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Summation of the spectra of all partially resolved transition arrays in a supertransition array
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It is shown that the contributions of all partially resolved transition arrays (PRTAs) to the spectrum of a
supertransition array (STA) may be summed by an efficient analytical method. The method is similar to the
configurationally resolved super transition array method [G. Hazak and Y. Kurzweil, High Energy Density Phys.
8, 290 (2012)] and avoids the Gaussianity assumption of the partially resolved super transition arrays method
[B. G. Wilson, C. A. Iglesias, and M. H. Chen High Energy Density Phys. 14, 67 (2015)], thus yielding an STA
spectrum which is resolved down to the PRTA level.
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I. INTRODUCTION

The radiative opacity is an essential factor governing the
structure and evolution of stars [1,2] as well as laboratory
plasmas [3]. In plasmas containing medium to high-Z ele-
ments, at least some of the electrons remain bound to the ions
even at very high temperatures and densities (e.g., iron at the
center of the sun). In part of the spectral range, the opacity in
these plasmas is dominated (e.g., Ref. [4]) by photoabsorption
of dipolar radiative transitions between electronic states of the
ions (line absorption).

The methods for evaluation of the line absorption co-
efficient, in hot dense plasmas, even in local thermody-
namic equilibrium (LTE) conditions, which will be assumed
throughout the present work, involve a compromise between
the needed spectral resolution and the available computer
resources. At one end stands the uncompromising method of
detailed line accounting (DLA) [5], which produces a fully
resolved spectrum, including all photoabsorption lines of all
configuration-to-configuration transition arrays. For complex
configurations with many states, the number of transitions
becomes prohibitive for numerical calculations. In this case,
one may turn to the unresolved transition arrays (UTA)
method [6], which assumes that all lines in the spectrum of
each configuration-to-configuration excitation merge into a
single effective line of a Gaussian shape. The efficiency of
the UTA method comes from the compact formulas for the
three lowest energy moments (actually cumulants [7]) of the
spectrum of each transition array [5,6], in terms of reduced
matrix elements of the dipole operator, Slater integrals, and
shell occupation numbers.

In some cases, the DLA resolution cannot be obtained by
reasonable computer resources while the spectrum obtained
by the UTA method is too crude. The method of partially
resolved transition array (PRTA) [8,9] is suitable for these
cases. The PRTA method allows the user to tune and balance
between the computational cost and the obtained degree of
resolution by choosing the mix between the DLA and UTA
methods. The flexibility is obtained by applying the DLA
approach to a limited subspace of chosen shells populated
by “active” electrons. The effect of the electrons in the other
shells (“spectators”) on the spectrum of a transition array is
accounted for through a Gaussian “dressing function” which
broadens and shifts the lines obtained by the DLA calculation.

For heavy ions, the PRTA and UTA methods be-
come unpractical due to the enormous number of possible

configurations (and transition arrays). The supertransition-
array (STA) method [5,10,11] is a powerful and efficient
method which offers a further compromise allowing the
summation over PRTA’s or UTA’s contribution to the spectrum
with less computational effort at the cost of further spectral
coarse graining. The efficiency of the STA method is obtained
by grouping shells, with adjacent energies, into supershells,
configurations into superconfigurations (SCs) and correspond-
ingly transition arrays into STAs. The relative simplicity
of the evaluation of the coarse-grained spectral absorption
coefficient, in the STA method, is based on three assumptions
(on top of the UTA assumptions) as follows:

(a) The basic superconfiguration assumption. All configu-
rations which form a superconfiguration share the same radial
potential with the same set of one-particle solutions.

(b) The high-temperature approximation. The spread of
the energies of configurations within a superconfiguration is
much smaller than the plasma temperature. In this limit, the
energy in the Boltzmann factor, which determines the relative
probability for a configuration within a superconfiguration,
may be evaluated to zero order only, i.e., as the sum of single-
electron energies in the mean potential. Electron-electron
interaction energy adds a superconfigurational average factor
common to all configurations within a superconfiguration.
This corresponds to the use of the Gibbs-Bogoliubov-Feynman
bound [12] as an estimate for the Boltzmann factor.

(c) The unresolved Gaussian supertransition array assump-
tion. The spectra of all UTAs which form a STA merge into a
single Gaussian shape.

With these three approximations the summation of con-
tributions of all UTAs to a STA may be efficiently per-
formed [5,10,11]. Explicitly, by the third approximation, one
needs only to evaluate the three lowest energy cumulants of
the STA spectrum. By the second approximation, the relative
probabilities of configurations are the same as of those in a
system of independent particles in a potential well [13]. This
enables the derivation of explicit formulas for the moments
(and cumulants) in terms of Slater integrals and partition
functions [5,10,11] which may be evaluated by recursion
relations [10] or other efficient stable methods [14–16].

The approximations in assumptions (a)–(c) are controlled
by the choice of the degree of spectral coarse graining. In
the extreme choice, one takes one shell in a supershell, and
one configuration in a superconfiguration, and a different
average radial potential with a different set of one-electron

2470-0045/2016/94(5)/053210(10) 053210-1 ©2016 American Physical Society

https://doi.org/10.1016/j.hedp.2012.05.001
https://doi.org/10.1016/j.hedp.2012.05.001
https://doi.org/10.1016/j.hedp.2012.05.001
https://doi.org/10.1016/j.hedp.2012.05.001
https://doi.org/10.1016/j.hedp.2015.02.007
https://doi.org/10.1016/j.hedp.2015.02.007
https://doi.org/10.1016/j.hedp.2015.02.007
https://doi.org/10.1016/j.hedp.2015.02.007
https://doi.org/10.1103/PhysRevE.94.053210


Y. KURZWEIL AND G. HAZAK PHYSICAL REVIEW E 94, 053210 (2016)

states separately for each configuration. With this choice, the
STA method coincides with the UTA method. Clearly, within
the framework of the UTA model, assumptions (a)–(c) are
exactly satisfied. The opposite extreme choice is that of one
supershell consisting of all shells and one superconfiguration
consisting of all configurations in all degrees of ionization.
In Ref. [10] it was shown that with this choice, of maximum
spectral coarse graining, the STA method yields the results of
the average atom (AA) model.

The STA method for the summation over the UTA contribu-
tions to the spectrum was extended also to the summation over
the PRTA contributions [17,18]. In this method, the effect of
all “spectator” electrons in a superconfiguration on a spectral
line which is obtained by the application of the DLA approach
(to the limited subspace of “active” electrons) is lumped into
a single Gaussian “dressing function.”

Actually, the Gaussianity assumption, on which the STA
method of summation is based [assumption (c) explained
above], is not necessary for the summation over contributions
of the UTAs spectra to an STA spectrum. As shown in
Refs. [19,20] the mathematical machinery which is used for
the summation of all UTA contributions to the moments
of the supertransitional spectrum may be extended to allow
the direct efficient and exact (within the framework of the
high-temperature approximation explained above) summation
of the spectra of all UTAs constituting the STA and sharing
the same mean field.

This configurationally resolved super transition array
(CRSTA) method [19,20] applies the direct summation and
avoids the spectral coarse graining that comes with assumption
(c). Yet it does not require any compromise beyond assump-
tions (a) and (b) of the STA method.

The purpose of the present work was to extend the CRSTA
method by extending the method of summation of UTA’s in an
STA to the summation of the contribution of all PRTA’s spectra
to an STA spectrum. Unlike the PRSTA method [17,18] in
which the dressing function is a single Gaussian, in our new
method (which we call “PRCRSTA”) the dressing function
represents the exact summation of the contributions of all
dressing functions of the PRTAs included in an STA. The
result is a STA spectrum which is resolved down to the PRTA
level.

The plan of the manuscript is as follows: Section II will be
devoted to a brief review of the notations and some formulas
of the UTA, STA, CRSTA, PRTA, and PRSTA methods, which
are necessary for the rest of the presentation. In Sec. III, the
derivation will be presented of the new formula for the STA
spectrum which is a result of a direct summation of all PRTA’s
contained in the STA. The numerical implementation of the
method is discussed in Sec. VI. Examples which demonstrate
the capacity of the new method will be presented in Sec. IV.
Section V will be devoted to summary of the paper.

II. THE UTA, STA, PRTA, AND PRSTA METHODS

Here we present a brief review of the notations and some
formulas of the UTA, STA, CRSTA, PRTA, and PRSTA
methods, which are necessary for the rest of the presentation.

A configuration is a many-electron atomic state in mean-
field approximation. The state is described by the occupation

numbers of the shells (single-electron states in the mean-field
generated by all other electrons). It is customary to represent a
(relativistic) configuration by the symbols C =∏s(nslsjs)q

C
s ,

where a shell is characterized by the principal quantum
number, ns ; the orbital angular momentum of the large
component in the Dirac wave function, ls ; and the total
orbital+spin angular momentum js ; qC

s is the occupation
number of the s shell in the C configuration. The sum of
qC

s in all shells participating in a configuration is Q:∑
s∈C

qC
s = Q (1)

(i.e., Q is the total number of bound electrons in the
configuration).

The average configurational energy [21], EC , is

EC = E
(0)
C + δE

(1)
C , (2)

where E
(0)
C is the zero-order energy,

E
(0)
C =

∑
s

qC
s εs, (3)

εs ≡ εns ls js
is the eigenvalue of the single-particle equation

with the radial mean field V and one-particle no-potential
Dirac Hamiltonian, hD ,

[hD + V ]φnljm = εnljφnljm, (4)

and δE
(1)
C is the first-order correction to the interaction en-

ergy, i.e., the difference between electron-electron interaction
energy and the energy in the mean field,

δE
(1)
C = 1

2

∑
s

∑
r

qC
s

(
qC

r − δrs

)
�sr

+
∑

s

qC
s

(
〈s| − V (r) − Z

r
|s〉
)

, (5)

Configurations, being based on single-particle states, are
degenerated. Different electron couplings lift the degeneracy
and split the configurational energy. Consequently, each
configuration-to-configuration excitation comprises many
photoabsorption lines. In complex configurations the number
of lines in a configuration-to-configuration transition array
becomes formidable and the task of summing over the
contributions of all these photoabsorption lines to the spectrum
becomes unrealistic. The UTA model [5,6] avoids the task of
summation by assuming that all lines in the spectrum of each
configuration-to-configuration excitation merge into a single
effective line of a Gaussian shape. With this assumption, the
task of summing over all photoabsorption lines is replaced by
the task of evaluating three energy-moments of the spectrum,
from which the Gaussian shape is constructed. The approxi-
mation of the UTA model is in the assumption that the center
of gravity, Eab

C , and width, �ab
C , fully represent the line shape.

Explicitly, the approximation is in the assumption that the line
shape of a dipole transition array Cab from a configuration C

to another configuration C ′ by electron jumping from the shell

a to the shell b is of the form 1√
2π�ab

C

exp [− 1
2 (E−Eab

C

�ab
C

)
2
], i.e.,

the spectral distribution of the UTA Cab is proportional to the
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function:

Fab
C,UTA(E) = qC

a

(
g

b
− qC

b

) ∫ 1√
2π�ab

C

× exp

[
−1

2

(
E′ − Eab

C

�ab
C

)2
]
P ab

C (E − E′)dE′,

(6)

where P ab
C represents the effective line shape which reflects

the natural linewidth and the effect of broadening due to
interaction with plasma microfield. qC

a ,qC
b are the occupation

numbers of the active shells a and b, and gb is the degeneracy of
the b shell. The specific form of the line shape P ab

C may have a
decisive effect on the measured spectrum. However, the present
work focuses on a different aspect of spectrum evaluation;
methods for summations of contributions of transition arrays
to the spectrum, therefore in the rest of this paper, in order to
simplify the presentation, we shall avoid the line shape issue
[i.e., assume P ab

C (E − E′) = δ(E − E′)]; however, see some
other possible line shapes described in Sec. IV.

The formulas for the center of gravity of the UTA, Eab
C , and

the UTA variance, (�ab
C )

2
, may be represented in the following

compact form [11]:

Eab
C = (〈b〉 − 〈a〉) +

∑
s

(
qC

s − δsa

)
Dab

s , (7)

(
�ab

C

)2 =
∑

s

(
qC

s − δsa

)(
gs − qC

s − δsb

)
(�2)ab

s , (8)

where Dab
s and (�2)

ab

s coincide with the notation of Appendix
A in Ref. [11].

In these formulas, qC
s is the occupation number of the s

shell in the initial configuration C. All other constants are
independent of the occupation numbers.

In some cases the coarsening of the spectrum by the
UTA approach is too extreme since the spectrum cannot
be represented as a single Gaussian function, yet the large
number of lines in a transition array prohibits summation of
the contribution of all photoabsorption lines. The method of
PRTA [8] is fitted to treat these cases.

In the PRTA method, one starts by the DLA solution of
the isolated “active” transition, e.g., for two active shells the
transition reads:

(nalaja)q
C
a (nblbjb)q

C
b → (nalaja)q

C
a −1(nblbjb)q

C
b +1. (9)

The DLA solution yields Nab
line (qC

a ,qC
b ) transition lines. We

denote the energy of the initial level by uj , the transition
energy by Eab

j , the degeneracy by gab
j , and the (normalized)

strength of a line in the DLA solution by sab
j . We also use

the notation C̄ab =∏s 	=a,b(nslsjs)q
C
s for the “configuration”

which does not include the active shells.
In the PRTA approach, one assumes that each of the Nab

line
lines is dressed by a function which represents the effect of all

the spectator electrons, i.e., the spectrum of the PRTA is

Fab
C,PRTA(E) =

Nab
line∑

j=1

gab
j sab

j e−βuj
1√

2π�ab
C̄ab

× exp

⎡
⎣−1

2

(
E − Eab

C̄ab
− Eab

j

�ab
C̄ab

)2
⎤
⎦, (10)

where Eab
C̄ab

, �ab
C̄ab

represent the effect of the spectators on the

shift of the center of gravity of the UTA Cab and on its variance,
i.e.,

Eab
C̄ab

= Eab
C − (〈b〉 − 〈a〉) + Dab

a =
∑
s 	=a,b

qsD
ab
s , (11)

(
�ab

C̄ab

)2 =
∑
s 	=a,b

(
qC

s − δsa

)(
gs − qC

s − δsb

)
(�2)ab

s . (12)

As mentioned in the Introduction, for many electron ions,
the PRTA and UTA methods become unpractical due to the
enormous number of possible configurations. These cases may
be treated by the STA method, which is briefly reviewed
below. A superconfiguration, 	, is defined by a specific
partitioning of the bound electrons between supershells (a
group of energetically adjacent atomic shells). Each spe-
cific partitioning of shell occupation within the supershells
represents a configuration which is contained within the
superconfiguration. The dipolar supertransition-array (denoted
by 	ab) is defined as the group of all the transition arrays in
which an electron jumps from the shell a in all configurations
C, contained in the superconfiguration 	, to a shell b. By this
definition, 	ab represents the group of all the transition arrays
Cab in which the initial configuration C is contained in the
superconfiguration 	.

The specification of a superconfiguration, 	, is by the
group of supershells, {s}σ , denoted by {{s}σ } and by the
group of numbers {Qσ } which assign to each supershell a
total population, Qσ .

The spectral distribution of the STA 	ab is obtained by
summing over contributions from all transition arrays each
with the statistical weight which represents the probability
for the initial configuration C of the transition array Cab.
Accepting the assumptions of the UTA approach and the basic
assumption of the STA method described in the Introduction
[namely assumption (a) that all configurations which form a
superconfiguration share the same radial potential with the
same set of one-particle solutions], the superconfigurational
spectral distribution is proportional the function:

Fab
	,UTA(E) = 1

Z	

∑
C∈	

gC exp [−β(EC − Qμ)]qC
a

(
g

b
− qC

b

)

× 1√
2π�ab

C

exp

[
−1

2

(
E′ − Eab

C

�ab
C

)2
]
, (13)

where

Z	 =
∑
C∈	

gC exp [−β(EC − Qμ)] (14)

is the superconfigurational grand-canonical partition function.
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Further accepting also the high-temperature approximation,
valid in the case that the spread of the energies of configura-
tions within a superconfiguration is much smaller than the
plasma temperature [assumption (b) of the STA and PRSTA
approach described in the introduction] one can replace the
statistical sum of an arbitrary configurational quantity, ξC :

〈ξC〉 =
∑
C∈	

exp (−βEC)ξC =
∑
C∈	

exp
[−β

(
E

(0)
C + δE

(1)
C

)]
ξC

(15)

by

〈ξC〉 
 exp
(−β

〈
δE

(1)
C

〉)∑
C∈	

exp
(−βE

(0)
C

)
ξC, (16)

where 〈δE(1)
C 〉 is the weighted average of δE

(1)
C [10]. Note

that the approximation(16) just uses the Gibbs-Bogoliubov-
Feynman bound [12,22] as an estimate for the Boltzmann
factor.

With this approximation, the superconfigurational spectral
distribution of Eq. (13) becomes

Fab
	,UTA(E) 
 F

ab,HT
	,UTA (E) = exp

(−β
〈
δE

(1)
C

〉)
exp

(−β
〈
δE

(1)
C

〉)
Z

(0)
	

×
∑
C∈	

gC exp
[−β

(
E

(0)
C − Qμ

)]
qC

a

(
g

b
− qC

b

)

× 1√
2π�ab

C

exp

[
−1

2

(
E′ − Eab

C

�ab
C

)2
]

= 1

Z
(0)
	

∑
C∈	

gC exp
[−β

(
E

(0)
C − Qμ

)]
qC

a

(
g

b
−qC

b

)

× 1√
2π�ab

C

exp

[
−1

2

(
E′ − Eab

C

�ab
C

)2
]
, (17)

where Z
(0)
	 is the the zero-order partition function:

Z
(0)
	 =

∑
C∈	

gC exp
[−β

(
E

(0)
C − Qμ

)]
. (18)

The STA method reiterates the UTA assumption about the
Gaussianity of the transition array and applies it also to the
super-transition-array by assuming that the superconfigura-
tional spectral distribution Fab

	,UTA(E) has a Gaussian form,
i.e.,

Fab
	,UTA(E) ≈ Aab

	 exp

[
−1

2

(
E − Eab

	

�ab
	

)2
]

≡ Fab
	,STA(E).

(19)

The formulas for the amplitude, center of gravity, and
width of the superconfigurational spectrum Aab

	 , Eab
	 , �ab

	

as sums over UTA contributions are described in Ref. [11].
These formulas may also be derived by Fourier transform of
Eqs. (19) and (17) with respect to E and comparing the three
lowest terms in the Taylor expansion around the origin of the
transform variable τ . (For details, see Ref. [19].)

In Refs. [19,20], the mathematical machinery which is used
for the summation of all UTA contributions to the moments

of the supertransitional spectrum, was extended to allow the
direct efficient and exact summation of the spectra of all UTAs
constituting the STA and sharing the same mean field. In this
method, called the CRSTA method, the summation in Eq. (17)
is analytically performed without the aid of the Gaussianity
assumption of Eq. (19), i.e., from the three assumptions (1)–(3)
of the STA method described in the Introduction, one needs
only assumptions (1) and (2). The result is a spectrum which
reflects all the UTA details as in F

ab,HT
	,UTA (E), i.e.,

Fab
	,CRSTA(E) = F

ab,HT
	,UTA (E). (20)

In Refs. [17,18], the method of PRTA was extended also to
enable summation of the contribution of all PRTA to an STA.
The result is called PRSTA. Here we describe a simple version
of this method. Consider a superconfiguration

	 = (nalaja)q
C
a (nblbjb)q

C
b

∏
k

(σk)Qk , (21)

(where σk is the k supershell and Qk is the k supershell
population) and a supertransition 	ab:

(nalaja)q
C
a (nblbjb)q

C
b

∏
k

(σk)Qk

→ (nalaja)q
C
a −1(nblbjb)q

C
b +1
∏
k

(σk)Qk . (22)

Start by the DLA solution of the isolated “active” transition:

(nalaja)q
C
a (nblbjb)q

C
b → (nalaja)q

C
a −1(nblbjb)q

C
b +1. (23)

The DLA solution yields Nab
line (qC

a ,qC
b ) lines. Denote the

energy of the initial level, the transition energy, degeneracy,
and (normalized) strength of a line in the DLA solution by
uj ,E

ab
j ,gab

j ,sab
j , respectively, and also 	̄ab =∏k(σk)Qk .

As in the case of UTA summation [Equation (17)] one finds
that the superconfigurational spectrum is proportional to the
sum (in the high-temperature approximation) of contributions
from all PRTA’s,

Fab
	,PRTA(E) = 1

Z	

∑
C̄ab∈	̄ab

gC̄ab
exp[−β(EC̄ab

− QC̄ab
μ)]

Fab
C,PRTA(E) 
 F

ab,HT
	,PRTA(E) = 1

Z
(0)
	̄ab

∑
C̄ab∈	̄ab

gC̄ab

× exp
[−β

(
E

(0)
C̄ab

− QC̄ab
μ
)]

Fab
C,PRTA(E).

(24)

By the explicit form of Fab
C,PRTA(E) [Eq. (10)], the Gaussianity

assumption reads:

Fab
	,PRTA(E) 
 Fab

	,PRSTA(E) =
Nab

line∑
j=1

gab
j sab

j e−βuj

×φ	̄ab ,STA

(
E − Eab

	̄ab
− Eab

j

)
, (25)

φ	̄ab ,STA

(
E′) = Aab

	̄ab
exp

⎡
⎣−1

2

(
E′

�ab
	̄ab

)2
⎤
⎦. (26)
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The formulas for the amplitude, center of gravity, and
width of the superconfigurational dressing function, Aab

	̄ab
,

Eab
	̄ab

, �ab
	̄ab

as sums over UTA contributions may be obtained

in a way similar to the derivation of the formulas for Aab
	ab

,

Eab
	ab

, �ab
	ab

, i.e., Fourier transform of Eqs. (26) and (25)
with respect to E and comparing the three lowest terms
in the Taylor expansion around the origin of the transform
variable τ .

III. PR-CRSTA

As in the case of STA, the Gaussianity approximation [Eqs. (25) and (26)] (which is implicit in the derivation of the PRSTA
method) is not necessary. The summation in Eq. (24) may be performed directly without this approximation, i.e., of the three
assumptions (a)–(c) described in the Introduction, one needs only assumptions (a) and (b) and in parallel to formula (20) we have

Fab
	,PR-CRSTA(E) = Fab

	,PRTA(E). (27)

Using this relation in Eq. (24) one gets:

Fab
	,PR-CRSTA(E) = Fab

	,PRTA(E) = 1

Z	̄ab

∑
C̄ab∈	̄ab

gC̄ab
exp

[−β
(
EC̄ab

− QC̄ab
μ
)]

Fab
C,PRTA(E)

= 1

Z	̄ab

Nab
line∑

j=1

gab
j sab

j e−βuj

∑
C̄ab∈	̄ab

gC̄ab
exp

[−β
(
EC̄ab

− QC̄ab
μ
)] 1√

2π�ab
C̄ab

exp

⎡
⎣−1

2

(
E − Eab

C̄ab
− Eab

j

�ab
C̄ab

)2
⎤
⎦



exp

[−β
(〈
δE

(1)
C̄ab

〉)]
exp

[−β
(〈
δE

(1)
C̄ab

〉)]
Z

(0)
	̄ab

Nab
line∑

j=1

gab
j sab

j e−βuj

∑
C̄ab∈	̄ab

gC̄ab
exp

[−β
(
E

(0)
C̄ab

− QC̄ab
μ
)]

× 1√
2π�ab

C̄ab

exp

⎡
⎣−1

2

(
E − Eab

C̄ab
− Eab

j

�ab
C̄ab

)2
⎤
⎦

= 1

Z
(0)
	̄ab

Nab
line∑

j=1

gab
j sab

j e−βuj

∑
C̄ab∈	̄ab

gC̄ab
exp

[−β
(
E

(0)
C̄ab

− QC̄ab
μ
)] 1√

2π�ab
C̄ab

exp

⎡
⎣−1

2

(
E − Eab

C̄ab
− Eab

j

�ab
C̄ab

)2
⎤
⎦.

(28)

In the third line of (28) we have used the high-temperature approximation. Using the Fourier transform to the Gaussian UTA,
one gets:

Fab
	,PR-CRSTA(E) = 1

Z
(0)
	̄ab

Nab
line∑

j=1

gab
j sab

j e−βuj

∑
C̄ab∈	̄ab

gC̄ab
exp

[−β
(
E

(0)
C̄ab

− QC̄ab
μ
)]

× 1

2π

∫ ∞

−∞
exp

[
−1

2

1

�2

(
�ab

C̄ab

)2
τ 2 + i

1

�
Eab

C̄ab
τ − i

1

�

(
E − Eab

j

)
τ

]
dτ

=
Nab

line∑
j=1

gab
j sab

j e−βuj φ	̄ab ,PR-CRSTA

(
E − Eab

j

)
. (29)

i.e., the line dressing function for the j line is as follows:

φ	̄ab ,PR-CRSTA(E′) = 1

2π

∫ ∞

−∞
φ̃	̄ab ,PR-CRSTA(τ )e−i 1

�
E′τ dτ, (30)

where

φ̃	̄ab ,PR-CRSTA(τ ) = 1

Z
(0)
	̄ab

∑
C̄ab∈	̄ab

gC̄ab
exp

[
−β
(
E

(0)
C̄ab

− QC̄ab
μ
)− 1

2

1

�2

(
�ab

C̄ab

)2
τ 2 + i

1

�
Eab

C̄ab
τ

]
. (31)

The quantities Q, (�ab
C̄ab

)
2
, E

(0)
C̄ab

, and Eab
C̄ab

in the exponent depend on the occupation, qC
s , of the shells, s, participating in

C̄ab and are the sum over contributions from these shells. This property and the specific form of dependence on qC
s simplifies

the summation
∑

C̄ab∈	̄ab
and the evaluation of the line dressing function φ	̄ab ,PR-CRSTA by the CRSTA method as described in

Refs. [19,20] and already implemented in our CRSTA code. (Some details of the implementation are described in Appendix A).
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Explicitly, using the formulas for E
(0)
C̄ab

,�ab
C̄ab

, and Eab
C̄ab

, the dressing function for the case of single supershell may be written
as:

φ̃	̄ab ,PR-CRSTA(τ ) = 1

Z
(0)
	̄ab

φ̃
Q

(τ ) = 1

Z
(0)
	̄ab

∑
C̄ab∈	̄ab

gC̄ab
exp

[
−β
(
E

(0)
C̄ab

− QC̄ab
μ
)− 1

2

1

�2

(
�ab

C̄ab

)2
τ 2 + i

1

�
Eab

C̄ab
τ

]

= 1

Z
(0)
	̄ab

⎧⎨
⎩

∑
qs=Q−qa−qb

∏
s 	=a,b

(
gs

qC
s

)(
Xs

[
εs − Dab

s iτ/�β
)]qC

s e
− 1

2
1

�2 (qC
s −δsa)(gs−qC

s −δsb)(�2)ab

s
τ 2

⎫⎬
⎭

= 1

Z
(0)
	̄ab

⎧⎨
⎩

∑
qC

s =Q−qa−qb

∏
s 	=a,b

fs(gs,qs,τ )

⎫⎬
⎭, (32)

where, for a given set of shells, a configuration which belongs
to a superconfiguration 	 ab with Q = Q − qa − qb bound
electrons is determined by the condition

∑
qC

s = Q and we
have used the shorthand

fs

(
gs,q

C
s ,τ
) =

(
gs

qC
s

)[
Xs

(
εs − Dab

s iτ/�β
)]qC

s

× e
− 1

2
1

�2 (qC
s −δsa)(gs−qC

s −δsb)(�2)ab

s
τ 2

. (33)

Note that fs is a single-shell function.
The term in the curled brackets in Eq. (32), φ̃Q =∑
qs=Q

∏
s∈σ fs(gs,q

C
s ,τ ), may be efficiently evaluated by a

variation of the combinatorial methods developed for the STA
method (see Appendix B).

Note that the single Gaussian form of the supertransitional
dressing function as used in Ref. [17] is recovered by the short-
time approximation of formula (31), i.e., by the expansion
around τ = 0, up to second order in τ (see Eqs. (22)– (27)
in Ref. [19]). In the frequency domain this means that the
Gaussian dressing function used in Ref. [17] may be obtained
by applying a coarse-graining procedure to the full form in
Eq. (31) which preserves the signature of all UTA’s. The
numerical effort required for its evaluation, and the Fourier
transform to energy variable, is similar to the effort required
for the coarse-grained Gaussian form of the supertransitional
dressing function [Eq. (26)] [19].

IV. EXAMPLES

We have demonstrated the PR-CRSTA method for the
evaluation of the spectra by two examples as follows:

Example 1:
The transition

Fe X [Ne]3s23p33d1(4s . . . 6p)1

→ [Ne]3s23p23d2(4s . . . 6p)1,

in iron at temperature of 40 eV.
Example 2:
The transition

Fe XI [Ne]3s23p13d1(4s . . . 6p)2

→ [Ne]3s23p03d2(4s . . . 6p)2,

in iron at temperature of 50 eV.

In these two examples, the spectator electrons are dis-
tributed in the Rydberg shells 4s . . . 6p. In Ref. [18], as well
as in the present work, these shells are grouped into a single
supershell.

For both examples, we have calculated the PR-CRSTA
spectrum, Fab

	,PR-CRSTA(E). The transition lines, in the spec-
trum, were synthetically broadened by a convolution with a
Gaussian of full width at half maximum of 0.1 eV. In the time
domain, this convolution operation turns into a multiplication
of the function φ̃Q(τ ) by the factor exp (− 1

2
1
�2 α

2τ 2).
As mentioned before, the treatment of various mechanisms

for line broadening is out of the scope of the present work;
nevertheless, a short comment is in order: The treatment
in time domain, as applied in our new method, allows a
convenient implementation of various line broadening. The
simplest example is the Lorenzian broadening function, where
in time domain φ̃Q(τ ) should be multiplied by the factor
exp (− 1

�
γ τ ). The result of the multiplication by the two factors

exp (− 1
2

1
�2 α

2τ 2) and exp (− 1
�
γ τ ) leads, in frequency domain,

to the Voigt line profile which is routinely used in opacity
calculations [23]. The Voigt represents the combined effect
of Doppler shifts due to thermal motion of the radiators and
electron impact, in cases where the interval between impact
events is longer then radiation wavelength and therefore these
effects act independently. It is well known that the Voigt
has an unphysical inverse-square asymptotic behavior. In the
case where the separation between lines is large enough, this
unphysical tail can lead to a significant error in the evaluated
opacity. It was recently suggested that the cure for this problem
would be by the use of various truncation methods, applied
in the frequency domain [23]. The treatment in the time
domain as applied in our new method opens the way to
another convenient approach which does not suffer from the
unphysical large-tail problem, by the application of collision
narrowed line profiles which in the time domain have the form
exp {− 1

�
γ τ − 1

�2
1
β2 α

2[βτ − 1 + exp (−βτ )]} [24]. We plan to
investigate this approach in a future work.

The quantities Eab
j , gab

j sab
j e−βuj were calculated by use of

the SCO-RCG code [18]. The dressing function φ	̄ab ,PR-CRSTA

and the spectrum, Fab
	,PR-CRSTA(E), were evaluated by the

CRSTA code which was adapted for this task. Note that since
φ	̄ab ,PR-CRSTA(E − Eab

j ) is simply the shifted φ	̄ab ,PR-CRSTA(E)
function, it has to be calculated only once for all the lines.
The combination of results from the two codes, SCO-RCG

and CRSTA, should be done with some care since SCO-RCG
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FIG. 1. Spectrum (a.u.) vs. energy (eV) of example 1, calculated
by various methods.

is a nonrelativistic code, while CRSTA is a relativistic code.
This means that the transition array 3p → 3d, as treated
in the SCO-RCG code, when treated by the CRSTA code,
comprises of three relativistic transitions: 3p1/2 → 3d3/2,
3p3/2 → 3d3/2, and 3p3/2 → 3d5/2. In order to match the
two descriptions, the function φ	̄ab ,PR-CRSTA(E − Eab

j ) is cal-
culated using the following averaged relativistic quantities.
The quantity Eab

C̄ab
in Eq. (31) is replaced by the quantity

〈E3p3d

C̄ab
〉 =∑s 	=a,b qs〈D3p3d

s 〉, where

〈
D3p3d

s

〉 = 1
3

(
D

3p1/23d3/2
s + D

3p3/23d3/2
s + D

3p3/23d5/2
s

)
.

Also, since the three relativistic transition lines statistics

are independent, the UTA variance (�3p3d

C̄ab
)
2

is calculated by

FIG. 2. Spectrum (a.u.) vs. energy (eV) of example 2, calculated
by various methods.

FIG. 3. Dressing function (arb. units) vs. energy(eV) for example
1. Comparison between the fully resolved dressind function (dashed-
blue) and PG 1STA dressing function (solid-red).

the average variance(
�

3p3d

C̄ab

)2 = 1
3

[(
�

3p1/23d3/2

C̄ab

)2 + (�3p3/23d3/2

C̄ab

)2 + (�3p3/23d5/2

C̄ab

)2]
+ 1

3
[(δE3p1/23d3/2 − δE)2 + (δE3p3/23d3/2 − δE)2

+ (δE3p3/23d5/2 − δE)2],

where δEab is the UTA shift of the transition a → b and
δE = 1

3 [δE3p1/23d3/2 + δE3p3/23d3/2 + δE3p3/23d5/2 ].
The spectra of the two examples were evaluated by different

methods as shown in Figs. 1 and 2. The methods relevant
to the present discussion are the full DLA of all transition
arrays which are compatible with the two examples (gray
solid line), the Pain-Gilleron PRSTA calculation (dashed-blue
line, denoted as “PG” in the figure), and the PRCRSTA
calculation (solid red line). As expected, the PRCRSTA spectra
are more detailed and closer to the DLA spectra. Figures 3
and 4 compare the Gaussian dressing functions used by the

FIG. 4. The dressing function (arb. units) vs. energy(eV) for
example 2. Comparison between the fully resolved dressind function
(dashed-blue) and PG 1STA dressing function (solid-red).
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FIG. 5. Dressing function (arb. units) vs. energy (eV) for three
spectator electrons calculated by PR-CRSTA (dashed-blue) and PG
1STA method (solid-red).

PRSTA method to the dressing functions of the PRCRSTA.
The PRCRSTA dressing function, carries the signature of the
separate effect of each spectator which explains the capability
of this method to generate some of the details of the DLA
spectrum which are not generated by the PRSTA method.

It is interesting to note that the PR-CRSTA dressing
function becomes more close to a Gaussian shape, as the
PG method assumes, as the number of electron spectators
is increased, as shown in Figs. 5 and 6. Therefore, it seems
that the PG method is a good approximation to the dressing
function if there are more than three spectator electrons.

V. SUMMARY

The various existing tools for the theoretical evaluation of
spectra in hot dense plasmas in LTE include the DLA [5],
UTA [6], STA [5,10,11], PRTA [8], and PRSTA [17,18]
methods. A skillful choice of tools from this rich list allows a
well-balanced compromise between the needed resolution in
the evaluated spectrum and the available computer resources.
The UTA and PRTA are methods for evaluating the spectrum
of a transition array, in cases where the DLA method is
out of reach due to large number of lines in the transition
array. These methods are based on a Gusssianity assumption.
The UTA method assumes that the spectrum of the transition
array has a functional form of a single Gaussian. The PRTA
method assumes that the lines evaluated by DLA calculation
accounting only for active electrons are dressed by a Gaussian
broadening and shifting function which accounts for the
effect of the spectator electrons. The STA is a method for
summing over contributions of UTA’s and the PRSTA is a
method for summing over the contributions of all PRTA to the
STA spectrum. The STA method assumes that the spectrum
of the STA has a functional form of a single Gaussian,
similarly, the PSRTA method assumes that the sum of the
PRTA dressing functions of all PRTA’s in a STA merge into
a single Gaussian superconfigurational dressing function. The
CRSTA method [19,20] relies on all the STA assumptions
except for the Gaussianity assumption. Instead it applies a

FIG. 6. Dressing function (arb. units) vs. energy (eV) for four
spectator electrons calculated by PR-CRSTA (dashed-blue) and PG
1STA method (solid-red).

direct efficient method for the summation of all contributions
of UTA’s to the STA spectrum. The result is an STA spectrum
which is resolved down to the UTA level.

The current work extends the CRSTA method and develops
an efficient method for the summation of all PRTA’s to the
spectrum of the STA. The result is an STA spectrum which
is resolved down to the PRTA level. The results shown in
Figs. 1 and 2 demonstrate the capability of this method in
following some of the spectral details of the fully resolved
DLA calculations.
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APPENDIX A: NUMERICAL IMPLEMENTATION

The algorithm for calculating the PR-CRSTA spectrum,
Fab

	,PR-CRSTA(E) in Eq. (28), comprises of the following steps:
(1) Define a suitable temporal equimeshed grid

{τj = jτ }, as is explained below.
(2) Calculate φ̃

	̄ab ,PR-CRSTA
(τj ) using the formulas of

Eqs. (B4) and (B5) in Appendix B.
(3) Apply FFT to obtain the tabulated dressing function

φ	̄ab ,PR-CRSTA(Ej ).

(4) Evaluate the sum:
∑Nab

line
j=1g

ab
j sab

j e−βuj φ	̄ab,PR-CRSTA(E −
Eab

j ), for each required photon energy E, using the tabulated
dressing function φ	̄ab ,PR-CRSTA(Ej ).

In step 2, of the abovementioned algorithm, φ̃
	̄ab ,PR-CRSTA

(τ )
should be evaluated on a temporal grid. We explain
now how to choose, properly, the temporal grid param-
eters. The grid {τj = jτ } is defined on the interval
[0,Tmax]. Tmax is estimated as the time where the func-
tion φ̃

	̄ab ,PR-CRSTA
(τ ) is already significantly decayed, i.e.,

φ̃
	̄ab ,PR-CRSTA

(Tmax)/ φ̃
	̄ab ,PR-CRSTA

(0) � ε � 1. This condition is
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ensured if∏
s∈σ

e
− 1

2�2 min
qs=Q

{(qC
s −δsa )(gs−qC

s −δsb)(�ab
s )2}T 2

max � ε.

Note that

min
{
(gs − 1)

(
�ab

s

)2}
� min

qs=Q

{(
qC

s − δsa

)(
gs − qC

s − δsb

)(
�ab

s

)2}
,

therefore, a rough, but sufficient, estimation yields:

Tmax ≈
√

|ln ε|/ min
{
(gs − 1)

(
�ab

s

)2}
.

If there are included more broadening effects, like electron-
impact, Doppler or synthetic broadening, then, φ̃

	̄ab ,PR-CRSTA
(τ )

includes more temporal decaying exponents, and Tmax can be
reduced correspondingly.

The temporal equimeshed gridpoints number, Np, should
be determined to cover the entire energy bandwidth of
φ	̄ab ,PR-CRSTA(E). The energy bandwidth of φ	̄ab ,PR-CRSTA(E)
is the energy range of the spectator electrons configurations
transition energies:

Eab
C̄ab

=
∑
s 	=a,b

qsD
ab
s .

The corresponding full bandwidth, Bab
full, is

Bab
full = max

qs=Q

⎧⎨
⎩
∑
s 	=a,b

qsD
ab
s

⎫⎬
⎭− min

qs=Q

⎧⎨
⎩
∑
s 	=a,b

qsD
ab
s

⎫⎬
⎭. (A1)

The bandwidth Bab
full can be estimated in a simpler way than

Eq. (A1), as

Bab
full ≈

∑
s=1..ns

gsD
ab
s −

∑
s=1..ns

gsD
ab
s ,

where {gsD
ab
s } and {gsD

ab
s } are descending and ascending

lists of the multiplications {qsD
ab
s } and ns and ns satisfy the

conditions: ∑
s=1..ns−1

gs � Q �
∑

s=1..ns

gs,

∑
s=1..ns

gsD
ab
s � Q �

∑
s=1..ns+1

gsD
ab
s .

The maximal time interval �τ is estimated as

�τ = π

Bab
full

.

The full bandwidth is usually too large, since there are
many configurations which barely contribute to the spectrum.
It is therefore recommended to use an effective bandwidth
which is as large as several times the STA variance of the
transition energies {Eab

C̄ab
}. Recall that the STA cumulants can

be obtained by the short time approximation of the function
φ̃	̄ab ,PR-CRSTA(τ ) [19]:

(
�ab

	

)2 =
[

∂2

∂(−iτ )2 ln

(
φ̃	̄ab ,PR-CRSTA(τ )

φ̃	̄ab ,PR-CRSTA(0)

)]
τ=0

.

Numerically, we evaluate φ̃	̄ab ,PR-CRSTA(τ ) for n grid-
points, {τi}, around τ = 0 and fit a polynomial p(τ ) =∑

j=0..n−1 aj (−iτ )j to the function ln [
φ̃	̄ab ,PR-CRSTA(τj )

φ̃	̄ab ,PR-CRSTA(0)
]. This fit

yields the variance, i.e., (�ab
	 )

2 = a2. The effective bandwidth,
Bab

eff , is estimated as

Bab
eff = m�ab

	 ,

where m = 4..8. Correspondingly, the time interval is

�τ = π

Bab
eff

.

In summary, for both bandwidth estimations, the number
of temporal gridpoints should satisfy:

Np � Tmax/�τ.

We should note here that the above-mentioned choices of
temporal grid parameters is not necessarily the optimal.

APPENDIX B: THE SUMMATION

The calculation of the function φ̃	̄ab ,PR-CRSTA(τ ), in Eq. (32),
requires an efficient method to calculate the generalized
partition functions:

UQ(τ ) ≡
∑

qC
s =Q

N∏
s=1

fs

(
gs,q

C
s ,τ
)
. (B1)

An analytical, efficient and numerically stable method to
calculate this sum was proposed by Gilleron and Pain [15]
for the special case of τ = 0. In this case, Gilleron and Pain
proved that UQ(τ = 0) is the value of the coefficent Q of the
generating polynomial :

G(z) =
N∏

s=1

(1 + Xs(εs)z)gs =
N∏

s=1

⎛
⎝ gs∑

j=0

(
gs

J

)
Xs(εs)

j zj

⎞
⎠

=
N∏

s=1

⎛
⎝ gs∑

j=0

fs(gs,j,τ = 0)zj

⎞
⎠ =

∑
Q

UQ(0)zQ,

where

UQ(0) = 1

Q!

∂Q

∂zQ
G(z)

∣∣∣∣
z=0

=
∑

qC
s =Q

N∏
s=1

fs

(
gs,q

C
s ,0
)
. (B2)

Using the same proof of Gilleron and Pain [15], it is easy to
see that UQ(τ ) can be obtained from the generalized generating
polynomial:

G(z,τ ) =
N∏

s=1

⎛
⎝ gs∑

j=0

fs(gs,j,τ )zj

⎞
⎠ =

∑
Q

UQ(τ )zQ, (B3)

where UQ(τ ) is obtained, similarly to UQ(0), as

UQ(τ ) = 1

Q!

∂Q

∂zQ
G(z,τ )

∣∣∣∣
z=0

=
∑

qC
s =Q

N∏
s=1

fs

(
gs,q

C
s ,τ
)
.
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Therefore, UQ(τ ) can be efficiently calculated from the re-
cursive fomula of Eq.(25) in Ref. [15], which origanlly derived

for UQ(0), while substituting (gN

j
)[XN (εN )]j �→ fN (gN,j,τ ),

i.e.:

UQ(τ ) ≡ uQ:N (τ )=
∑

j=1..Q

uQ−j :N−1(τ )fN (gN,j,τ )�(gN −Q),

uQ:0(τ ) = δQ,0, (B4)

where � is the heavy side function.

Finally, for the case of a superconfiguration 	 that contains
electronic population {UQs

}s=1..Ns
, of Ns supershells, the

generalized partition function, U	(τ ), is obtained from the
multiplication of the single supershell generalized partition
functions:

U	(τ ) =
Ns∏
s=1

UQs
(τ ), (B5)

where UQs
(τ ) are calculated using Eq. (B4).
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