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Pair potentials for warm dense matter and their application to x-ray
Thomson scattering in aluminum and beryllium
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Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation
requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain
(NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles
pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models
and (ii) “Yukawa screening” and (iii) need not assume ion-electron thermal equilibrium. Computations of the
x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and
with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors,
compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening
gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature
quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
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I. INTRODUCTION

High-energy deposition on matter using ultrafast lasers
has opened the way to novel nonequilibrium regimes of
density and temperature, raising issues of broad scientific
interest [1]. These include hollow atoms, quasi-equilibrium
solids, and transient plasmas. The physics of warm dense
matter (WDM) applies to hot carriers in nanostructures, space
reentry, inertial confinement fusion [2,3], Coulomb explosion,
laser machining, surface ablation [4–6] and astrophysical
environments, etc. The interactions in the WDM regime are
characterized by the effective coupling parameter �, viz., the
ratio of the Coulomb energy to the kinetic energy, which is
bigger than unity. Simple approaches based on perturbation
theory from a known “ideal” state thus become inapplicable.

Recent laser experiments on solid simple metals have
reached WDM conditions through, e.g., (i) ultrafast isochoric
heating (ρ = ρ0, where ρ0 ρ are the initial and final densities,
respectively) [7–9] and (ii) shock compression (ρ > ρ0)
[10–14]. In situation (i) the optical laser directly interacts with
a metallic target and couples to the free electrons causing
their temperature Te to reach many eV, while ions remain
approximately at their initial temperature Ti . In situation (ii)
the laser may precouple to the covalent electrons (bonds) of
a nonmetallic driver layer placed prior to the target material.
This sets up a shock wave that can both heat and compress the
target material, which is usually metallic. If the driver layer
is thick enough, the Ti attained by the target exceeds Te as
the shock wave does not directly couple to the electrons. A
third and more complex situation (iii) arises if the insulating
driver layer creates a shock wave as before, but in addition
the laser penetrates through it and deposits energy directly
in the metallic target layer. The electron temperature Te can
then exceed the ion temperature Ti even in shock-compression
experiments. Finally, the state of the WDM encountered by
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the probe beam also depends on the time delay τd between
the pump laser and the probe laser [8,15]. If τd significantly
exceeds the electron-ion temperature relaxation time τei , Te

and Ti would then relax to a common equilibrium temperature
T . It should be noted that as Te approaches Ti , the temperature
relaxation becomes increasingly slower, and coupled-mode
formation begins (on phonon time scales) and the process is
further slowed down [15]. Hence the tacit assumption of ther-
mal equilibrium in WDM created by laser-shock techniques
can produce misleading interpretations of experiments, as we
show in what follows.

In the discussion above we have assumed the sim-
plest nonequilibrium paradigm, viz., the well-known two-
temperature (2T ) model [16]. However, this may be too
simplistic. The laser may create spatial and thermal inhomoge-
neous distributions which are hard to interpret. On short time
scales (e.g., <100 fs) or in more complex situations, even the
electrons may not equilibrate to a common, unique temperature
Te [17].

X-ray Thomson scattering (XRTS) is a key method for
studying WDM as it yields Te, Ti , the ion density ρ, the
mean electron density ne, and details of ionic and electronic
correlations. The XRTS signal is directly proportional to
the total electron-electron dynamic structure factor See(k,ω),
which naturally follows a decomposition in terms of free-free,
bound-bound, and bound-free contributions from all “single
ion sites”, as discussed by Chihara [18]. Such a decomposition
is not available directly via density-functional theory (DFT)
calculations, which use an N -ion simulation cell, since the
electron density n(r) calculated by such methods is the
property of all the N ions. However, by combining DFT with
molecular-dynamics (MD) simulations (DFT-MD), the known
ionic positions permit the calculation of the static ion-ion,
ion-electron structure factors and the electron density at a
“single ionic center”.

The work of Vorberger et al. [19] demonstrates the interest
in simpler methods to obtain such “single-ion” properties as
charge densities n(q) for WDM studies. In Ref. [19] n(q)
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is calculated from an externally obtained pseudopotential
(for Al). Since such potentials are not available for WDM
conditions, the authors use an Ashcroft empty-core potential
U emp(q) [20,21]. However, such U emp(q) are applicable only
for a few metals like Al at normal density and tempera-
tures. The advantages and shortcomings of the empty-core
pseudopotential even for aluminum at normal density and
temperature are well known, and more complex transferable
pseudopotentials are used in DFT-MD codes. The alternative
of deconvoluting the N -ion charge density obtained from DFT-
MD into a single-center charge density is a computationally
demanding complex process. Instead, the neutral-pseudoatom
(NPA) method directly constructs density- and temperature-
dependent pseudopotentials in situ (without using transferable
potentials) via an all-electron calculation. It is a rigorous
DFT formulation that uses an effective single-ion model of
the electron-ion system to provide all the required quantities
directly in order to predict, say, the XRTS signal, with
negligible computational cost. The only term that depends
directly on Ti is the contribution to XRTS from the isotropic
ion feature W (k,ω), sometimes referred to as the Rayleigh
feature (see, e.g., Refs. [22,23]); it is given by

W (k,ω) = |f (k) + q(k)|2Sii(k,ω), (1)

Sii(k,ω) � Sii(k)δ(ω). (2)

Here f (k) and q(k) are the form factors of bound nb(r) and
free nf (r) electron densities at an individual ion, and Sii(k,ω)
is the dynamic structure factor of the ions. Current XRTS
experiments cannot resolve ion dynamics (at meV energy
scales); hence it is approximated by the static structure factor
Sii(k), denoted hereafter as S(k). Thus, while Te and ne

are determined via the inelastic part of the XRTS signal, a
determination of Ti is required to obtain the ion-ion S(k).

Such computations of the XRTS signal have mostly been
done with electronic-structure codes [24,25] based on DFT
Kohn-Sham calculations for a fixed set of N ions held in
a simulation box, coupled with MD to move them and
generate ensemble averages for observable properties. Results
from these computationally intensive DFT-MD simulations
are themselves fitted to intermediate quantities, e.g., simple
“physically motivated” pair potentials, to ease computations.
Such intuitive models usually have hidden pitfalls but become
entrenched as accepted practice unless corrected.

The objective of the present study is to employ the
DFT-based NPA approach to provide simple first-principles
calculations of the electron densities, n(k), pseudopotentials,
Uei(k), and ion-ion pair interactions, Vii(k). Here, by “first-
principles” we mean calculations that do not recourse to ad
hoc intermediate models but use only results flowing from
the initial Kohn-Sham Hamiltonian of the NPA formulation.
Admittedly, in calculating Sii(k) using an integral equation, a
hard-sphere bridge parameter η is invoked. But it is determined
by an optimization procedure internal to the method; or it
may be avoided altogether by using MD with the NPA pair
potentials, as discussed below.

The pair potentials when coupled with a hypernetted-chain
(HNC) integral equation or MD yield structure factors S(k),
which can be use to calculate all other physical properties
of WDM when used with the pseudopotentials and charge

densities. In particular, all quantities needed for comput-
ing XRTS spectra, transport properties, energy relaxation,
equation of state (EOS), etc., become available and may
be used to investigate recent experiments as well as the
quality of their interpretations employing popular “physically
motivated” ad hoc models. Since the NPA-HNC method is
typically as accurate as DFT-MD, while orders of magnitude
more efficient, it permits the rapid computation of W (k) for
several Ti in a very effective manner, enabling us to examine
different 2T models and their consistence with experiment.

In particular, the need for a simple potential has led to the
use of an intuitive model that has come into vogue with WDM
studies, viz., the “Yukawa + short-ranged repulsive (YSRR)
potential” [10,12,26],

βiV
ysrr
ii (r) = σ 4/r4 + βi exp(ksr)/r, (3)

introduced in Ref. [27]. Here βi = 1/Ti is the inverse ion
temperature, ks is a screening wave vector, and σ is a
parameter fitted to MD data. We examine the validity of
the YSRR approach using first-principles models and XRTS
data for 2T systems (Te �= Ti) as well as for equilibrium
systems. The YSRR potential is found to yield misleading
conclusions about Te and Ti , incorrect compressibilities (i.e.,
a property of the EOS), incorrect phonons, and incorrect
electrical conductivities.

The utility of the NPA-HNC and the possibility of two-
temperature systems in laser-generated WDM is illustrated
below by reanalyzing experiments on Al and Be. For Al, we
examine shock-compressed systems by (i) Fletcher et al. [10]
at ρ/ρ0 = 2.32 and Te = 1.75 eV and by (ii) Ma et al. [12] at
ρ/ρ0 = 3.0 and Te = 10 eV with ρ0 = 2.7 g/cm3; for Be, we
examine the shock-compressed system by (iii) Lee et al. [13]
at ρ/ρ0 = 2.99 and Te = 13 eV and the isochorically heated
system by (iv) Glenzer et al. [14] at ρ/ρ0 = 1 and Te = 12 eV
with ρ0 = 1.85 g/cm3.

II. THE NPA-HNC MODEL

An XRTS W (k) calculation needs the electron density
at an ion and the structure S(k) of the system. The NPA
approach [28–31] decomposes the total density into a su-
perposition of effective one-center densities combined via
structure factors and provides a comprehensive scheme based
on DFT. However, this is not intrinsically a superposition
approximation; rather, this is a rigorous method in DFT
which is often not recognized as such, with a tendency to
consider it as a mean-field average-atom model. In effect,
DFT provides a route to an exact average-atom description of
an arbitrary electron-ion system. As discussed in Ref. [30],
DFT asserts that the free energy F [n,ρ] is a functional
of the one-body electron density n(r), and the one-body
ion density ρ(r), irrespective of the existence of complex
interactions (e.g., superconductive associations for electrons),
and complex covalent-bonding structure, d-bonds, etc., for
ions. Furthermore, the functional derivatives of F [n,ρ] satisfy
the following stationary conditions:

δF [n,ρ]/δn = 0, (4)

δF [n,ρ]/δρ = 0. (5)
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Standard DFT uses the first stationary condition to construct
a Kohn-Sham one-body potential acting on an effective “one-
electron” density n(r). Similarly the stationary condition on
the ion density, Eq. (5), defines a set of noninteracting “Kohn-
Sham ions” moving in the classical form of the DFT potential
acting on a “single ion” representative of ρ(r). The ions can
be regarded as classical spinless particles for our purposes.
In Ref. [30] the potential acting on the “average ion” was
identified with the “potential of mean force” used in the theory
of classical liquids [32]. Such an approach requires corrections
beyond mean-field theory which are included in the exchange-
correlation functional Fee

xc [n] for the electrons and in the ion-
ion correlation functional F ii

c [ρ] for the ions. The ions are clas-
sical and do not have exchange (see Eq. (1.13), in Ref. [33]).
Only pair interactions between the DFT average-ions appear in
the theory, and the burden of approximating effects beyond pair
interactions falls on constructing these correlation functionals.
It has in fact been shown that such an approach is successful
even for liquid carbon with transient multicenter covalent
bonding where carbon-carbon interactions are usually handled
with multicenter “reactive bond-order potentials” [34].

However, here we study Al and Be in regimes where they are
expected to be “simple liquids”. A sum of hypernetted-chain
diagrams and bridge diagrams has been used to model F ii

c [ρ].
The usual DFT-MD codes do not use Eq. (5) or F ii

c and
Fei since the ion many-body problem is not reduced to a
one-body problem for the ions, unlike in the NPA. Instead,
standard DFT uses a Born-Oppenheimer approximation where
N ions in a simulation box are explicitly enumerated and
provide an “external potential” to the Kohn-Sham electrons.
In contrast, the NPA uses only the one-body ion distribution
ρ(r). Given a good ion-correlation functional F ii

c (ρ), enor-
mous computational simplifications follow from this full-DFT
approach compared to the standard method, which calculates
the Kohn-Sham eigenfunctions of a simulation cell containing
typically N = 64–128 ions. Thus the “single-center” NPA is a
rigorous DFT average-atom approach, and its approximations
lie in the construction of F ii

c and Fee
xc . The other advantage

is that the NPA naturally provides “single-ion” properties like
the mean ionization Z̄, charge density n(r) at a single ion, and
the separation of the bound-electron and free-electron spectra
(needed in XRTS theory) consistent with the exchange and
correlation potentials used in the theory.

Several NPA models are described in the literature [35],
e.g., those using ion-sphere models and other prescriptions not
completely based on DFT theory. These different formulations
affect how the chemical potential is treated and how the bound
and free electrons are identified [31,36–40]. We employ the
NPA model of Perrot and Dharma-wardana [31,41,42], which
includes a cavity of radius rws , with rws = {3/(4πρ)}1/3 the ion
Wigner-Seitz radius, around the central nucleus to mimic, in a
simplified way, the ion density ρ(r) of the plasma contained in
a “correlation sphere” of radius Rc ∼ 10rws . This is equivalent
to using (4/3)π (Rc/rws)3, i.e., about 4200 particles in an
MD simulations; in contrast, typical DFT-MD simulations use
about 250 particles. The full ion distribution is subsequently
evaluated by an HNC or modified-HNC (MHNC) procedure
although MD may also be used, especially if low-symmetry sit-
uations are envisaged. The Rc is such that the pair-distribution
functions (PDF), viz., ion-ion gii(r) and ion-electron gie(r),

have asymptotically reached unity as r → Rc. The electron-
electron PDF gee can be shown to also reach the asymptotic
limit when r → Rc as the e-e coupling is comparatively much
weaker. The electron chemical potential is for noninteracting
electrons at the interacting mean density ne and temperature
Te, as required by DFT. The finite-T DFT calculations are
done using a finite-T exchange-correlation functional Fee

xc [43].
The free-electron density nf (r) is calculated using Mermin-
Kohn-Sham wave functions, which are orthogonal to the core
states. Core-valence Pauli blocking and core-repulsions as well
as core-continuum exchange-correlation effects are naturally
included in the model. The NPA is an all-electron calculation
and yields bound-state energies, bound-electron densities, as
well as continuum densities and phase shifts which satisfy the
Friedel sum rule.

The NPA free-electron pileup nf (k) around the NPA-
nucleus is the key quantity in constructing electron-ion
pseudopotentials Uei(k) and ion-ion pair potentials Vii(k),
given in terms of the fully interacting static electron response
function χ (k,Te) as follows:

Uei(k) = nf (k)/χ (k,Te), (6)

χ (k,Te) = χ0(k,Te)

1 − Vk(1 − Gk)χ0(k,Te)
, (7)

Gk = (1 − κ0/κ)(k/kTF); Vk = 4π/k2, (8)

kTF = {4/(παrs)}1/2; α = (4/9π )1/3, (9)

Vii(k) = Z̄2Vk + |Uei(k)|2χee(k,Te). (10)

Here χ0 is the finite-T Lindhard function, Vk is the bare
Coulomb potential and Gk is a local-field correction (LFC).
Hence the electron response goes beyond the random-phase
approximation (RPA). The finite-T compressibility sum rule
is satisfied since κ0 and κ are the noninteracting and interacting
electron compressibility, respectively, with κ matched to the
Fxc used in the Kohn-Sham calculation. In Eq. (9) kTF

appearing in the LFC is the Thomas-Fermi wave vector. We use
a Gk evaluated at k → 0 for all k instead of the more general
form (e.g., Eq. (50) in Ref. [43]) since the k dispersion in Gk

has a negligible effect for the WDMs treated in this study. Note
that the “Yukawa form” of the pair potential is obtained from
the above equations at sufficiently high temperatures since the
Lindhard function can be approximated by its k → 0 limit
under such Debye-Hückel-like conditions, while Gk goes to
zero. Such approximations are largely invalid in the WDM
regime; Friedel oscillations in the pair potentials contribute
to defining the peak positions in the g(r), and hence their
relevance to observed properties is well-known experimentally
and theoretically. Furthermore the need for finite-k screening
instead of the Yukawa form is the norm for systems with
T/EF < 1 and normal densities. In fact, the pair potentials,
PDFs, XRT features, conductivities, and phonons will be
incorrect if calculated from the k → 0 Yukawa form for the
given conditions. Hence all the observable properties studied
here can be regarded as examples of observations of finite-k
screening (see, e.g., Ref. [44]).

The pseudopotential Uei(k) is a local potential which
contains nonlinear effects as the nf (k) was calculated from
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the Kohn-Sham equations. However, since it is forced to be
linear in the response, the pair potential Eq. (10) is trivially
constructed. The regime of validity of this procedure is dis-
cussed in Ref. [45]. Outside the regime of validity it becomes
increasingly more approximate, but as no ad hoc models
extraneous to the calculation are invoked, it remains a first-
principles method for constructing the pseudopotential from
the all-electron single-center Kohn-Sham calculation. The
structure factor S(k) is computed (for uniform systems) from
the modified hypernetted-chain (MHNC) equation, which
includes a bridge term B(η,r) modeled using a Percus-Yevik
hard-sphere fluid with a packing fraction η. The packing
fraction is determined by the Lado-Foiles-Ashcroft et al. (LFA)
criterion [46,47] based on the Gibbs-Bogoluibov inequality.
Although we use the MHNC equation, we refer to the general
method as NPA-HNC or occasionally as NPA-MHNC when
we wish to emphasize the use of the MHNC procedure over
the HNC one. It should also be noted that any ambiguity in the
choice of the bridge function, or the use of a hard-sphere model
for the bridge function, can be avoided if the NPA pair potential
is used directly in MD to generate g(r). Such NPA+MD
calculations were not deemed necessary in the present study.

Since the NPA pair potential accurately predicts phonons
(i.e., meV scales of energy) for common 2T WDM systems
[48], even the dynamical Sii(k,ω) can be predicted when
XRTS data at meV accuracy become available. Furthermore,
since all the PDFs and interaction potentials are available,
the Helmholtz free energy F , and hence EOS properties,
specific heats, etc., as well as linear transport properties, can
be calculated rapidly and in a parameter-free manner. Many
such calculations have been presented in the past, as reviewed
in Ref. [42]. Here we illustrate this for XRTS experiments on
an equilibrium system and on a 2T -quasi-equilibrium system.

III. ALUMINUM

A. Shock-compressed aluminum-I

Using XRTS, Fletcher et al. [10] have studied compressed
aluminum evolving across the melting line into a WDM
state (called Al-I hereafter). From their inelastic data, they
determined the aluminum density and temperature to be
ρ/ρ0 = 2.32 and Te = 1.75 eV, respectively. This density
corresponds to a Wigner-Seitz radius rws = 2.255 a.u. for
the ions and rs = 1.564 a.u. for the electrons since the mean
ionization Z̄ is found to be 3 from the NPA calculation. They
used two 4.5 J laser beams on both sides of a 50 μm-thick Al
foil coated with a 2 μm-thick layer of Parylene. A probe-pulse
delay of τd = 1.9 ns is used. Hence the assumption of thermal
equilibrium (Te = Ti) seems justified. The NPA free-electron
charge density nf (r) at an Al3+ ion in the WDM system
directly provides the pseudopotential Uei and the pair potential
V NPA

ii (r). For the Yukawa screening of the YSRR potential,
Fletcher et al. used the zero-T value of the Thomas-Fermi wave
vector [Eq. (9)]. We find the value of σ to be 4.9 a.u., correcting
what may be an error in Ref. [10] where σ = 9.4 a.u. is quoted
[49]. The S(k) corresponding to the NPA or the YSRR pair
potential can be calculated using an HNC or MHNC procedure,
as appropriate, and used in Eq. (1) to compute the XRTS-signal
W (k).
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FIG. 1. The XRTS ion feature W (k) of Ref. [10] for Al-I, and
from the DFT-MD, NPA-MHNC, and YSRR models, as indicated.
The inset magnifies the peak region.

In Fig. 1 the W (k) computed from NPA and YSRR
are compared with the experimental XRTS W (k). In the
NPA case, a bridge function B(η,r) with η = 0.354 is
obtained from the LFA criterion. The NPA-MHNC W (k)
is in good agreement with experiment and also confirms
thermal equilibrium with Ti = 1.75 eV. No bridge correction
is used for the YSRR since its S(k → 0) limit is already
strongly inconsistent with the compressibility sum rule as
will be illustrated below in the discussion (Sec. III D). Since
the conditions of the Fletcher experiment produce a near-
degenerate electron gas (Te/EF = 0.085), the pair potential
V NPA

ii (r) displays Friedel oscillations as can be seen in
Fig. 2(a). The S(k) from NPA-HNC and YSRR-HNC are
shown in Fig. 2(b). The NPA-HNC S(k) is very similar to
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FIG. 2. (a) NPA and YSRR potentials for Al-I (cf. experiment
of Ref. [10]); (b) S(k) from the Vii(r) using HNC and MHNC;
(c) k → 0 region of S(k).
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of Rütter et al. with Ti = Te, and our 2T -NPA calculation with Ti =
1.8 eV and Te = 10 eV; the inset magnifies the peak region.

the YSRR-S(k) but differs in the k → 0 region and near 2kF

[Fig. 2(c)], and this will affect some EOS properties.

B. Shock-compressed aluminum-II

From inelastic data for shock-compressed Al (hereafter
Al-II), Ma et al. [12] determined the experimental conditions
in the target to be ρ/ρ0 = 3.0 and Te = 10 eV. This density
corresponds to rws = 2.07 a.u. for the ions and rs=1.435 a.u.
for the electrons. A set of nine pump beams, with a total
energy of 4.5 kJ deposited in 1 ns, were aimed directly at the
125 μm-thick Al foil without any protective shield. The shock
compression heats up the ion subsystem on the picosecond
time scale, but the coupling of the laser to the free electrons in
aluminum raises the electron temperature much more rapidly,
within femtoseconds, creating a 2T system with Ti < Te

initially. If the data are collected after a sufficient time delay,
an equilibrium temperature T = Ti = Te will be reached.
Calculations using the YSRR potential with Ti = Te = 10 eV
show good agreement with the XRTS ion feature. However,
this turns out to be misleading since the ion feature of the
system at Ti = 10 eV determined by the DFT-MD simulation
of Rüter et al. [50] disagrees with the XRTS data of Ma et al.
as shown in Fig. 3.

Using an “orbital-free” approach, viz., a Thomas-Fermi
model with Weiszäcker corrections, Clérouin et al. [51] arrived
at a 2T model with Ti = 2 eV and Te = 10 eV in order to obtain
good agreement with the XRTS data. They claimed that, since
their method involves all electrons, the core-repulsion term
included in the YSRR model is nonphysical. Our NPA Kohn-
Sham calculations, which are all-electron and parameter-free
and include core and continuum states, confirm the conclusions
of Clérouin et al.. Using the NPA potential for this case, a
MHNC calculation with η = 0.367 predicts an excellent fit to
the Ma et al. data with Ti = 1.8 eV and Te = 10 eV, as can be
seen in Fig. 3. In Fig. 4 the NPA and YSRR S(k), pair potentials
Vii(r), and the k → 0 limit of S(k) are shown. There are no
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FIG. 4. (a) The NPA-HNC and YSRR pair potentials for Al-II;
(b) corresponding S(k); (c) the k → 0 limit of S(k).

Friedel oscillations in V NPA
ii (r) as Te is nearly six times higher

than in the conditions prevailing in Al-I. The disagreement
between the NPA-S(k) and the YSRR-S(k) for k → 0 should
again be noted.

The high-k shoulders of the W (k) curves from the 2T NPA-
HNC and from the YSRR calculations are washed out in the
experiment, suggesting more complexity than in a 2T system.
The ion subsystem may be cold (at 1.8 eV), but containing an
unknown high-T component as well. On the other hand, it has
been pointed out by Souza et al. [35] that the high-intensity

peak around k ∼ 4 Å
−1

might be anomalous and caused by a
non-Gaussian and/or broadened probe beam. The DFT-MD as
well as the NPA results for the equilibrium case (Te = Ti =
10 eV) both predict a peak height of ∼65, in strong contrast to
the YSRR model, while the actual experimental peak height is
∼106.

Evidently, the XRTS data cannot be consistent with an
equilibrium model. Since the aluminum target is pumped
directly with a laser, the system would initially begin with
Te > Ti , and the possibility that the system has Te = 10 eV,
with the ion subsystem at Ti ∼ 2 eV, is an entirely reasonable
result. More complex nonequilibrium features [52] may also
be envisaged and may be useful for explaining the wings of
the XRTS data. A model of the hot electrons involving a
high-energy tail, energy bumps, etc., would involve additional
parameters that fit the observed W (k), but without independent
information to confirm them. Since the main XRTS W (k)
profile can be explained well within a 2T model, this WDM
is best regarded as being in a state with cold ions and hot
electrons, but this by no means excludes more complicated
situations, which can be assessed only if more details of the
experimental configuration and the pulsed heating process are
available.

C. Temperature relaxation in Al-II

In this section, our objective is to estimate the temperature
relaxation time τei in order to determine if the system has
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reached equilibrium within the pulse-probe delay. Assuming
the 2T model with Te = 10 eV and Ti = 1.8 eV, we can use the
NPA electron-ion pseudopotential to calculate the temperature
relaxation rate [15] via Fermi’s Golden Rule (FGR). Since the
FGR estimate of τei was already sufficiently informative, we
did not need a more detailed energy-relaxation model such
as the coupled-mode description which is known to make the
relaxation-time estimates somewhat longer. For this purpose
we define the form factor Mk of the pseudopotential by

Mk = Uei(k)/Z̄(ZeVk); Ze = −1. (11)

The energy-relaxation rate, i.e., the rate of transfer of energy
from the hot electrons to the ions per unit volume, calculated
within a number of simplifying approximations, is given by

dEe

dt
= ω2

i,p(Te − Ti)

×
∫

d3�k
(2π )3 Vk|M�k|2Im

[
∂

∂ω
χee(�k,ω)

]
ω=0

, (12)

where Ee is the energy in the hot electron subsystem at time t ,
ωi,p is the ion plasma frequency, and χee is the fully interacting
dynamic electron response function. The f sum rule has been
used to eliminate the dependence on the ionic structure [53]
and hence provides an estimate of the energy relaxation which
is superior to those obtained by using models for Sii(k,ω), if the
other assumptions made in the above theory hold. For instance,
a difference of Bose factors of the form N (ω/Te) − N (ω/Ti),
where N (x) = 1/(exp(x) − 1), for the density fluctuations
in the electron system and the ion system, respectively, has
been approximated as (Te − Ti)/ω in order to calculate a
temperature relaxation rate. If Ti is assumed to be fixed (at
least for a short timescale), we can use Eq. (12) for the energy
relaxation rate of the electrons to determine a temperature
relaxation rate. It requires a relation between the internal
energy of an interacting warm-dense electron fluid and its
temperature. Here we use the property that F = F0 + Fxc and
the internal energy E = ∂{βF }/∂β as presented in Ref. [43]
where the needed parametrizations are given. The replacement
of the Bose factors by a temperature difference is not quite
valid for the Ti = 1.8 eV and Te = 10 eV estimated to prevail
in the Ma et al. experiment since the electrons are partially
degenerate.

Nevertheless, one can obtain a grosso modo estimate of the
temperature-relaxation time τei . It is found to be 300–400 ps
depending on various assumptions. This time scale is sufficient
for the formation of phonons, and hence the temperature
relaxation towards equilibrium will be further slowed down
by the formation of coupled modes (i.e., the conversion of
ion-density fluctuations by electron screening into ion acoustic
modes). This slows down the relaxation time by more than an
order of magnitude. An actual estimate of the temperature
relaxation of the target material (Al-II) will also have to
account for the fact that the ion subsystem loses energy to its
holding structure and the environment. These considerations
independently support our conclusion, and that of Clérouin
et al., that Ti < Te is a possible scenario, contrary to the
“equilibrium model” indicated by the YSRR model.

D. Discussion of Al results

DFT simulations treat the WDM sample as a periodic
crystal made up of N nuclei whose positions in the simulation
box evolve via MD and provide “single-electron” Kohn-Sham
spectra. However, it provides no simple method for computing
electron properties that can be attributed to a “single” nucleus,
e.g., the mean ionization Z̄ arising from the bound and free
parts of the spectrum, or pair interactions resulting from the
single ions. The latter, if available, provides a convenient
means of obtaining S(k) and related properties of the WDM in a
computationally efficient manner. The YSRR model potential
was justified by Wunsch et al. [27] as a suitable way of
inverting a given g(r) obtained from DFT-MD simulations
in WDM conditions; it contains a Yukawa-like screening
term based on an externally provided Z̄ and an explicit
“core-repulsion” term.

The NPA approach rigorously constructs the effective
Kohn-Sham “single-electron” density via the “single-ion”
DFT description of the electron-ion system, as implied by
the Euler-Lagrange equations given by Eq. (4) and Eq. (5).
Thus, unlike DFT codes which treat the ions as an external
potential, the NPA directly provides single-ion and single-
electron properties as well as the pair potentials. The NPA
calculation for Al-I, for the experiment of Fletcher et al., shows
that the mean radius of the n = 2,l = 0 bound shell in Al,
which reflects the radius of the bound core, is 0.3552 Å. The
YSRR potential reaches large values already by 2 Å, i.e., at a
radius nearly six times larger than the actual core size; thus the
short-range repulsive part (σ/r)4 is not appropriate. The claim
in Refs. [10,12] that the YSRR potential “accounts for the
additional repulsion from overlapping bound-electron wave
functions” is certainly not confirmed by the shell structure of
Al3+ in the plasma. Note that even the Wigner-Seitz radius,
i.e., the sphere radius for an ion for aluminum at a compression
of 2.32, is 2.255 a.u.= 1.193 Å, and hence the YSRR model
is clearly unphysical. The core-core interaction in Al can be
calculated from the Al3+ core-charge density as in Appendix B
of Ref. [41]. It is totally negligible for Al at compressions of
2.32 (in Al-I) or 3 (in Al-II) studied here. It should be noted
that, as far as S(k) is concerned, core-core interaction effects
lead to an attraction due to core polarization, as was also
discussed in Ref. [41]. This too can be neglected in aluminum.

The liquid-metal community of the 1980s found that the
inverse problem of extracting a potential from the S(k) given
in a limited k-range, obtained from MD or from experiment, is
misleading and not unique [54–56]. A parametrized physically
valid model [e.g., a pair potential Vii(r) constrained via an
atomic pseudopotential] together with a good B(η,r) [47]
can successfully invert the MD data. However, the DFT-MD
step is unnecessary in most cases since the V NPA

ii (r) and the
S(k) that provide the physics are easily evaluated from a rapid
parameter-free NPA calculation. The YSSR potential is fitted
to a limited range in r-space as in Wunsch et al. But the Fourier
transform to obtain k- space quantities involves information
on all of r-space. This leads to serious and uncontrolled
errors unless a physically valid potential is used to extend
the simulation g(r) data to all r and hence to all relevant k.
We note the following: (a) The YSSR is proposed in Fletcher
et al. for the computation of the EOS. Small-k behavior is
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very important for EOS properties, and we bring this out
via the compressibility calculation. (b) Behavior near 2kF is
important for transport and scattering processes, and we bring
this out via the resistivity calculation. (c) Other intermediate
k-values are sampled by the phonons, and we show that YSSR
fails for most-k in the phonon dispersion. Hence even when
YSSR “seems to work” for one property, one cannot attribute
any physical significance to it. Thus, besides the XRTS ion
feature, we tested the validity of NPA and YSRR models under
WDM conditions by computing three key physical quantities:
(i) compressibility κ , (ii) phonon spectra, and (iii) resistivity
R, as we discuss below.

(i) To determine κ we assume that the sum rule S(0) = ρTiκ

holds for 2T systems under certain restrictions [57]. We
computed κ using NPA, YSRR, and ABINIT and obtained
respectively 26, 9.6, and 30 a.u. for Al-I at a compression
of 2.32 and Ti = Te = 1.75 eV. The corresponding values for
aluminum (Al-II) at a compression of 3, Ti = 1.8 eV and
Te = 10 eV, are 14, 1.1, and 16.4 a.u. In both cases, the
results from the NPA are in close agreement with ABINIT,
whereas the YSRR gives a much lower compressibility.
Here the YSRR-S(k) is calculated from the HNC without
a bridge term, i.e., B(η,r) = 0, since a bridge term would
make the compressibility even more erroneous. Thus, even in
equilibrium, the YSRR model is not trustworthy enough for
EOS properties like the compressibility.

(ii) Even though the ionic system is clearly melted in both
Al-I and Al-II conditions, a good test of the quality of the pair
potential is the computation of the phonon spectrum for its low-
T crystal structure [face-centered-cubic (FCC) for Al], which
is a particular ionic configuration of the system even in the
melt. In fact, the short-range structure of strongly coupled ionic
fluids as reflected in the S(k) is known to correspond closely
to the S(k) of the crystal structure below the melting point.
The comparison of phonons obtained via the pair potential
approach with those from ab initio calculations permits the
validation of the energy landscape created by the pair potential
for this particular ionic configuration. Such tests have already
been done for other systems showing that the NPA predicts
equilibrium and nonequilibrium phonons in good accord with
ab initio simulations [48], which illustrates its meV level of
accuracy. The examination of phonon modes is relevant for
ultra-fast-matter (UFM) studies where electron temperatures
will rise significantly more rapidly than that of the nuclei.
The limiting case where the nuclei are at low temperature is
where phonon stability is relevant The excellent agreement
between the NPA and ABINIT longitudinal phonons in Al-I
(Ref. [10]) and Al-II (Ref. [12]) is displayed in Fig. 5 and
further validates the NPA pair potentials in the WDM regime.
The unphysical “stiffness” of the YSRR potential leads to high
phonon frequencies and a sound velocity much larger than the
NPA and ABINIT predictions.

(iii) We tested the validity of the Yukawa component in
the YSRR model and the validity of the YSRR-S(k) by
calculating the electrical resistivity R. The Yukawa pair poten-
tial Z̄2 exp(−ksr)/r arises from the Yukawa pseudopotential
U

y

ei(q) = −4πZ̄/q2 screened by the k → 0 RPA dielectric
function, i.e., ε(q) = 1 + (ks/q)2. We use the Ziman formula
in the form given in Ref. [41], Eq. (31), to calculate the
resistivity. Computing R for the NPA and YSRR model, we
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FIG. 5. The longitudinal phonon spectrum for the FCC crystal
of (a) Al-I, i.e., compression of 2.32 and Te = Ti = 1.75 eV [10];
(b) Al-II, i.e., compression of 3.0, Ti=1.8 eV, and Te = 10 eV [12].
The �, X, K, and L point are symmetry points of the first Brillouin
zone of the FCC crystal.

obtain, respectively, 15.0 and 145 μ� · cm for Al-I, while the
corresponding values for Al-II are 9.65 and 99.4 μ� · cm.
Thus, in both cases, the resistivity predicted by the YSRR
is about 10 times higher than the NPA value. Such larger-
than-expected resistivities have also been obtain by Sperling
et al. [9] while using an even simpler model than YSRR.
The resistivities predicted by Sperling et al. are known to be
in strong disagreement with the DFT-MD Kubo-Greenwood
resistivity calculations of Sjostrom et al. [58]. These issues are
discussed at length in Ref. [59], where it is concluded that the
Sperling calculation of the static conductivity is likely to be
inapplicable. In Fig. 6 we show that this behavior is also ob-
served for various densities in equilibrium with T = 1.75 eV.
The Ziman formula in conjunction with the NPA-HNC model,
which includes a self-consistently generated Uei(k), S(k) and
a screening function χ (k) containing an LFC that satisfies the
compressibility sum rule, is a well-tested method for many
systems (for a review, see Ref. [42]) including aluminum
[41,60]. Thus, while it may be thought that additional ab initio
or experimental resistivity data are required to confirm the NPA
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ρ/ρ0
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100

R
 [Ω

. c
m

]

NPA
YSRRAluminum          Ti=Te=1.75 eV

FIG. 6. The electrical resistivity of Al at T = 1.75 eV for
different compressions calculated using NPA and YSRR.
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FIG. 7. The XRTS ion feature W (k) of Lee et al. [13] compared
with the NPA-HNC W (k) (full lines) and with DFT-MD results
(dashed lines) of Plagemann et al. [62] for equilibrium and for
Te �= Ti , as indicated.

and Ziman formula results in the WDM regime, it is unlikely
that the NPA resistivities are in error by an order of magnitude,
given the excellent track record of NPA-resistivity predictions
[60]. In our view, the Yukawa part of the YSSR calculation is
responsible for the erroneous estimate of the resistivity.

In summary, through the calculation of phonons, compress-
ibilities, and resistivities, we showed that the short-ranged-
repulsive and the Yukawa parts of the YSRR model are
individually untenable. In contrast, the correct physics is quite
simply obtained from the NPA-HNC for both the equilibrium
and the 2T situation.

IV. BERYLLIUM

A. Shock-compressed beryllium

Beryllium has been of recent interest (e.g., Ref. [61])
for many reasons including its potential applications as an
ablator material in inertial-confinement fusion studies. Lee
et al. [13] studied compressed beryllium by applying 12
pump beams, each with an individual energy of 480 J in 1
ns, directly on a 250 μm-thick Be foil without any coating.
The pump-probe laser delay is ∼4.5 ns and may appear to
be enough for electron-ion equilibration. We will examine
this by a calculation of the τei , as was done for aluminum.
From an analysis of the XRTS data they concluded that Be
is in a compressed state with ρ/ρ0 = 2.99 and Te = 13 eV
(Be-I hereafter). Figure 7 compares the ion feature W (k) from
the NPA-HNC model with the experimental data of Ref. [13]
and with the detailed and careful DFT-MD simulations of
Plagemann et al. [62].

Even though NPA-HNC and DFT-MD do not predict
exactly the same spectrum, both approaches agree in not

confirming the first experimental point at k = 1.3 Å
−1

under
the equilibrium condition Ti = Te = 13 eV. By reanalyzing
the original data [indicated as “Exp (re-fitted)” in Fig. 7
and in Fig. 10], Plagemann et al. found that a 2T system
with Ti = 9 eV and Te = 13 eV was able to reproduce the
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Be-I

FIG. 8. Static ion-ion structure factor S(k) for Be-I from the
NPA-HNC and DFT-MD simulation of Plagemann et al. [62],
including their k = 0 value marked as dots, for different equilibrium
temperatures.

spectrum. The NPA-HNC calculation does not predict the

second experimental point at k = 4.3 Å
−1

as it shows higher
values than DFT-MD for all values of k. To understand this
difference between DFT-MD and NPA-HNC, we compared
individually the two contributions to the ion feature: the static
ion-ion structure factor S(k) and the total electron form factor
N (k) = f (k) + q(k). In Fig. 8 a comparison of the S(k) at
different equilibrium temperatures shows excellent accord
between NPA-HNC and DFT-MD.

However, Fig. 9 reveals important differences in the core-

electron form factor f (k) starting around k = 4 Å
−1

. To
determine f (k), Plagemann et al. used snapshots of the
DFT-MD simulation from the VASP code and postprocessed
in the ABINIT code using a “superhard” pseudopotential
accounting for all four electrons. In contrast, NPA-HNC
is an all-electron atomic calculation including corrections
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FIG. 9. Total N (k), bound-electron f (q) and free-electron q(f )
form factor for the Be-I conditions.
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FIG. 10. The XRTS ion feature W (k) of Glenzer et al. [14]
compared with the W (k) of the NPA-HNC model (full lines) and
with the DFT-MD simulation (dashed lines) of Plagemann et al. [62]
for the equilibrium and 2T situations.

from the ion environment which predicts an f (k) similar
to the independent pseudo-atom calculation of Souza et al.

[35]. Since the discrepancy starts around k = 4 Å
−1

, i.e.,
already deep into the core, it is possible that the “superhard”
pseudopotential used does not reconstruct correctly the core
electron density close to the nucleus. Further investigation
should be done of this possibility, which would account for
the differences in the calculation of W (k) from NPA-HNC and
DFT-MD. Finally, using the NPA-HNC model while keeping
Te = 13 eV, the best fit to the reanalyzed experimental W (k)
is obtained with Ti = 7.3 eV while it requires Ti = 2 eV to
reproduce the original data. Given Ti = 7 eV and Te = 13 eV,
the Be target is better equilibrated than if one were to posit
Ti = 2 eV and Te = 13 eV.

B. Isochorically heated beryllium

Glenzer et al. [14] created an isochorically heated (ρ/ρ0 =
1) WDM Be sample (named Be-II hereafter) by aiming 20
pump beams, with a total energy of 10 kJ over 1 ns, onto
a 300 μm-thick Be cylinder coated by a protective 1 μm-
thick silver layer. They determined that Te = 12 eV, while
the pump-probe delay of 0.5 ns was considered sufficient to
achieve thermal equilibrium between ions and electrons. In
Fig. 10 the W (k) from the NPA-HNC model is compared
with the experimental data of Ref. [14] and with the DFT-MD
simulations of Plagemann et al. [62].

The NPA-HNC and the DFT-MD calculations do not
reproduce the original experimental data of Glenzer et al.
or the reanalyzed data using equilibrium conditions with
Ti = Te = 12 eV. By keeping Te = 12 eV, Plagemann et al.
found that it was possible to reproduce their (single) reanalyzed
data point by setting Ti = 6 eV. In order to reproduce this point,
the NPA-HNC model requires a slightly lower ion temperature
of Ti = 5 eV. Within the NPA, it was impossible to reproduce

all four original experimental points for k < 2 Å
−1

with a
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FIG. 11. Static ion-ion structure factor S(k) for Be-II from the
NPA-HNC model and from the DFT-MD simulations of Plagemann
et al. [62], including the k = 0 values marked as dots, for different
equilibrium temperatures.

single Ti . However, the first two points could be obtained with
Ti = 0.4 eV, while the two next points required Ti = 1.5 eV.

Both models are not able to reproduce the point at k = 3.9 Å
−1

since it is too low to be reproduced with any Ti . As in the case
of isochoric compressed Be studied by Lee et al. [13], the
NPA-HNC model predicts higher W (k) values than DFT-MD
simulations for all k. A comparison between the NPA-HNC
and the DFT-MD S(k) is shown in Fig. 11, demonstrating
close agreement between results from the NPA pair potential
and DFT-MD. Hence, in this case also the difference in W (k)
between the two methods comes from the difference in the
core electron form factor f (k), which is essentially similar
to the compressed-Be case presented in Fig. 9. Whether the
“superhard” pseudopotential used by Plagemann et al. or other
plasma effects included in the NPA treatment, but not in
the DFT-MD, may be responsible for differences in the core
electron density near the nucleus is unclear at present. We
again note that the NPA is an “all-electron” method.

C. Discussion of Be results

In addition to the differences between NPA-HNC and
DFT-MD in the k > 4 Å

−1
region for W (k), we also observe a

disparity at k = 0 for both Be systems studied here. Since the
total electron form factor N (k = 0) = 4 is equal to the total
number of electrons per ion, the divergence between the two
models comes from the structure factor S(k = 0) as shown
in Figs. 9 and 11. It is very difficult to reach such low k

values from DFT-MD simulations (because of the finite size
of the simulation cell) and Plagemann et al. extracted them
from independent thermodynamic calculations. As mentioned
before, this quantity is important since it is linked to the
compressibility κ via the sum rule S(k = 0) = ρTiκ . It should
be noted that an accurate value of the compressibility κ should
be determined from an EOS calculation, while the S(k → 0)
limit, from an MHNC calculation, matches the EOS-κ only
when the bridge contribution is optimal. Table I compares
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TABLE I. Compressibilities κ (in a.u.) of WDM beryllium
calculated using DFT-MD and NPA-HNC.

System Be-I (Ref. [13]) Be-II (Ref. [14])

Ti [eV ] 13.0, 9.00, 6.00, 3.00 12.0, 9.00, 6.00, 3.00
κ (DFT-MD) 3.72, 4.47, 4.69, 5.54 18.6, 22.8, 32,1, 50.1
κ (NPA-HNC) 3.89, 4.73, 5.32, 6.01 20.8, 26.3, 35.5, 52.8

calculations from the NPA-HNC method and from DFT-
MD by Plagemann et al.. In both situations, the NPA-HNC
compressibility is slightly higher than the DFT-MD, which
is enough to affect the small-k region of the W (k). This
emphasizes the importance of experimental data for k = 0
in order to validate theoretical models and thermodynamics
for WDM. On the other hand, we saw that, in the Be-II case,
the two models are unable to predict the k = 3.9 Å

−1
data and

that it is impossible to reproduce all four original experimental

points for k < 2 Å
−1

using one single-ion temperature. The
extraction of W (k) is highly dependent on how the other
terms in the Chihara decomposition, in particular the free-free
electron-electron structure factor S0

ee(k,ω), are computed. The
S0

ee(k,ω) is directly linked to the imaginary part of the response
function χ , and most authors have been using the Mermin
[63] formulation while including electron-ion collisions in
the Born approximation. It has been recently pointed out that
the Mermin approximation is not applicable to UFM systems
because of inherent assumptions behind the model [59].
Recently, time-dependent-DFT-MD simulations have been
done for Be [64], and it would be of interest to compare the total
electron-electron dynamic structure factor See(k,ω), including
the bound-free contribution, in the WDM regime from these
different models. Until a satisfactory model for See(k,ω) is
validated, it is hard to determine Ti via W (k) but it should
be kept in mind that a two-temperature system or other more
complex situations might occur in laser-generated WDMs.

D. Temperature relaxation in Be

We consider the energy relaxation rate for the isochori-
cally heated beryllium (Be-II) where ρ/ρ0 = 1, and for the
particular 2T case with Te = 12 eV and Ti = 6 eV. Here
the electron-sphere radius rs � 1.92 and Te is close to the
Fermi energy EBe-II

F = 16.6 eV. Hence this system is far
less degenerate than the Al-I and Al-II systems discussed
above. The Fermi’s Golden Rule calculation using the f -sum
rule gives a temperature relaxation time of 150–200 ps.

Coupled-mode formation may slow this down by an order of
magnitude. Hence the claimed delay of about 500 ps may not
be enough to achieve equilibration. The difficulties in matching
the experimental data with simulations also indicate that we
do not have a properly equilibrated WDM-Be sample.

In the case of the compressed Be sample with Te =
13 eV (Be-I), the f -sum-based relaxation time is nearly five
times faster than for Be-II. Hence temperature-equilibration
shortcomings cannot be an explanation for the difficulties
encountered in modeling the data using a 2T approach. Diffi-
culties in reproducing the W (k) using NPA-HNC and DFT-MD
suggest that the experimental characterization requires further
attention.

V. CONCLUSION

We have presented parameter-free all-electron NPA-HNC
calculations of the charge densities, pseudopotentials, pair
potentials, and structure factors that are required to interpret
XRTS experiments. Compressibilities, phonons, and resistivi-
ties as well as temperature-relaxation times for relevant cases
have been presented, using the NPA pseudopotentials and
structure factors where needed. Reanalyzing recent WDM
experiments enabled us to (a) investigate the validity of
the commonly used YSRR model by showing that both its
short-ranged part and its screening part yield misleading pre-
dictions, (b) expose pitfalls in inverting structure data to obtain
effective pair potentials, (c) examine possible 2T models and
their temperature relaxation to examine the interpretations of
W (k) data from XRTS, emphasizing the need for caution
in assuming thermal equilibrium in laser-generated WDM,
and (d) demonstrate the accuracy of the NPA calculations
of physical properties of electron-ion systems, from ambient
temperatures and compressions to high temperatures and high
compressions. The computational rapidity of the NPA-HNC
model permits “on-the-fly” testing out of possible values of
Ti,Te and compressions that may rapidly fit an experiment,
while this is time-consuming or impossible with DFT-MD
simulations of properties like the ion feature W (k) of WDM
systems.
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[50] H. R. Rüter and R. Redmer, Phys. Rev. Lett. 112, 145007 (2014).
[51] J. Clérouin, G. Robert, P. Arnault, C. Ticknor, J. D. Kress, and

L. A. Colins, Phys. Rev. E 91, 011101(R) (2015).
[52] D. A. Chapman and D. O. Gericke, Phys. Rev. Lett. 107, 165004

(2011).
[53] G. Hazak, Z. Zinamon, Y. Rosenfeld, and M. W. C. Dharma-

wardana, Phys. Rev. E 64, 066411 (2001).
[54] N. H. March, Can. J. Phys. 65, 219 (1987).
[55] M. W. C. Dharma-wardana and G. C. Aers, Phys. Rev. B 28,

1701 (1983); Phys. Rev. Lett. 56, 1211 (1986).
[56] Y. Rosenfeld and G. Kahl, J. Phys.: Condens. Matter 9, L89

(1997).
[57] Th. Bonarth, R. Bredow, and R. Redmer (private communica-

tion).
[58] T. Sjostrom and J. Daligault, Phys. Rev. E 92, 063304 (2015).
[59] M. W. C. Dharma-wardana, Phys. Rev. E 93, 063205 (2016);

arXiv:1602.04734.
[60] J. F. Benage, W. R. Shanahan, and M. S. Murillo, Phys. Rev.

Lett. 83, 2953 (1999).
[61] D. Li, H. Liu, S. Zeng, C. Wang, Z. Wu, P. Zhang, and J. Yan,

Sci. Rep. 4, 5898 (2014).
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