from the wall material (dashed red arch).

of overlap between the wall material and the nonlocal system
that is one jump-distribution width, γ , in size. Therefore, the
width of the overlap region associated with the fuzzy wall is
always greater than or equal to one grid spacing, h. If the ratio
γ /h is not an integer then the integer part of this ratio is used
to determine the number of grid points in the fuzzy wall.

The region of overlap between the wall and nonlocal system
in the fuzzy wall concept is illustrated in Fig. 1(a). The nonlocal
system and overlap region are shaded, and the wall region is
unshaded. The physical interface between the wall and the
system is indicated by the dashed black line. The computation
grid is situated so that grid points are located, either entirely
in the nonlocal system, or entirely within the wall, but not
along the wall-system interface. The diagonal elements of
the transport matrix (solid magenta diagonal line) represent

spatial locations, x, in the system and the other grid points in
each individual row (that is, for fixed row number—horizontal
line in the figure) represent the integration variable, x ′, of the
integral operator formulation [refer to Eq. (7)]. The transport
matrix is self-adjoint and thus there are equal overlap regions
for both columns and rows. The form of the convolution
integral in Eq. (7) corresponds to jumps along a matrix row, so
that process is discussed in detail here. For fixed row number,
the jumps associated with the jump-distribution calculation
occur between row elements. For example, the grid point
marked “W” in Fig. 1(a) is a spatial location in the wall that is
adjacent to the nonlocal system. The solid black “arches” along
the grid row containing the point W, represent jumps from the
two neighboring grid points to the point W and are analogous
to jumps associated with the jump distribution technique used
to construct the nonlocal matrix m. In the construction of the
m matrix using a jump distribution, jumps are from a row
position x ′ to the diagonal element x, from both the left and
right. Jumps do not cross, or jump over, the diagonal element.

The interface between the left wall and nonlocal system is
illustrated, but a similar situation is encountered at the interface
at the right wall. The overlap region is limited in extent to
one jump-distribution width γ , and extends from point A up
to, but not including, point B shown in Fig. 1(a). Point A
is the last point in the nonlocal system, and the truncation
of the jump distributions occurs at this location. Point B marks
the location of the final diagonal element connected to the wall
material, and point C is the first spatial location not connected
to the wall. Point B is connected to the wall by a single jump
from the left (dotted green arch). All other locations in the
fuzzy wall have jumps from the wall to the diagonal elements
from both the left and right. Point A, however, only receives
nonlocal system jumps from the right.

In the fuzzy wall region, the wall material is extended into
the nonlocal system to create the overlap region. The truncated
jump distributions are not changed between points A and
B by the extended wall material. All jump distributions are
truncated on the left at point A, as if the wall material in the
overlap region were absent. Similarly the wall parameters are
not changed in the overlap region (kappa remains the same).
The overlap occurs without alteration to either system; the
matrix rows for each system are simply added together in the
overlap region. The parameter values, in the left and right
walls, may be different depending upon the spatial variation
of the parameters between the walls.

Figure 1(b) illustrates the minimum fuzzy wall configu-
ration, which occurs in the case that γ = h. This particular
configuration is referred to as the h-gap wall and it provides
a detailed view of the elements of the fuzzy wall. The point
marked A in Fig. 1(a) coalesces with point B and is marked
A-B in Fig. 1(b). A-B marks the first spatial point (diagonal
element) in the nonlocal system. Point A-B is located one grid
spacing, h, from the material wall and, thus, this configuration
is referred to as the “h-gap” wall. Jumps, in the nonlocal
system, from all other grid points in the row containing point
A-B, are connected to the point A-B. The nonlocal jumps come
to point A-B from the right, and are indicated by the solid black
arches to the right of point A-B, along the row containing A-B.
For clarity, only three grid points in the nonlocal system are
shown, but in a typical calculation there would be many more
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grid points. Since point A-B is located only one grid spacing
from the wall, jumps from the wall to point A-B are permitted,
as indicated by the dotted green arch marked by “OK.” This
is the channel through which the wall and system exchange
information. The spatial point denoted by “C” is located two
grid spaces from the wall and jumps from the wall to point C
are not permitted, as indicated by the dashed red arch marked
by “NO.” In contrast to the general fuzzy wall configuration,
only point A-B communicates information to and from the
wall in the h-gap configuration.

The use of the fuzzy wall is illustrated later by concrete
examples. The details for constructing the transport matrix
Mw, which represents a nonlocal system bounded on either
end by material walls, are presented in Appendix C.

B. Convective term

The jump distributions, used in the construction of the
matrix m, are truncated at the material walls surrounding the
nonlocal system. In the truncation process, nonlocal jumps,
that would occur from row locations that correspond to the ma-
terial wall, are not allowed, and the jump distribution is set to
zero at these locations. Since the jump distribution represents
a probability distribution, the truncated distribution is renor-
malized, so that its spatial integral (sum) is unity. Thus, the
truncation process leads to asymmetric jump distributions in
the vicinity of the material walls. The degree of asymmetry de-
pends upon the alpha value and width of the jump distribution.
Jump distributions in the center of the system are symmetric
and have zero first moment. Distributions near the walls have
nonzero first moments. The first moment of the distribution
can be considered to represent a “velocity” or “flow” and result
in transport that is analogous to the process of “convection.”
Thus the M operator is considered to contain, at least partially,
a “convective” operator of the form vc

∂
∂ x

. The velocity vc is a
column vector equal to the first moment of matrix m̄SA,

vc(α, i) = h

N+1∑
j =1

(m̄SA)i j · (xi − xj ). (14)

In computing the first moment, only matrix elements
representing the nonlocal system are included, i.e., the matrix
m̄SA, since this is the matrix containing the truncated jump
distributions. The truncation points are located at the ends of
the nonlocal system so that the flow is computed only for the
nonlocal system. The flow in the wall material is assumed
to be zero. If gamma is larger than the grid spacing h, the
overlap region in the fuzzy wall does not affect the first moment
calculation. A convective operator matrix M1 is formed from
the velocity vector vc(α, i), computed using Eq. (14), and
defined as M1 = Mdiag[vc(α)]D1. The matrix D1 is the first
derivative operator, a bidiagonal matrix with all rows except
the first and last rows of the nonlocal system, having row
elements [−1/2h, 0, 1/2h], with 0 the diagonal element. The
first row of the nonlocal system has the form [−1/h, 1/h],
with −1/h the diagonal element. The last row of the nonlocal
system has the same form, but with 1/h the diagonal element.

With the explicit dependence of the first moment vc on grid
spacing h, as indicated in Eq. (14), and with the first derivative
operator proportional to 1/h, the convective operator M1 does

not explicitly depend upon the calculation grid spacing h.
This independence from grid parameter h is the same as for
the “total” matrix operator for a system bounded by material
walls, Mw, and the two operators can be added or subtracted to
form a new h-independent operator, M2, that does not include
the effects of convection,

M2 = Mw − M1 = Mw − Mdiag[vc(α)]D1. (15)

The model systems examined in this study are bounded
by material walls that can only conduct heat. Although it is
easy enough to add a convective term to the model wall, this
possibility is not included in this study. No heat convection
(material flow) explicitly occurs in the walls. The flows
associated with the convective velocity term given in Eq. (14)
are entirely contained within the nonlocal system. That is, the
first moment is nonzero only at points within the nonlocal
system. It is instructive, at times, to investigate the dif-
ference between the transport matrix with and without the
convective term. However, the flow terms are an important part
of nonlocal transport and the convective term should always
be included in the transport matrix when making a comparison
to experimental data.

C. Spatial profiles

Steady-state profiles that satisfy Eq. (12) are determined,
not only by the values of [α, γ ] but also by the wall
conductivity κ . To gain an understanding of the effect of
variations in these basic quantities, several steady-state profiles
are numerically evaluated for various parameter settings in the
same model system. The model system consists of a nonlocal
region bounded on both sides with walls of equal length and
conductivity. The calculation grid consists of 1201 points, 100
grid points for each wall and 1001 grid points in the nonlocal
system. The grid spacing is h = 0.001. The source is either
symmetric about the center, or centrally located, with Gaussian
spatial shape and scale length σ = 0.005 = 5h. The variation
with alpha, at fixed gamma and kappa, is explored first and
then alpha and kappa are held constant while gamma is varied.
Finally the variation with kappa is investigated with fixed alpha
and gamma values.

1. Dependence on alpha

Figure 2 shows spatial profiles of the scalar quantity T
for three values of alpha, α = 1.4, 1.8, and 2, with [γ, κ] =
[h, 1]. All profiles are obtained with Dirichlet boundary
conditions set at the ends of the system; the profile is zero
at both ends. Figure 2(a) shows profiles associated with two
equal sources located equidistant from the system center at
x = 0.35 and x = 0.65 (x = 0 corresponds to the interface
between the left wall and nonlocal system). The “flatter”
profiles associated with lower values of alpha, indicate that
transport increases with decreasing alpha, as expected. The
profiles show a “hollow” profile phenomenon in that the value
of the profile in the region between the two sources is less
than at the source. This behavior is in contrast with the α = 2
case in which the profile is flat (constant value) between the
sources. The hollow profile effect arises from the tails of the
Lévy jump distributions and increases with decreasing alpha.
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FIG. 2. (a) Steady-state profiles for three alpha values and
[γ, κ] = [h, 1] for two sources symmetrically located about the
center position. The profile for α = 2 is flat between the two sources,
but the profiles for the other alpha values exhibit hollow profiles. That
is, the central regions of the profiles are lower in amplitude than the
amplitude at the source. (b) The first moments (multiplied by 10 3)
are a matrix property and do not depend upon source location. The
first moment becomes dominant as the alpha value nears unity.

Such an effect has been identified previously in a study of
nonlocal transport based on fractional diffusion [21].

The first moments computed using Eq. (14) are shown in
Fig. 2(b). The first moment term is antisymmetric (relative
to the center of the nonlocal system) and the convection
associated with the first moment is inward toward the center
of the nonlocal system. As the value of alpha decreases, both
the magnitudes of the first moments, and penetration into
the nonlocal part of the system (extent away from the walls)
increase. The first moment is the dominant feature of transport
at alpha values near unity. The first moment is a property of the
transport matrix and is not dependent upon source location, or
the conductivity of the walls.

2. Dependence on gamma

Figure 3 illustrates the necessity of employing a technique
such as the fuzzy wall. The case of γ = γ̄ /L = 0.01 is
presented, employing two calculation grids, one with 121
points and thus γ = h, and the other with 1201 grid points so
that γ = 10h. In the latter case two calculations are presented;
one with an h-gap wall (dashed green curve), and the other
with a fuzzy wall (orange curve with star symbols). The value
of alpha is α = 1.5, but the value of kappa depends upon the
number of grid points. For the case with N = 121, kappa is
chosen to have the value κ ′ = κ = 1, so that for N = 1201,
using Eq. (13) and keeping κ ′ constant, κ = 100, since
(h 1201/h 121)2 = 0.01. With the fuzzy wall, the calculation with

FIG. 3. Profiles obtained for fixed γ = 0.01, computed using two
calculation grids, N = 121 and 1201, are compared. The profile
computed without using a fuzzy wall (dashed green curve) exhibits
a jump between the wall and nonlocal system. The profile computed
using a fuzzy wall, γ = 10h, N = 1201 (orange curve with star
symbols), agrees with the profile computed with an h-gap wall,
γ = h, N = 121 (solid blue curve).

the smaller number of grid points and γ = h (solid blue curve),
produces the same profile as the γ = 10 h calculation using
a fuzzy wall (orange curve with star symbols). The γ = 10h

case computed using a minimum-gap wall (h-gap wall) instead
of a fuzzy wall, produces a profile with a jump between
the wall-connected row and the first row entirely within the
nonlocal system. The profile shape within the nonlocal system
is the same in both γ = 10h cases, except for the jump. In the
case of an h-gap wall, the jump becomes larger for the same
value of γ as the number of grid points increases. Therefore, for
the h-gap wall, the calculation of the profile does not converge
as N increases and h → 0. In contrast, the use of a fuzzy wall
yields profiles that remain the same as N increases, and it is
this behavior that justifies the use of the fuzzy wall concept.

Figure 4 shows the effects of changing jump-distribution
width γ on the steady-state profiles. The alpha and kappa
values are the same for all profiles, [α, κ] = [1.5, 10]. The
calculation grid has N = 1201, and the source is centrally
located. Four values of gamma, γ = γ̄ /L =0.001, 0.002,
0.004, 0.008, corresponding to h,2h,4h, and 8h, are used for
illustration. It is clear that transport increases with increasing
gamma. The change in transport coefficient is quantified in
Appendix D. The first moments, shown in Fig. 4(b), increase
with increasing gamma, and they have a broader extent, that is,
extend farther into the system, as the value of gamma increases.
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FIG. 4. (a) Steady-state profiles for fixed alpha and kappa are
shown for changing jump-distribution width. The source is centrally
located and the profiles become flatter with increasing gamma.
(b) The first moments (multiplied by 103) for the gamma values
used in (a) become larger as gamma increases.

3. Kappa dependence

Figure 5 illustrates the effects of changing the normalized
wall conductivity, κ , on the steady-state profiles. The first
moments for all the profiles shown in this figure are the same.
That is, the first moment is not affected by the changing
value of kappa. The first moment for the profiles shown in
Fig. 5 is the same as the trace shown in Fig. 4(b) for the
case γ = h(solid orange curve). The wall conductivity ranges
from 0.5 to 100. The lower end of the conductivity range
represents kappa values smaller than the transport coefficient
in the nonlocal system, and the walls are “insulating” relative
to the interior. Higher values of kappa represent walls that are
more “conducting” than the interior system. The profiles inside
the nonlocal system are identical in shape; the value of kappa
simply determines the value of the profile at the wall. The value
of the profile at the wall is set by the condition that the flux at the
beginning of the wall is equal to the flux provided by the source.
Since the system is symmetric, the source flux to the left wall
is S/2 and the thermal flux in the wall κ∂T /∂x ≈κTwall/xwall

must equal S/2, so that Twall = 0.5Sxwall/κ , and the larger
kappa is, the smaller Twall is.

D. Spatially varying parameters

The steady-state profile resulting from a spatial variation
in the jump-distribution order parameter α is shown in Fig. 6.
In Fig. 6(a), the alpha parameter has the value 2 in the center

α = 1.5
γ = h
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FIG. 5. Profiles for fixed nonlocal system parameters [α, γ ] =
[1.5, h] for different kappa values ranging from 0.5 to 100. Low
values of kappa are insulating, and high values conducting, relative
to the nonlocal system. The profile shape within the nonlocal system
is invariant, and the effect of changing kappa value is to change the
amplitude value at the wall-system interface.

FIG. 6. Effect of spatially varying alpha parameter. (a) The value
of alpha (dotted red curve) changes from 2 in the center of the system
to 1.2 near the walls. The other parameters are [γ, κ] = [h, 10].
(b) The alpha parameter (dotted red curve) changes from 2 to 1.5
in a localized, off-center region to the right of center. The other
parameters are [γ, κ] = [h, 1]. The dash-dot magenta curve shows
the profile associated with a spatially uniform value of alpha, α = 2.
The first moments (dashed green curves) exhibit regions of internal
flows produced by the gradients in alpha parameter in addition to the
flows near the walls.
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of the system, and gradually decreases to 1.2 near the ends of
the system (dotted red curve, right-hand scale). This system
has approximately “standard” transport in the center, in that
the alpha value is 2, and becomes very nonlocal near the
walls, where the alpha value is 1.2. The width of the jump
distributions in both cases is γ = h = 0.001, and κ = 10. The
source is the same as in Fig. 2 consisting of two Gaussians
of width 0.005 with centers located at x = 0.35 and 0.65.
The nonlocality of the distributions near the walls results in
a central hollow profile, as compared to the constant profile
associated with a uniform α = 2 case [refer to Fig. 2(a)]. The
hollow profile associated with spatially varying alpha is much
more evident than for a spatially constant value of alpha less
than 2 [refer to Fig. 2(a)]. The hollow profile effect is due to
the tails of the Lévy distributions in the α = 1.2 regions on
the outer edges reaching across the entire system. The profile
(solid blue curve) changes rapidly near the wall, due to the
substantial increase of the magnitude of the first moment near
the wall (dashed green curve).

Figure 6(b) shows another example of spatially varying
alpha, but in this case the variation is not symmetric. The
value of alpha is 2 except for a region on the right of the system
where it drops in value to 1.5. This limited region of nonlocal
behavior affects the entire profile. It results in an asymmetric
profile (solid blue curve) in which the flux to the left wall is
less than the flux to the right wall even though the source is
centrally located. The dash-dot magenta line shows the profile
shape that would result if alpha had a spatially uniform value
of 2. Note that, for both profiles, the first moments (dashed
green curves) show flows generated in the regions of the alpha
gradients. The flows are opposite the direction of the alpha
gradient and the flow is localized to the alpha gradient region.

Figure 7 shows the effects of spatial variation in the
jump-distribution width for a fixed value of alpha, α = 1.2.
The jump-distribution width decreases from 4h near the walls
to h in the middle (dotted red curve, right-hand scale) for
a change of a factor of about 5.3 [(4h/h)1. 2 = 5.278] in the
transport coefficient. The profile (solid blue curve) associated
with this parameter variation is morphologically similar to
the profile for changing alpha value shown in Fig. 6(a), in
that transport is larger on the outside of the nonlocal system

FIG. 7. An example of spatial variation in the jump-distribution
width, gamma, for fixed alpha value, α = 1.2. The value of gamma
changes from 4h near the walls to h in the center of the system. The
result is a very flat profile (solid blue curve).

as compared to transport in the central region. The most
noticeable differences are that the first moment (dashed green
curve) is much larger near the wall region and the profile is
quite flat due to the increase in the transport coefficient on the
outside of the system. Note that the gradient in the distribution
width also results in flows generated in the gradient region of
the width parameter. In contrast to the alpha gradient case, the
flow is in the same direction of the gradient in gamma. Again,
like the alpha gradient generated flow, the gamma gradient
generated flow is localized to the gradient region.

V. TIME DEPENDENCE

An illustration of the versatility of the integral operator
approach to studies of nonlocal transport properties is given by
a time-dependent example. Time-dependent features (e.g., heat
pulses) for situations in which the Lévy distributions remain
temporally constant can be investigated by using Eq. (9),

∂

∂t
Tn(t) + MwTn(t) = Sn(t), (16)

with Tn(t) denoting the discrete spatial profile as a function
of time, Tn(t) = T (nx, t), and, where t is normalized to the
waiting time, τ , t = t̄/τ . With the time also a discrete vector,
Eq. (16) becomes

Tm+1 − Tm

�t
= −Mw[aTm+1 + (1 − a)Tm]

+ aSm+1 + (1 − a)Sm, (17)

where � t is the time step and the spatial subscript is dropped
for economy of notation, Tm = T (m�t). The constant a is
used to provide numerical stability, and for the examples
shown here, a is adjusted with changing alpha parameter,
a = (3 − α)/2. For situations in which alpha is spatially
varying, a spatially averaged value of alpha is used to evaluate
a. Multiplying Eq. (17) by M −1

w and solving for T m+1 gives

T m+1 =
[
a I + M −1

w

�t

]−1{[
−(1 − a)I + M −1

w

�t

]
Tm

+ M −1
w S̄m

}
, (18)

where S̄m = aSm+1 + (1 − a)Sm and I is the identity matrix.
An example of the use of Eq. (18) to solve a time-dependent

problem is given for a system with two constant (time-
independent), Gaussian profile sources located at x = 0.35
and x = 0.65. The model system has a nonlocal region 1001
grid points in length, bounded by walls 100 grid points in
width, and with wall conductivity κ = 10. A time-dependent
problem is produced by introducing into this system a sink with
a Gaussian spatial profile five grid points wide (σsink = 0.005)
centered at x = 0.15, and with a Gaussian-shaped, temporal-
pulse behavior, Scp(t) = exp{−[(t − 3000)/1000] 2}. The time
vector is 401 points in length and 0 � t � 2 × 104. The time
variation of the sink is chosen to obtain pulse propagation into
the nonlocal system for the spatially uniform value of alpha
(α = 1.2) chosen for the example shown in Fig. 9(a). The
system response to a spatially localized pulse of fixed temporal
length varies considerably with alpha value. The fixed-length
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FIG. 8. (a) Contours of the source-sink combination used in the
time-dependent examples shown in Figs. 9 and 10. (b) The time
dependence of the amplitude of the cooling pulse.

pulse generates shorter wavelengths for larger alpha values.
For the time-dependent examples, the full transport matrix
(i.e., with the convective term included) is used to compute
profiles. A contour plot of the source-sink combination is
shown in Fig. 8(a) as a function of normalized position
and normalized time. The pulse amplitude as a function of
normalized time is shown in Fig. 8(b) over the entire time
interval displayed in the contour plots shown in Figs. 9 and 10.

The solution to Eq. (18) with a constant alpha value, α =
1.2, and a constant jump-distribution width, γ = h, is shown
as a contour plot in Fig. 9(a). What is displayed is the difference
between the system with the cooling pulse present and the
system without the pulse. The time step used to obtain the
solutions is � t = 50.

The results do not change if the time step is set to a
smaller value. The contour plots display the entire time interval
spanned in Fig. 8(b), even though the pulse duration is only
a small part. It is clear from the shape of the contours
(constant amplitude lines) that the cold pulse propagates into
the nonlocal system. At late times, the entire nonlocal system
responds as it recovers from the initial pulse. For the low value
of alpha used in this example (α = 1.2), the pulse propagates
through the nonlocal system all the way to the opposite wall.
This effect is a visible manifestation of the nonlocal nature of
the system.

Figure 9(b) shows the cooling pulse in a nonlocal system
with spatially varying gamma parameter as shown in Fig. 7.
The gamma profile is shown as the dotted red trace in Fig. 7.
Gamma changes from γ = 4h on the outside to γ = h in
the center of the nonlocal system with alpha held constant at
α = 1.2. Figure 9(b) shows contours of the difference between

Gamma varies with positionGamma varies with positionGamma varies with position

FIG. 9. (a). The effects of the cooling pulse in a system with
constant gamma value, γ = h. (b) The cooling pulse in a system in
which gamma varies from 4h on the outside to h in the center as in
Fig. 7.
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FIG. 10. Cooling pulse in a system with alpha varying from 1.2
on the outside to 2 in the middle, as in Fig. 6(a).
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a system with the pulse present and a system without the pulse.
The source-sink combination is the same as used in the con-
stant gamma case shown in Fig. 9(a). In this example the
cooling pulse moves rapidly across the nonlocal system to the
opposite wall. The response to the cooling pulse propagates
almost like a “plane” wave in the nonlocal system with very flat
contours (constant amplitude lines). The large gamma value
on the outer edges of the nonlocal system serves to strongly
tie the two walls together.

Figure 10 shows contours of cooling-pulse propagation in
a system in which the parameter alpha changes from a value
of 1.2 on the outside to a value of 2 in the center. The spatial
profile of the parameter alpha is shown as the dotted red trace
in Fig. 6(a). The jump-distribution width is held constant at
γ = h. The source-sink combination is the same as used in the
previous cases shown in Fig. 9. For this situation, the pulse
propagates to the center of the system with a longer delay
than the constant parameter case shown in Fig. 9(a). Pulse
penetration to the other side of the system is weak and delayed
compared to the constant parameter case. The α = 2 core acts
as a barrier between the sink and the far side of the system.

VI. DISCUSSION AND CONCLUSIONS

An integral operator approach to nonlocal transport in finite
bounded systems has been developed. The model system is
a nonlocal region bounded by material walls with standard
diffusive transport. The method starts with a Markovian master
equation that uses a jump distribution to describe the transport
of a scalar quantity. The jump distributions used in this study
are Lévy α-stable probability distribution functions. The walls
of the bounded system provide a natural top hat truncation
of the jump distributions that results in a convective transport
term proportional to the first moment of the jump-distribution
matrix. Convective flow due to truncation at the walls is always
inward and thus represents a “pinch” of the nonlocal system.

The integral operator formulation in a discretized system
results in matrices as a description of transport. Matrices
representing nonlocal transport can be obtained for values of
alpha, the order parameter of the Lévy α-stable distribution,
varying continuously from 1 to 2. The two extremes of the
alpha parameter range correspond to two well-known spatial
probability distribution functions; the Gaussian distribution
for α = 2 and the Cauchy distribution for α = 1. This
correspondence allows the model to be compared to standard
transport models. The integral operator with α = 2 reduces to
the tridiagonal representation of the second derivative operator
used in modeling diffusive transport in the small γ limit.

Although not presented in the main body of this manuscript,
a detailed study of the transport coefficient associated with
the self-adjoint operator is presented in the Appendixes.
For the special case of α = 2, treated in Appendix B, the
transport coefficient is proportional to the square of the
jump-distribution width, γ 2, provided the calculation grid
resolves the peak of the jump distribution (γ /h � 1). In the
opposite limit, γ /h < 1, the matrix is tridiagonal, but the
scaling changes. The scaling of profiles for alpha values other
than 2 is discussed in Appendix D, and it is demonstrated
that profiles obtained using a transport matrix, with the first
moment removed, scale as γ −α for γ /h � 1. The scaling for

profiles with alpha values other than 2 also changes when γ /h

becomes small (γ /h < 1) from γ −α to γ −(α+1). The change
in scaling leads to the imposition of the restriction that the
calculation grid must be able to resolve the jump-distribution
peak. That is, the ratio of distribution width to grid spacing
must be larger than unity, γ /h � 1.

The nonlocal system with alpha values other than 2 is
characterized by hollow profiles due to the tails of the Lévy
jump distributions extending across the entire system. Even
when the central region has an alpha value of 2, the profile is
hollow if the outer regions are characterized by alpha values
less than 2. Spatial variations in parameter values also have
a strong effect on the propagation of heat pulses. Regions of
nonlocality connect the distant walls of the system, resulting in
localized heat pulses becoming global structures. In contrast, a
central region of standard transport (α = 2) can act as a barrier
to pulse penetration. The time-dependent examples presented
highlight the value of the capability, built into the formulation,
to allow the jump-distribution parameters to vary with position.
Internal flows are generated by gradients in the distribution
parameters. Flows are opposite to the gradient direction for
changes in alpha, and in the gradient direction for changes in
gamma. Internal flows are localized to the region of parameter
gradients.

The integral operator technique is very versatile and can
be used to model nonuniform, nonlocal systems of broad
interest. An illustration of this capability is presented in
Fig. 11 in which the example of a composite material interface
presented by Stickler and Schachinger [25] is solved using
the integral operator method. The solid blue curve mimics
the result in Fig. 3 of Ref. [25]; it is obtained by extending
the left-hand wall, with a high kappa value, to cover half the
system. The dashed red curve represents the behavior at an
actual interface between two nonlocal systems. The parameters
change abruptly in the middle of the system from alpha equal

FIG. 11. The solid blue curve is a comparison to a case treated in
Fig. 3 of Ref. [24]. To obtain the blue curve, the left-hand side of the
system (x < 0.5) is wall material with κ = 108, and the right-hand
side is a nonlocal system with α = 1.1, γ = 1. The dashed red curve
is obtained in a wall-to-wall nonlocal system with a step transition
from α = 2 to 1.1 in the center of the system, and a similar transition
for γ from 10 h to h.
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to 2 to 1.1 and from gamma equal to 10h to h. The self-adjoint
integral operator appropriately handles the interface between
two nonlocal systems and the discontinuous derivative in the
solid blue curve at the interface is resolved to a continuous
change in the dashed red curve.

In using spatially nonuniform jump-distribution parameters
it is essential that the transport matrix is self-adjoint. This
property is necessary to avoid spurious sources and sinks
arising from the spatial variation in parameters. The self-
adjoint property of the matrices assures that the internal flows
generated by gradients in the parameters of the Lévy α-stable
jump distributions are not spurious artifacts.
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APPENDIX A: GRID SIZE

The issue of a suitable choice of h for a given value of the
distribution width γ requires careful consideration. For values
of alpha different than 2 (α �= 2), the jump distributions
have algebraically decaying tails (proportional to |x|−(α+1)),
so that, in principle, the jump-distribution width could be very
much smaller than h (γ 	 h). In that case, the matrix operator
constructed from the jump distribution depends almost solely
upon the asymptotic behavior of the distribution. Figure 12
illustrates the effects of the distribution width γ on the matrix
operator for the case α = 1.5. In Fig. 12 the calculation grid
spacing h is held constant and three distribution widths are
illustrated; γ /h = 10, 1, 0.1. The jump distributions for each
case are computed at fine resolution, but the distributions
used in constructing the M matrix are sampled at the grid
spacing h, so any fine scale spatial resolution used in the
numerical computation of the jump distribution is reduced
to the grid spacing h. Figure 12(a) shows the logarithm of
the Lévy α-stable probability distribution functions (pdfs) at
points along the calculation grid in the vicinity of the diagonal
element of a matrix row near the center of the system, for
the three values of γ . The distribution for γ = 10h appears
flat, while the distribution for γ = 0.1h is sharply peaked. The
distribution with large gamma value is completely resolved
by the calculation grid spacing and features near the peak of
the distribution are retained. In contrast, only the asymptotic
region of the narrow-width jump distribution is resolved by
the grid spacing and details near the peak are lost as the
value of γ /h is reduced. Figure 12(b) shows rows of the
matrix operator M, constructed from the Lévy distributions
shown in panel (a). Figure 12(c) shows the ratio between
the lower diagonal element and the diagonal element for
several γ /h values ranging from 0.01 to 10. The change in
the slope of the curve between large and small values of γ /h

is evident. This change occurs because the jump distributions,
projected upon the calculation grid, display purely asymptotic
behavior when γ /h is small. The loss of “resolution” of the
jump-distribution peak, when γ /h is small, results in a clear
change in the nature of the transport represented by the M
matrix. This is the regime of asymptotic behavior that is

FIG. 12. (a) Logarithms of Lévy α-stable pdfs for three widths at
constant grid spacing. (b) The matrix rows near the diagonal elements
formed from each pdf. (c) The ratio of the lower diagonal element to
the diagonal element for γ /h ratios ranging from 0.01 to 10. A clear
change in behavior occurs for the transition γ /h 
 1 to γ /h 	 1.

sometimes represented by fractional derivative operators. In
contrast to models that use only the asymptotic behavior of
the Lévy pdf, the purely asymptotic regime is excluded in
this study, and only calculation grids that resolve the peak
of the jump distribution (γ /h � 1) are used. Of course, the
asymptotic parts of the jump distributions are retained, and
play an important role in the present study.

APPENDIX B: α = 2

The case with α = 2 is special because the jump distribu-
tions do not have algebraic asymptotic behavior, but rather
are exponentially decaying. The behavior of the M transport
matrix as a function of γ /h must be considered separately. The
relationship between the standard second derivative operator
and the matrix operator with α = 2 is

−τχ
∂2

∂2x̄
= −χ ′ ∂2

∂2x
= (γ /h)2 M(2, γ ), (B1)

where χ ′ = τχ/L2 is the scaled transport coefficient. The
second derivative operator is a tridiagonal matrix with each row
having the form [1, −2, 1]/h2 (–2 is the diagonal element). It is
a fact that, over a limited range of γ values, −χ ′ ∂2

∂2x
x2 = −2χ ′
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Scaling
transition

region

Scaling
transition

region

FIG. 13. The M operator achieves tridiagonal form at small γ /h

values. (a) The ratio of lower and upper diagonal elements to the
diagonal element goes to the value −0.5 for small γ /h, demonstrating
that the matrix has tridiagonal form. (b) The scaling changes in the
tridiagonal region (small γ /h).

and (γ /h)2 M(2, γ )x2 = −2γ 2, which indicates that χ ′ = γ 2

in that range.
While the relation M(2, γ )x2 = −2γ 2 holds over a limited

range of γ /h, the question is, does the M operator with
α = 2 achieve the tridiagonal matrix form of the second
derivative operator in the limit γ /h → 0? For the tridiagonal
second derivative matrix operator, the ratio of the upper
and lower diagonal elements to the diagonal element is
−0.5. Figure 13(a) shows that the M operator does achieve
tridiagonal form in the limit γ /h → 0 because the ratio of
the upper and lower diagonal elements to the diagonal element
is −0.5 when γ /h is small. Recall that the sum of any row of
the M matrix is required to be zero. If the ratio of the lower
and upper diagonal elements to the diagonal element is −0.5,
it then follows that all other row elements are necessarily zero.
Thus, the fact that the ratio of the lower diagonal and upper
diagonal elements of the M matrix are −0.5 at small γ /h

indicates that the form of the M matrix is indeed tridiagonal
in this region. However, the scaling of the transport coefficient
associated with the M matrix operator is not γ 2 in the limit
γ /h → 0.

In the limit γ /h → 0, where the M matrix becomes tridiag-
onal in form, the scaling changes to the form given in Eq. (B2).
With γ /h small, the elements of a row of the m matrix are
reduced to three elements of measurably-nonzero amplitude,
[�, 1, �]/(1 + 2�), where � = exp(−h2/γ 2) 	 1 and 1 is

the diagonal element. The other elements of the row are not
strictly zero, but are too small to accurately calculate. The
quantity (1 + 2�) normalizes the row so that the sum of the
row elements is unity. In this limit the M matrix operating on
x2 becomes

Mx2 = (I − m)x2 =
{

[0, 1 , 0] − [�, 1, �]

(1 + 2�)

}
x2

= �[−1, 2,−1]

1 + 2�
x2 = −2�

1 + 2�
. (B2)

Figure 13 shows the quantity −Mx2, the value of minus
the M matrix operating on the square of the position column
vector, x2, as a function of γ /h. When γ /h is larger than unity,
the γ 2 scaling prevails, but in the limit γ /h → 0, the so-called
“tridiagonal scaling” given by Eq. (B2) takes over.

APPENDIX C: DETAILS OF MATRIX CONSTRUCTION

The technique for constructing a transport matrix that
represents a 1D nonlocal system bounded by material walls
with transport coefficient κ is described in this Appendix. For
simplicity, the situation in which the walls are of equal length
and conductivity is considered, since the extension to the case
of unequal wall length and different wall conductivities is
straightforward. Let nw denote the number of grid points in
one wall, and denote the number of grid points in the nonlocal
system by nsys. This description pertains to the case of an h-gap
wall, so that it is assumed γ = h at the wall. The extension of
the fuzzy wall technique used for larger values of gamma is
again straightforward.

The matrix Mw describing transport in a nonlocal system
bounded by material walls is constructed by first forming a
square, bidiagonal matrix Mbd of size nbd = 2nw + nsys, with
rows of the form [κ, 0, κ] (0 is the diagonal element). This
form for the matrix elements may seem strange at first, but
it will ultimately result in the wall rows having the form of
a second derivative operator. The next step is to construct
an m matrix of size nsys × nsys as described in Sec. III.
The normalized, self-adjoint form of the matrix operator
describing the jump distributions m̄SA is then embedded into
the bidiagonal matrix Mbd , using the prescription

Mbd (nw + 1 : nbd − nw, nw + 1 : nbd − nw) = m̄SA.

(C1)
With this embedding, the first and last nw rows of Mbd

represent material walls, and rows nw + 1 to nw + nsys + 1
(= nbd − nw) represent the nonlocal system. The final trans-
port matrix Mw is then

Mw = Mdiag(Rc) − Mbd . (C2)

Each element of the row vector Rc is obtained by mul-
tiplying each row of Mbd by the column vector C1, which
has all elements unity, C1(j ) = 1, ∀j . The row vector Rc

has elements Rc(i) = Mbd (i, :)C1. The notation Mdiag(Rc)
denotes the square matrix whose diagonal elements are the
vector Rc. With the final operation given in Eq. (C2), the rows
representing the walls have the desired form: [−κ, 2κ, −κ].

As a rule of thumb, values of kappa larger than unity, κ > 1,
correspond to walls that are more conducting than the nonlocal
system, while small values of kappa, κ < 1, correspond to
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walls less conducting than the nonlocal system (i.e., insulating
walls).

APPENDIX D: TRANSPORT SCALING

It is useful to establish the expected scaling of the transport
coefficient with the parameter set [α, γ ]. Time integration of
the Fourier transform of Eq. (1) gives

ln [P (k, t)] = −t[1 − η̃(k)]. (D1)

Using Eq. (10), the Fourier transform (characteristic func-
tion) of the Lévy distributions gives {1 − η̃([α, γ ], k)} =
(1 − e−γ α |k|α ). In the small k limit, this expression is approx-
imately γ α|k|α , and then Eq. (D1) can be approximated as

ln [P (k, t)] = −tγ α|k|α; |γ k| 	 1. (D2)

The standard diffusion equation in scaled variables ( ∂
∂t

P =
D ∂2

∂2 x
P ) with constant diffusion coefficient D gives the relation

ln[P (k, t)] = −Dk2t , and using this relation in Eq. (D2) yields

χα ≡ γ α = D|k|2−α, (D3)

where χα denotes the transport coefficient of the nonlocal
system and is defined to be γ α . All quantities in Eq. (D3) are
scaled; γ = γ̄ /L; D = τD̄/L2; k = k̄L (the overbar denotes
an unscaled quantity). Substituting the smallest value of
k in the system into Eq. (D3), kcutoff ≈ π ; k̄cutoff = π/L,
gives an approximate relation between the nonlocal transport
coefficient χα and the standard diffusion coefficient D,

χα = γ α = Dπ2−α, (D4a)

χ̄α = γ̄ α

τ
= D̄

∣∣∣∣Lπ
∣∣∣∣
α−2

, (D4b)

where Eq. (D4b) gives the same relation in unscaled quantities
(physical units). The expression in Eq. (D4a) agrees with
Eq. (B1), indicating that for α = 2,χα is equal to D. For α = 1,
Eq. (D4b) agrees with the expression given by Vermeersch
et al. [15] if their exponential cutoff variable, uBD , is taken
equal to the system length, uBD = L. Equation (D4a) suggests
that, for a fixed value of gamma, transport increases with
decreasing alpha value (because γ < 1), and, for fixed alpha
value, transport increases with increasing gamma.

Figure 14(a) shows a comparison between two profiles
obtained with matrix operators constructed from jump dis-
tributions with widths γ = h (solid red curve) and γ = 3h

(dashed blue curve), and with alpha value α = 1.2. The
amplitude of the profile with larger gamma value is smaller
because the transport coefficient increases as gamma increases
[Eq. (D4)]. The profiles shown in Fig. 14(a) are obtained
with a matrix operator without the convective term included
[M2; refer to Eq. (15)]. The dotted black line indicates
the profile obtained by multiplying the γ = 3h profile by
(γ1/γ3)−α = (h/3h)−1.2 = 3.737. These two profiles obtained
with the M2 operator follow γ −α scaling. The dotted curve in
Fig. 14(a) so closely follows the solid red curve that they are
difficult to distinguish.

The results of a survey of profile scaling with the two jump-
distribution parameters [α, γ ] are shown in Fig. 14(b). The
parameter survey is conducted using the technique presented

FIG. 14. (a) Profiles obtained without the convective term and
with γ � h do follow γ −α scaling. The vertical dashed line indicates
the location at which amplitude values are compared in the scaling
survey shown in (b). (b) The scaling of profile amplitude with jump-
distribution width is shown for three alpha values, 1.2, 1.5, and 1.8.
Shown is the amplitude value (in logarithmic scale) of the profile at
a fixed x location (x = 0.225) as gamma is varied by three orders of
magnitude. Dashed lines are fits to the profile amplitude data. Scaling
at small jump-distribution widths is dominated by the asymptotic
scaling, (γ /h)−(α+1), of the jump distributions.

in Fig. 14(a). Profiles are calculated using the M2 operator, at a
fixed alpha value, for a range of widths and then the amplitudes
of the profiles are compared at a fixed x location (x = 0.225).
The position at which the comparison is made in the parameter
survey is shown in Fig. 14(a), and marked as “measurement
location.” The survey covers alpha values, α = 1.2, 1.5, and
1.8, with gamma values in the range 0.01h � γ � 10h. The
traces are multiplied by 10 2 for α = 1.5 and 10 4 for α = 1.8,
for clarity of display. Profiles are computed on a grid with N =
4201 and two walls with nw = 100. Thus, in the computations,
the value of h is fixed (h = 2.5 × 10−4), and the value of
gamma is changed to vary the ratio γ /h. For each [α, γ ] pair
in the survey grid, a profile T (x) is calculated using the M2

matrix operator (no convective term) and the height of the
profile at the point x = 0.225 is used as a representative value
for the entire profile. The wall kappa value used in obtaining
the profiles is κ = 104, so that none of the profile shapes
are affected by the profile-wall boundary over the γ /h range

053302-14



SELF-ADJOINT INTEGRAL OPERATOR FOR BOUNDED . . . PHYSICAL REVIEW E 94, 053302 (2016)

surveyed. The dashed lines shown in Fig. 14(b) are obtained by
fitting the data, over the appropriate γ /h range, with a standard
fitting routine (MATLAB polyfit).

Since, as illustrated in Fig. 14(a), profile amplitudes are
smaller for larger gamma, the profile amplitude scales as the
inverse of the transport coefficient. That is, for a system of
fixed length and source, a larger transport coefficient results in
a lower profile amplitude. For gamma values on the order of, or
larger than, h (γ � h), the height of the profiles at a fixed point
x = 0.225 scales as γ −α , that is, as the inverse of the transport

coefficient [refer to Eq. (D4a)]. For small values of gamma
(γ � 0.1h), the profile height scales as the asymptotic
algebraic decay of the jump distribution (γ /h)−(α+1), quite
distinct from the scaling at gamma values larger than h. This
change in behavior is consistent with the change in the ratio
of the lower diagonal element to the diagonal element of the
matrix rows shown in Fig. 12. The asymptotic scaling range is
not explored in this study. Calculation grids are chosen so that
the peaks of the jump distributions are always resolved (i.e.,
h � γ ).
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