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For certain classes of relativistic plasma problems, performing numerical calculations in a Lorentz boosted
frame can be even more advantageous for gridded momentum-space-time (e.g., Vlasov) problems than has been
demonstrated for position space-time problems and result in a potential reduction in the number of calculations
needed by a factor ∼γ 6

b . In this study, the Lorentz boosted frame technique was applied to the problem of warm
wave-breaking limits of plasma waves with relativistic phase velocity. The numerical results are consistent with
analytic conclusions. By appropriate normalization and for sufficiently warm plasma, the dynamics for the Vlasov
equation in different Lorentz frames were found to be independent of γp .
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I. INTRODUCTION

Plasma based accelerators [1–5] show much promise as an
advanced accelerator concept due to their very high acceler-
ation gradients. Low-noise Eulerian-Vlasov simulations may
be of interest for understanding the effect of the initial thermal
distribution on particle trapping and wave amplitude [6].
Simulations of relativistic phase velocity waves in thermal
laboratory plasmas, such as those relating to laser or beam
driven plasma wake-field accelerator experiments [7–9], are,
however, constrained by the fact that the maximum and
minimum momenta that need to be resolved, in the direction
of propagation, have a large difference in magnitude.

For a non-evolving driver, the maximum possible forward
momentum gain in a plasma accelerator scales as the Lorentz
factor associated with the phase velocity of the plasma wave,
γp, squared, pmax ∝ γ 2

pmc whereas the initial momentum
spread, pth, corresponding to the square root of the plasma
temperature, is extremely small, pth � mc. Even if initially the
unperturbed plasma is relatively warm, a 100 eV plasma for ex-
ample, then the momentum spread is pth ∼ 10−2mc, which is
very small compared with the maximum momentum, pmax �
mc. This means to resolve the smallest and largest scales, for
a numerical solution on a mesh, the number of grid points re-
quired in momentum space, Np is enormous. For example, con-
sider laser wake-field acceleration [10] in a 100 eV plasma with
a 1 GeV energy gain; the minimum number of momentum grid
points required to minimally resolve these disparate scales is
Np ∼ 105, which is computationally intensive when combined
with spatiotemporal dependence, even with only 1 spatial and 1
momentum dimensions. For a beam driven plasma wake-field,
due to drive beam limitations the maximum energy does not
scale as γ 2

p , but the energy of the accelerated particles is
typically very large compared with the thermal spread anyway.

In this paper, I investigate the use of Eulerian-Vlasov
simulations using a Fourier based code in a Lorentz boosted
frame for studies of relativistic phase velocity perturbations
in thermal plasma. In Sec. II I discuss how, because of
the non-invariance of energy-momentum scales in Eulerian-
Vlasov finite-difference-time-domain simulations, performing

the simulation in a boosted frame can lead to dramatic
speed-ups in calculation time, as an extension of the space-time
considerations of Vay [11]. Then, in Sec. III, I make use of this
technique to allow a numerical investigation into the maximum
electric field achievable in a plasma wave with relativistic
phase velocity (the “warm wave-breaking threshold”). This is
compared with the results of a recent analytic study. Finally,
several appendices describe the numerical scheme for the
Vlasov code used in this study and its verification.

Unless otherwise stated, a system of units normalized to
laboratory frame reference plasma quantities appropriate
to relativistic plasma is used throughout; v → v/c,x →
xωp/c,t → ωpt,p → p/mc,E → qE/mcωp,ρ → ρ/ρ0,
etc., where ωp = √

qρ0/mε0 is the plasma frequency for a
neutralized species of charge q, mass m and charge density
ρ0. The fact that all variables (i.e., even those in the boosted
frame) are normalized to laboratory frame quantities is
important later on when discussing the similarity of solutions
in the boosted frame.

II. VLASOV COMPUTATION IN A BOOSTED FRAME

The use of a Lorentz boosted frame to speed up plasma
based wake-field acceleration calculations in particle-in-cell
simulations is well known in the literature [11–13]. The
advantage in this approach is that by boosting to a frame
co-propagating with the relativistically moving object at wake
phase Lorentz factor γp, the smallest time or space scales that
need to be resolved (e.g., the laser period) become larger since
they co-propagate with the boost, but the plasma length that
needs to be integrated over shrinks due to Lorentz contraction.
Hence, the number of calculations needed to resolve the
simulation is greatly reduced. A Lorentz boosted frame
has also been applied in the direction perpendicular to one
dimensional (in space) Eulerian-Vlasov simulations to enable
the simulation of a laser pulse with oblique incidence [14].

The covariant form of the Vlasov equation is [15](
pμ

∂

∂xμ

+ Fαμpμ

∂

∂pα

)
f4(x,p) = 0, (1)
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where pν is the four-momentum, xν the four-position, field
tensor Fαμ = ∂αAμ − ∂μAα , and f4(x,p) the particle distri-
bution in d4x d4p. For numerical solutions of the relativistic
Vlasov equation, due to desiring a fixed laboratory time
interval for a time-stepping algorithm and the computational
inefficiency of calculating the eight-dimensional covariant
form of the Vlasov equation, it is more convenient to use
a numerical form of the non-invariant form of the Vlasov
equation for distribution f (x,p,t),

∂f

∂t
+ p√

1 + |p|2 · ∂f

∂x
+

(
E + p√

1 + |p|2 × B

)
· ∂f

∂p
= 0,

(2)

obtained by integrating Eq. (1) with respect to p0 using
the relativistic energy-momentum relation and discretize in
time, space and momentum space with fixed time, space, and
momentum step sizes 	t , 	x, and 	p. It is also more typical
to solve for fields E and B than Aμ in numerical calculations.

A. Vlasov simulations in a Lorentz-boosted frame

We start with the resolution required to resolve a function of
x and t only, calculated on a regular Cartesian grid in different
inertial frames. Consider the inertial frame O in which the
number of grid points required to resolve all phenomena of
interest in space and time are Nx and Nt , respectively, and
are the minimum required in any inertial frame of reference.
By assuming that there is a frame of reference in which the
number of calculations required is minimized, we will then
demonstrate that, by boosting to a different frame of reference,
the number of calculations required to resolve the same physics
is always increased.

We can relate the number of grid points to the extent of
the simulation Lx = x2 − x1 and duration Lt = t2 − t1 that
encompasses all phenomena of interest occurring between
positions x1 and x2 and times t1 and t2. Define the uniform grid
spacings 	x and 	t through 	x = Lx/Nx and 	t = Lt/Nt .
The total number of calculations over the whole space-time
mesh is of order N = NxNt .

In a new frame O ′, related to O by a boost with Lorentz
factor γp, we can find the new number of calculations N ′,
assuming a uniform grid, through N ′ = N ′

xN
′
t , with N ′

x =
L′

x/	x ′ and N ′
t = L′

t /	t ′ .

The new extents of the simulation in the frame O ′,L′
x

and L′
t and the new grid spacings, 	x ′ and 	t ′, can be

related to extents and spacings in the frame O as follows.
The left hand figure of Fig. 1 shows a bounded sinusoidal
function in x − t space representing some particular system of
interest. The right hand figure shows the same system boosted
with γp = 1.25. Note that the coordinate system is chosen
so that the origin is at the center of the domain. When the
system is sheared, assuming it is now modeled using a regular
rectangular mesh, the new size of the simulation (maximum
extent) must be L′

x = γp(1 + vp/vL)Lx , where vL = Lx/Lt ,
by L′

t = γp(1 + vLvp)Lt , in size, for a boost with velocity
±vp.

To determine the resolution required in a new frame of
reference, consider the Fourier decomposition of the function
by wave number kj and frequency ωn, from −kmax → kmax and
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FIG. 1. (Left) A sinusoidal Lorentz scalar function in x − t space.
(Right) The same function in the frame boosted with γp = 1.25. The
dashed black line indicates the domain of interest and grid required
for resolving the function in the laboratory frame. The red dot-dashed
lines indicate the rectangular grid required to resolve the function in
the boosted frame.

−ωmax → ωmax. The limits of the Fourier-space can be related
to the grid spacings by the Nyquist frequencies, 	x < π/kmax

and 	t < π/ωmax. Using the transforms k′ = γp(k − vpω)
and ω′ = γp(ω − vpk), in a new frame of reference there
will be a new set of waves with wave numbers k′ and
frequencies ω′ representing the same physical behavior of
interest. Therefore, in the new frame the largest wave number is
k′

max = γp(kmax + vpωmax) and the largest frequency is ω′
max =

γp(ωmax + vpkmax). By again relating the Nyquist frequencies
to the grid spacings, 	x ′ < π/k′

max and 	t ′ < π/ω′
max, in the

new frame of reference, we can relate 	x and 	t to 	x ′ and
	t ′ by

	x ′ = 	x

γp(1 + vpv	)

and

	t ′ = 	t

γp(1 + vp/v	)
,

where v	 = 	x/	t . Hence,

N ′
x = γ 2

p (1 + vp/vL)(1 + vpv	)Nx

and

N ′
t = γ 2

p (1 + vpvL)(1 + vp/v	)Nt .

To perform the same calculation on a regular grid in the
boosted frame, we must use the grid shown in the right hand
panel of Fig. 1 as red dash-dot lines. If we additionally used a
rectangular boundary, it would need to encompass the whole
region including parts outside of the the domain of interest
(black dashed line), since it is sheared in time and space.
Clearly, the actual number of calculations can be reduced in
this frame of reference, even for this regular rectangular mesh,
by having a non-rectangular boundary. One example of this is
the “moving box” technique in accelerator simulations [16].
Nevertheless, in general there is a substantial decrease in the
number of calculations required in frame O compared with
O ′. For example, if we take vL = 1,v	 = 1, i.e., 	x = 	t

and Lx = Lt , then

N ′ = N ′
xN

′
t = γ 4

p (1 + vp)2N.
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That is to say, it is ∼γ 2
p times faster to perform the calculation

in the frame O. The analysis described above is basically
equivalent to that described by Vay [11].

It turns out that there is a similarly beneficial effect for
codes with a gridded momentum space. An example of this
is solving the relativistic Vlasov equation (2) on a regular
cuboid mesh. Consider a simulation with a uniform gridded
momentum space in a Vlasov code in the frame O from
pmin = −p0 to pmax = +p0, with grid step size 	p, that
completely bounds the particle distribution. Note that this
is the frame in which the momentum limits are symmetric,
which will normally be the frame with the minimum number
of calculations required (but not always). Similar to the spatial
grid, the number of points on the momentum grid will be
Np = Lp/	p, where Lp = 2p0. In a new frame O ′, the

momentum limits will be p′
min = γp(−p0 − vp

√
1 + p2

0) and

p′
max = γp(p0 − vp

√
1 + p2

0), which means the extent of the

momentum space increases by a factor of γp, i.e., L′
p = γpLp.

After transformation, the required grid spacing in the new
frame will depend on velocity, 	p′ = γp(	p − vp	E) 	
γp(1 − vpv)	p. Assuming that to perform the simulation we
still want to choose a uniform grid in the frame O ′, then the
new grid spacing should be given by the smallest transformed
grid cell,

	p′ = γp

⎛
⎝1 − vpp0√

1 + p2
0

⎞
⎠	p.

Hence,

N ′
p = Np(

1 − vpp0√
1+p2

0

) .

If we consider a highly relativistic simulation, p0/

√
1 + p2

0 	
1, then N ′

p 	 Np/(1 − vp) 	 γ 2
p (1 + vp)Np.

For a Vlasov simulation in 1 spatial and 1 momentum space
dimensions, the total number of calculations required is of
order N = NxNpNt . In general, the frame that minimizes the
number of grid points NxNt is not necessarily the same as
the center of momentum frame O. However, for problems
involving the crossing of two objects such as in plasma
based accelerator schemes, free electron lasers, etc., they do
coincide [11]. This means that for such problems, the number
of calculations required for a Vlasov simulation in a frame
boosted in any direction with respect to the optimum frame O,
i.e., O ′, scales as N ′ 	 γ 6

p (1 + vp)3N . Hence, if a simulation
is performed in an optimum frame relative to, for example,
a laboratory frame simulation, there may be an up to γ 6

p

reduction in the number of calculations required depending
on the situation. Figure 2 illustrates this idea graphically.
This result means that Vlasov simulations for plasma based
accelerators under realistic conditions may be feasible.

One other point of view is that instead of a Vlasov
simulation, one may consider a simulation of wave functions
of x,t but where there is a spread in k,ω. By an identical
argument, the frame in which the frequency or wave number
limits are symmetric will usually be optimal (since p,E can
be replaced with k,ω).
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FIG. 2. (Left) A region of interest in {x,p,t} space indicated by
contours. (Right) The same region of interest in the frame boosted
with γp = 2. The dotted lines on the walls indicate a characteristic
grid size required for resolving the same physics in both boxes.

B. Thermal effects in plasma-based accelerators

Consideration of thermal effects are important in plasma-
based accelerators [6] and an Eulerian-Vlasov method may be
preferable to particle-based methods due to decreased noise.
However, the former are very computationally intensive due
to inefficient representation of the particle distribution. In a
simulation of a laser wake-field accelerator in particular, the
largest momentum that needs to be included on the momentum
grid is the maximum forward momentum at dephasing pmax ∝
γ 2

p [10]. The minimum scale length to be resolved is the
plasma momentum spread pth, which is related to the plasma
“temperature” θmec

2 = kBT (in real units). The difficulty is
that θ ≪ 1 in any realistic scenario, such that the approximate
number of grid points required is huge and scales unfavorably
with γp,pmax/

√
2θ ∝ γ 2

p ≫ 1. For example, consider a laser
wake-field driver with Lorentz factor γp = 30 and a plasma
temperature in real units of 100 eV 	 2 × 10−4mec

2. In this
case, the minimum number of grid points required for a Vlasov
simulation in the laboratory frame would be O(105).

In a frame boosted in the forward direction by γp, however,
the new maximum momentum is

p′
max 	

[
1

(1 + vp)γp

− γpvp

p2
max

]
pmax,

i.e., pmax is reduced by a factor of O(γp). By contrast, the
momentum spread ∼√

θ of the plasma is increased.
Consider a symmetric distribution that has a characteristic

width pth, from p− = −pth/2 to p+ = +pth/2. The new
momentum limits in the boosted frame are

p′
− = γp(p− − vpE−),

p′
+ = γp(p+ − vpE+).

Since the width in the boosted frame is p′
th = p′

+ − p′
−, the

energy terms cancel (for the symmetric limits considered) and
hence

p′
th = γppth.
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FIG. 3. Contour plots of the natural logarithm of distribution function f (with x − vpt /x ′ and p/p′ scales cropped) for plasma wave
simulations with a driver with γp = √

7.25 in a plasma of normalized temperature θ = 0.04. The driver is similar to that described in Sec. III.
All calculations are shown close to a laboratory frame time tf = 20π . (a) Performed in a frame moving at vp at slightly later than tf . (b) shows
the same calculation as (a), but displayed with transformed coordinates p′ → p and x ′ → x − vpt . (c) The laboratory frame calculation at tf .
(d) The same boosted frame calculation as (a) but on a mesh with 64 times fewer grid points. (e) The same boosted frame calculation as (a)
but on a courser mesh and transformed in x,t (as described in the main text) to t = tf in the laboratory frame. (f) Same as (e) but fully Lorentz
transformed to the laboratory frame. The calculations were performed on different grids of Nx × Np as indicated in the figure panels.

Therefore, in the boosted frame the ratio of the smallest
momentum (the width) and the largest momentum (maximum
forward momentum gain) that need to be resolved is decreased
by a factor of γ 2

p , i.e., the number of momentum grid points
can be reduced by a factor of γ 2

p , making calculations more
tractable. For the wake-field example above, this would mean
only O(102) momentum grid points required to resolve the
same physics as in the laboratory frame.

To illustrate these scalings, Fig. 3 shows boosted frame and
co-moving laboratory frame Vlasov simulations of a relativis-
tically moving driver, reminiscent of the ponderomotive force
of a laser, generating in its wake a plasma wave with rela-
tivistic phase velocity, in a plasma of normalized temperature
θ = 0.04. This driver is an external electric field. The precise
simulation conditions are given later in Sec. III and details
of the Fourier based Vlasov code used for these calculations
are given in the Appendices. The figure shows contour plots of
the natural logarithm of distribution function f (x − vpt /x ′ and
p/p′ scales cropped) for plasma wave simulations with a driver
with γp = √

7.25. Contour plots are used here so that direct
comparison of transformed distributions can be performed.
All calculations are shown close to a laboratory frame time

tf = 20π . Figure 3(a) is performed in a frame moving at vp at
slightly later than tf . Figure 3(b) shows the same calculation
as (a), but displayed with transformed coordinates p′ → p and
x ′ → x − vpt . Figure 3(c) shows the corresponding laboratory
frame calculation at exactly tf .

The time evolution of this structure in the two frames
(boosted and laboratory) should clearly be different due to
non-simultaneity of events. Since the laboratory frame plasma
perturbation can be described in terms of the coordinates
ξ = x − vpt and τ = t , boosted frame time can be expressed
as t ′ = γp(τ (1 − v2

p) − vpξ ) = −γpvpξ + τ/γp. However the
absolute evolution is relatively slow, ∂f/∂τ � ∂f/∂ξ , there-
fore time in the boosted frame will be dominated by the
functional dependence on phase ξ . Figure 3(a) and 3(b)
are shown at a time t ′ such that at x ′ = −2π , the boosted
frame time coincides with the laboratory frame time. Near
to this point, when the space and momentum coordinates are
transformed, the distribution function f (x,p,t ′) looks similar,
but not identical, to the real laboratory distribution f (x,p,t)
(this is not yet a proper Lorentz transform of the data).

The laboratory frame calculation in Fig. 3(c) shows errors
at the log f = −3 level despite the relatively large mesh
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[(a)–(c) are all calculated on a 2048 × 2048 grid with
equivalent space and momentum limits]. This is because the
distribution is narrow relative to the momentum grid spacing
(pth/	p ≈ 6) and therefore the steep gradients cause errors in
the Fourier representation. To show how the use of the boosted
frame can speed up calculation, Fig. 3(d) shows the same
boosted frame calculation as (a) but on a mesh with 64 times
fewer grid points (a 256 × 256 mesh). It shows errors at a level
comparable with the fine mesh laboratory frame calculation
Fig. 3(c), but the total simulation for Fig. 3(d) for tmax = 48π

took 42.8 s on a single 2.67 GHz Intel Xeon X5650 processor,
whereas for Fig. 3(a) the calculation took ≈2617 s on the same
processor. The laboratory frame calculations will not even
complete on such a course mesh, but goes unstable because
of the poor Fourier representation. For even slightly larger
values of γp, it is not even possible to perform calculations
in the laboratory frame with this serial code due to memory
restrictions.

To properly compare calculations in the two inertial frames,
a full Lorentz transform of f ′(x ′,p′,t ′) must be performed. In
practice this means recording the entire f ′(x ′,p′,t ′) history
and transforming the data volume, which requires a large
amount of memory. With available resources transformation
of the full Nx × Np × Nt = 2048 × 2048 × 757 grid was not
possible. However, simulations were also run in the boosted
frame at Nx × Np = 512 × 512 with a larger timestep of
	t ′ = 0.5, which allowed storage of the full f ′(x ′,p′,t ′) data.
This was then transformed by shifting the elements in the
data cube in the time direction by a position vector dependent
number Nshift(x ′) = floor(Ntvpx ′/tmax), which corresponds to
t ′ → t ′ + vpx ′, so that the transformed time corresponding to
an (x ′,p′) slice in the data volume is equivalent to a time
γpt . Combined with Lorentz transformations of the space
and momentum coordinates, the full Lorentz transformed
distribution f (x,p,t) can be constructed. Figure 3(e) shows
the same boosted frame calculation as (a) but on a courser
mesh (512 × 512) and transformed in x,t as described above
to coincide with t = tf in the laboratory frame. Finally,
Fig. 3(f) shows the same data fully Lorentz transformed to
the laboratory frame. It is now properly simultaneous to the
real laboratory frame calculation Fig. 3(c).

III. INVESTIGATION OF WARM WAVE-BREAKING
USING A LORENTZ BOOSTED FRAME

As an application of the technique described in the previous
sections, we will examine the problem of warm wave-breaking
of a wave with relativistic phase velocity vφ , which has
been studied by numerous authors [17–24] and for detailed
discussion the reader is directed to those references. In
particular, Schroeder et al. [20] used relativistic fluid theory
closed by neglecting centered moments of third order and
higher, to indicate that for a thermal distribution in the limit

γp → ∞ (with γp = γφ = 1/
√

1 − v2
φ being associated with

the phase velocity of the plasma wave in this case), the
maximum electric field supported by a thermal plasma wave
asymptotically approached a constant value, the value of
which they calculated. Here, a relativistic Vlasov numerical
calculation in the frame boosted to where the wave phase

velocity is zero will be directly applied to this problem as a
demonstration; for the highest phase velocities investigated,
to have the same effective resolution as the boosted frame
calculations performed here the equivalent laboratory frame
calculations would have to have O(103) times as many
momentum grid points.

A. Similar dynamics of plasma in boosted frame

Before performing the simulations, we note that the 1D
Vlasov-Maxwell system relevant to the warm wave-breaking
of a plane wave can be written in the frame co-moving with
the plasma wave phase velocity using new further normalized
coordinates p′ → p′/γp,x ′ → x ′/γp and t ′ → t ′/γp. The
resulting one-dimensional Vlasov equation is

∂f ′

∂t ′
+ p′√

1
γ 2

p
+ p′2

∂f ′

∂x ′ + E′ ∂f
′

∂p′ = 0 (3)

with E′ → E′ for consistency.
Gauss’s law (see Appendix B for discussion of the use of

Gauss’s law and Ampère-Maxwell in one dimension) is

∂E′

∂x ′ = ρ ′ − 1, (4)

where the charge density must be normalized as ρ ′ → ρ ′/γp

for consistency with the left-hand side. The last term is 1
because the density is normalized to the laboratory frame
reference density ρ0, where the plasma is at rest. In the boosted
frame this transforms to γpρ0 and therefore the normalized
background density is 1. This definition is also consistent with

ρ ′ =
∫ ∞

−∞
f ′dp′ (5)

with f ′ → f ′, which is satisfactory since the distribution is an
invariant quantity.

Equations (3)–(5) describe the self-consistent evolution of
a Vlasov plasma in a frame boosted to velocity vp. A plasma
at rest in the laboratory frame with characteristic density
ρ0 = 1 and temperature θ (i.e., momentum spread pth = √

2θ )
will appear to be a plasma traveling with momentum pdrift =
−γpvp, density ρ ′

0 = γp and momentum spread γp

√
2θ in

the boosted frame in terms of the old variables. In the newly
normalized set of variables, this becomes a plasma with
momentum pdrift = −vp 	 1 − 1/2γ 2

p , density ρ ′
0 = 1, and

momentum spread
√

2θ .
In the limit γ 2

p → ∞, there is no dependence on γp in
Eqs. (3)–(5) or the initial conditions. Therefore, the evolution
of the normalized system should display similar dynamics
for any γp � 1 for a given laboratory frame density ρ0 and
temperature θ . This is analogous to the similarity theory
of Ref. [25], but with γp replacing the role of a0 in that
reference. There is a caveat to this; there will be a small region
close to p′ = 0 where the approximation v′ 	 p′/|p′| = ±1
breaks down. The width of this region is approximately 1/γp.
Therefore, provided the temperature of the plasma θ is such
that γ 2

pθ � 1, few particles will be in the region where the
similar dynamics does not apply.

This analysis implies that the evolution of the warm plasma
wave (with γ 2

pθ � 1) should evolve with similar dynamics
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for any γp, regardless of any details of the distribution
function shape in the limit γ 2

p � 1 and therefore the maximum
normalized electric field of the wave should not depend on γp.
It does not, however, prescribe what that field strength is. Since
the component of the electric field in the direction of the boost
is invariant and the normalization of electric field does not
depend on γp, the laboratory frame electric field must not
depend on γp in this limit, but only on the temperature and
plasma density, consistent with the results of Ref. [20].

The more general use of this similarity theory approach
for scaling results from simulations of plasmas perturbed by
relativistic objects will be addressed in a future publication.

B. Numerical simulations

To obtain the numerically calculated electric field strength
for comparison with theory, I carried out simulations in the
the frame in which the phase velocity of the wave is zero.
This was necessary so that the thermal distribution with small
spread and high energy electron acceleration were resolvable
on a reasonable grid, as discussed in the previous sections.
Simulations were carried out on a Nx × Np = 2096 × 2096
uniform grid using the Fourier based Vlasov code described in
Appendix B. The time step was ω′

p	t ′ = 0.2 and the simula-
tion proceeded until tmax = 24πγp. The initial distribution was
a one dimensional drifting relativistic Maxwellian as described
in Appendix A with drifting momentum −γpvp and thermal
spread θ = 0.04. The domain length in x ′ was 14γpπ , defined
in the range xmin = −12πγp � x ′ � xmax = 2πγp.

The maximum electric field supportable by the plasma wave
was found by adding an external electric field (which could
represent, for example a particle beam or the ponderomotive
force of a laser driver). This field was increased slowly (with
respect to the plasma period) in amplitude, monotonically
from zero [26]. A plasma wave with increasing amplitude was
consequently generated. The amplitude of the external field
was increased in amplitude far beyond the point of saturation
when the maximum plasma wave amplitude was reached and
had a precise form:

E′
x,ext =

{
E0(t ′) cos(x ′/γp) for − γpπ < x ′ < γpπ

0 otherwise
, (6)

where E0(t) = t ′/tmax, although other functional forms were
also tried, including a non-adiabatic drive (i.e., step function
switch on), with similar results.

At the ends of the domain, a equilibrating operator of
the form ∂f /∂t ′|c = −ν(x ′)[f − f0] was added, where f0

is the unperturbed initial distribution. This was because
while the code has several nice properties with respect to
conservation and accuracy, the calculation must be performed
in a periodic domain due to the fast Fourier transform
algorithm. The relativistic phase velocity waves generated
do not, however, have a well defined period because their
wavelength depends on the wave amplitude. The spatially
dependent “collision frequency”, ν(x ′), was zero within the
domain of interest and had a sufficiently high value at the
edges of the domain that the plasma streaming in from xmax

was equal to f0 to near machine precision before interacting
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FIG. 4. Natural logarithm of distribution function f at t ′ =
12πγp for different driver phase velocities; (a) γp = √

7.25, (b)
γp = √

26, (c) γp = √
101, and (d) γp = √

226. The color scale is
truncated at the −9 level (i.e., for f � 10−4, with maximum f 	 2).

with the externally applied electric field:

ν(x ′) = 2

[
e
−( x′−xmax

γpπ
)40 + e

−( x′−xmin
γpπ

)2
]
.

Figure 4 shows snapshots in time of the distribution function
at t ′ = 12πγp into the simulation for four different phase
velocities. The maximum and minimum momentum and space
scales in each figure are deliberately set to multiples of γp

to illustrate clearly the similar evolution of the distribution
function as γp becomes large.

Figure 5 shows various outputs from the code as a function
of time t for a simulation with γb = √

226. (a) and (b) show
time histories of the density perturbation δρ ′ and electric field
E′

x . The amplitude of the perturbation grows in time as the
driving external electric field (not shown) increased. After
reaching the maximum amplitude, the amplitude no longer
grows, but instead the wavelength of the first period where
the driver is situated increases, with the wave structure losing
coherence.

Figure 5(c) shows the maximum of E′
x compared with

the wave-breaking limit in Ref. [20], ESES . The electric
field amplitude grows smoothly until it approaches the wave-
breaking limit, whereupon the field starts to oscillate due
to fluctuations in the coherent structure of the wave, but
no longer grows in amplitude on average. (d) shows the
Fourier transform of δρ ′ as a function of wave number
normalized to k′

p. As time progresses, we see the generation of
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FIG. 5. Various outputs from the code as a function of time t for a
simulation with γb = √

226. (a) Density perturbation δρ ′, (b) electric
field Ex , (c) maximum of Ex compared with the wave-breaking limit
in Ref. [20], ESES , and (d) Fourier transform of δρ ′ as a function of
wave number normalized to k′

p .

harmonics of kp as the wave becomes nonlinear and then sub-
sequently the coherent structure of the wave starts to become
lost.

Finally, Fig. 6 shows a comparison of the wave-breaking
threshold from the analytic expression in Ref. [20] with the
maximum electric field calculated by the Vlasov code for
simulations over a range of values of γp for fixed θ . As can be
seen from the figure, there is good agreement with the analytic
expression over the range calculated to within the limitation
of the fluctuations in the maximum field as the wave reaches
maximum amplitude. The only discrepancy is at the lowest
value of γ 2

pθ , where the maximum field is much higher than
the prediction. This is because so many particles are trapped
as the simulation progresses that the assumptions in deriving
the analytic expression are violated anyway.
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FIG. 6. Comparison of wave-breaking thresholds from (a) the
analytic expression in Ref. [20] and (b) the maximum electric field
calculated by the Vlasov code.

IV. CONCLUSIONS

In conclusion, I have shown that using a boosted frame can
be very advantageous for Vlasov simulations of relativistic
thermal plasma waves. In the simulations performed here, at
the highest value of γ 2

pθ with θ = 0.04, therefore γp = 50.
In the laboratory frame, trapped particles in the thermal
distribution reach ∼γ 2

p energy. Therefore the requirement on
a uniform momentum grid minimally resolving the thermal
distribution and overall dynamics would scale as ∼γ 2

p/θ ∼ 105

grid points, although for an accurate simulation it would be
much higher than this. In the boosted frame with maximum
or minimum momentum ∼γp I require ∼γp/θ ∼ 250 grid
points to minimally resolve the thermal distribution and overall
dynamics (although an order of magnitude more than this were
used for accurate results). The use of a boosted frame allowed
the running of these simulations on a single processor in a
relatively short time (a few hours for the longest).

The use of a Lorentz boosted frame for Eulerian-Vlasov
calculations should also be applicable to methods other than
the Fourier solver used here. It should be noted, however, that
numerical instabilities have been observed in particle-in-cell
simulations using Lorentz boosted frames and various methods
have been developed to mitigate them ([13] and references
therein). For Eulerian-Vlasov calculations not using Fourier
methods, as in this paper, similar methods would probably
need to be applied also.

These simulations support the maximum electric field
achievable calculated in Ref. [20], even under non-stationary
conditions. When trapping of particles was sufficient to lead
to a distribution with momentum spread that violated the
assumptions in that model, the simulation results did not agree
with the maximum electric field. The results of this paper also
demonstrate evidence for the feasibility of Vlasov simulation
for plasma based accelerator applications.
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APPENDIX A: 1D RELATIVISTIC DRIFTING
MAXWELLIAN

For all the simulations performed in the boosted frame we
must use a correctly initialized drifting relativistic Maxwellian
(“Maxwell-Juttner”) distribution in terms of only one momen-
tum coordinate. In its rest frame, the relativistic Maxwellian
with normalized temperature θ is [15]

f (p⊥,p) = 1

4πθK2(1/θ )
exp

[
−1

θ

√
1 + p2

⊥ + p2

]
,

where p⊥ are the perpendicular (to the domain) components
of the momentum and K2(x) is a modified Bessel function of
the second kind. Since f is an invariant, we can express the
distribution in the frame moving at vp by simply invoking the
transform γ = γp(γ ′ + vpp′). The 1D distribution can there-
fore be found by integrating over the transverse coordinates

f (p′) = 1

4πθK2(1/θ )
exp

[
−γpvpp′

θ

]

×
∫

exp

[
−γp

θ

√
1 + p2

⊥ + p′2
]
d2p⊥, (A1)

such that

f (p′) = 1

2γ 2
pK2(1/θ )

(γp

√
1 + p′2 + θ )

× exp
[
−γp

θ
(
√

1 + p′2 + vpp′)
]
. (A2)

This distribution was used as the initial condition for the
results in the main text. Note that in the limit that θ → 0,
this expression reduces to

f (p′) = γ 2
p√

2πθ
exp

[
− (p′ + γpvp)2

2γ 2
pθ

]
,

which is a non-relativistic Maxwellian with a temperature
γ 2

p higher than in the plasma rest frame and shifted to
a drifting momentum of −γpvp (and with density ρ ′ =∫

f (p′)dp′ = γpρ).

APPENDIX B: RELATIVISTIC SPECTRAL 1D1P
VLASOV CODE

This appendix describes tests of the relativistic Fourier
based 1D1P relativistic Vlasov code used in the studies in
the previous sections, for verification and to demonstrate
its numerical accuracy. Because it uses a Fourier based
spectral method, it is ideal for studying periodic structures
with high fidelity. There have been a number of different
implementations of spectral and Fourier based schemes related
to the one I develop here [27–32]. These often use Hermite
polynomials for the expansion in momentum or velocity
space, since the lowest order term is a Gaussian. Here,
straightforward Fourier modes are used in both momentum
and position space representations of the distribution f (x,p,t).
The Fourier-based method described here does not ensure

positivity of the distribution f . Negative f can occur when
gradients get sufficiently steep (insufficiently represented in
Fourier space) that Gibbs phenomena occurs. A non-linear
numerical diffusion operator is introduced in Sec. B 1 that
preserves the steepness of gradients larger than a grid spacing
but acts to smooth out ripples that would eventually lead to
negative f . In all the tests here and the investigations in
the rest of the manuscript the positivity of the distribution
is monitored and numerical convergence checked. Here,
we use the same dimensionless system of units as in the
main section, t → ωpt,x → xωp/c,v → v/c,φ → qφ/mc2,

p → p/mc, etc. The Fourier Vlasov code used solves the
two-dimensional Vlasov equation (one spatial coordinate, one
momentum coordinate)

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂p
= 0,

where f is the smooth one-dimensional plasma distribution
f = ∫∫

f3Ddpydpz ,

v = p√
1 + p2

,

and E is the electric field arising from the scalar potential,
which is solved for using Poisson’s equation

−∇2φ = ρ − ρ0.

Note that the Vlasov-Poisson description that we use is not
generally identical to the Vlasov-Maxwell, even in 1D, since
the latter allows for a time dependent electric field E0(t) that
is not constrained by the Poisson equation (Ampère-Maxwell
being the time derivative of Poisson’s equation in 1D, when
combined with the continuity equation). This field is of the
form E0(t) = (u0 − U ) sin t + E0(0) cos t [33], where u0 is
the initial drift velocity of electrons, U is the drift velocity of
the ions and E0(0) is the initial value of this time dependent
only electric field. Since for all the problems I tackle, the initial
electron and ion drift velocities are equal (the plasma is initially
at rest in the laboratory frame), the plasma is initially exactly
neutral and the initial external field is zero, E0(t) = 0 for all
times and therefore the Vlasov-Poisson and Vlasov-Maxwell
systems are equivalent in 1D.

The distribution is represented by the gridded function fij ,
where i denotes the index position on the x-grid spanning
Nx points, xi and j denotes the index of the p grid spanning
Np points, pj . 	p is uniform, hence the difference between
velocity cells, 	v, is not. To numerically solve this system of
equations, the code uses an algorithm that splits the transport
in the x and p directions [34,35] to give overall second-order
accuracy in time. It uses discrete Fourier representations, given
by

f̃ij =
Nx−1∑
i ′=0

fi ′j exp

[
iC2πii ′

Nx

]

and

f̂ij = 1

Np

Np−1∑
j ′=0

fij ′ exp

[
− iC2πjj ′

Np

]
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and their respective inverse transforms, where iC = √−1 and
spaces ki and κj , reciprocal to xi and pj . These are calculated
using fast Fourier transforms. I use n to denote time step index
via t = n	t with constant time step 	t .

There are four main steps:
(1) The algorithm starts with the distribution function in

reciprocal x space, f̃ij . The algorithm pushes for a half-step
spatial advection via

f̃
n+1/2�

ij = f̃ n
ij exp

[
−iCkivj

	t

2

]
.

which is the solution to the oscillator (advection in real space)
equation

∂f̃

∂t
+ iCkvf̃ = 0.

(2) Solve Poisson’s equation to find the potential using the
transformed charge density

ρ̃
n+1/2
i =

Np−1∑
j=0

f̃
n+1/2�

ij 	v.

The numerical forms of Poisson’s equation is

φ̃
n+1/2
i = ρ̃

k2
i

.

The transformed force is calculated from F̃
n+1/2
x,i = ikφn+1/2.

(3) Perform a full two-dimensional inverse transform
Fourier transform f̃ij → f̂ij , i.e.,

f̂ij = 1

NxNp

Np−1∑
j ′=0

Nx−1∑
i ′=0

f̃i ′j exp

[
−2πiC

(
jj ′

Np

+ ii ′

Nx

)]
,

which returns the distribution to x space and transforms to
reciprocal p space. Push for a full-momentum space advection
via

f̂
n+1/2
ij = f̂

n+1/2�

ij exp
[ − iCκjF

n+1/2
i 	t

]
.

(4) Perform a full two-dimensional forward transform
f̂ij → f̃ij and finish with a half-step spatial advection

f̃ n+1
ij = f̃

n+1/2
ij exp

[
−iCkivj

	t

2

]
.

This algorithm is overall second-order accurate with respect
to the time step 	t , but exact with respect to the momentum
and position space grids provided the Fourier representation
of the function is accurate, i.e., system energy conservation,
momentum conservation, etc., does not depend on the 	p or
	x grid sizes. The stability condition is that of a standard
second-order scheme.

1. Non-linear diffusion

The Fourier method for solving the Vlasov-Poisson equa-
tion detailed above may be inferior to other methods due to the
steep gradients that lead to characteristic oscillating artifacts
appearing. To mitigate this, introduction of numerical diffusion
can smooth out ripples, but will also introduce diffusion of real
sharp features in the distribution function. Instead, a nonlinear

FIG. 7. Demonstration of the effect of nonlinear diffusion on
the calculations described in the main text in Sec. III. Calculations
performed are on a Np × Nx = 2048 × 2048 grid in the boosted
frame. Both (a) and (b) show ln(f ) under identical conditions except
that in (a) a nonlinear diffusion operator with D0 = 0.5 was applied.

diffusion operator [36] was included in the calculations to
smooth ripples but maintain steep gradients

f smooth
ij = fij + ∇N · (Dij∇Nfij )	t,

where ∇N is the numerical representation of the gradient
operator, taken here to be standard second-order center
difference and Dij is a non-linear diffusion coefficient given
by

Dij = D0

1 + ||∇Nfij ||2
fij

2

,

where D0 is a chosen linear diffusion coefficient.
The use of this is illustrated in Fig. 7, which shows

calculations performed on a Np × Nx = 2048 × 2048 grid in
the boosted frame as described in the main text in Sec. III. Both
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FIG. 8. Electric field energy |∑i E
2
i 	x/2|1/2 in the Landau

damping problem described in the text for N = 2048 cells and
N = 1024 cells.
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FIG. 9. Distribution function for the relativistic two stream
instability.

panels (a) and (b) show ln(f ) under identical conditions except
that in panel (a) a nonlinear diffusion operator with D0 = 0.5
was applied. We can see that without the nonlinear diffusion
filter, spectral errors start to appear starting at 10−3 of the
maximum of f (which is actually quite reasonable anyway).
However, with the nonlinear diffusion filter, panel (a), the
spectral errors are negligible above 10−4 of the maximum of
f and moreover the steep gradients in f are preserved.

2. Verification

A number of different tests and comparisons with code
results from the literature were made with this code for
verification. In this section just a couple of those performed
are described, to demonstrate that the scheme has performance
comparable to high-order schemes in the literature.

a. Landau damping

This example simply demonstrates the accuracy of the
method generally, for a nonrelativistic problem. The test
problem is a standard Landau damping test [31], using a
thermal plasma with an initial distribution specified as

f (x,p,t0) = 1√
2π

exp

(
−p2

2

)[
1 + 0.01 cos

(x

2

)]

with x ∈ [0,4π ] and v ∈ [−8,8]. The code is used in non-
relativistic mode, so in this case v = p instead of

√
1 + p2.

0 20 40 60 80 100

100

105

1010

(|
|E

2 /2
|| 2)1/

2

ω t 

FIG. 10. (Blue line) Electric field energy |∑i E
2
i 	x/2|1/2 in the

two stream problem described in the text. (Green line) Analytic
solution.

The analytic damping rate is δ = 0.1533. Figure 8 shows the
electric field energy as a function of time for Nv = Nx = N =
2048 cells and N = 1024 cells along with the linear decay
solution. 	t = 0.1. The results in Fig. 8 are similar to those in
Ref. [31], including the relatively large oscillations in electric
field at late times.

b. Relativistic two-stream instability

The relativistic two-stream instability is to verify the
relativistic algorithm. The code is used in relativistic mode,
so in this case v = p/

√
1 + p2. The test is a two stream

instability, with an initial distribution function

f (x,p,t0) = 1√
π

exp(−(|p| − p0)2)[1 + 10−10 cos(kT Sx)]

with p0 = 3,

kT S =
√

3γ

2p0

the wave number of the fastest growing mode, with growth-
rate δ = ωp/2

√
γ . The calculation was performed with Nv =

Nx = 2048 and a time step of 	t = 0.1. Figure 9 shows the
distribution at t = 80.

Figure 10 shows the electric field energy as a function of
time for the two stream instability cells along with the linear
growth solution. Note that due to the initial perturbation being
so small (10−10) and the overall accuracy of the code, the
growth is linear over approximately 8 orders of magnitude
before saturating.
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