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Multispecies plasma expansion into vacuum: The role of secondary ions and suprathermal electrons
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The self-similar expansion of multispecies ion plasma is investigated by a two-ion fluid model with adiabatic
equation of state for each ionic species. Our aim is to elucidate the effect of secondary ions on a plasma expansion
front, in combination with energetic (suprathermal) electrons in the background, modeled by a kappa-type
distribution function. The plasma density, velocity, and electric-field profile is investigated. It is shown that
energetic electrons have a significant effect on the expansion front dynamics, essentially energizing the front,
thus enhancing the ion acceleration mechanism. Different special cases are considered as regards the relative
magnitude of the ion mass and/or charge state.
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I. INTRODUCTION

Plasma expansion into vacuum has received constantly
growing interest in recent years, in particular due to its
relevance with experiments on ultraintense laser pulse in-
teraction with solid targets [1–5] and with applications of
high-energy ion beams, e.g., for ion acceleration [6–9], laser-
assisted fast ignition scenarios for fusion [10–12]. Experimen-
tal low-temperature plasmas [13] and plasmas for medical
applications [14–18] (e.g., cancer therapy) involving plasma
expansion mechanisms have received increasing attention in
the past few years. Various plasma expansion schemes have
been modeled via particle-in-cell (PIC) simulations to validate
theoretical models [19–21].

From a theoretical modeling point of view, the main
building blocks have been set in the early works of Gurevich
et al. [22] and later of Allen and co-workers [23]. These
were succeeded by a series of remarkable contributions by
Mora and co-workers [24–29], including a study of the effect
of charge separation, i.e., violation of the charge neutrality
hypothesis (plasma approximation), numerically [25,30], for
electron-ion plasmas. Interestingly, a bi-Maxwellian (two
electron temperature) approach was considered in a number
of works [31–33], which described the effect of the coexis-
tence of two thermal electron populations. Other analytical
studies have focused on kinetic-theoretical considerations
for the electron distribution [34], the effect of instabili-
ties [35] and even magnetic field generation [36], among other
effects.

Not against physical intuition, and certainly in favor of
analytical tractability, the electron background is often tacitly
assumed to be isothermal throughout the ion-fluid expansion
procedure. However, in realistic situations, laser-target inter-
action certainly generate energetic (suprathermal) electrons,
which are energized due to various acceleration mechanisms.
These electrons may be characterized by particle distribution
functions featuring a long tail in the velocity spectrum, which
may significantly deviate from the Maxwellian distribution.
One widely accepted paradigm of a long-tailed distribution
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is the so-called kappa distribution [37,38], which is known
to model a number of situations in space [39,40], but also
in the laboratory [41]. The kappa approach was adopted
in a plasma expansion context only recently, considering
superthermal electron effects in electron-ion plasmas [42].
The kappa distribution is characterized by a real parameter
(κ), whose “smallness” measures deviation from thermal
equilibrium: The Maxwell-Boltzmann state is obtained in the
infinite κ limit. It has been shown that kappa distributions
provide excellent fits in a variety of environments, not only
in space [43–47], but also in numerical experiments [48]. The
kappa distribution is by now established as an efficient tool
for providing correct predictions of observed modifications
of, e.g., the plasma sound speed and the associated charge
screening length [47], both of which are modified in the
presence of energetic electrons [38].

In space plasmas, it appears that κ values between 3
and 6 are ubiquitous in the solar wind [39] and also in
planetary magnetospheres [44,48]. The ability for accurate
measurements of particle distributions by sophisticated di-
agnostic devices onboard spacecraft missions [39] provides
a tool for precise characterization of energetic particle
distributions, which seem to establish the fact that the
long-tailed distribution observed are well fit by kappa-type
theories [40,46].

In high-power laser-plasma interaction experiments, on the
other hand, qualitative evidence based on proton diagnos-
tics [49] suggests that the electron population is not thermal-
ized, while various types of non-Maxwellian situations, e.g.,
“bump-on-tail” distributions may develop, depending on the
surrounding plasma environment. For any target thickness, it
is evident that the electrons are in a nonthermal state for long
times (large multiples of the plasma period) [50]. Admittedly,
in proton-imaging-based experiments, it appears that current
diagnostic techniques do not allow for an accurate charac-
terization of the electron distribution; hence, the electron
distribution may often have to be inferred indirectly [50].
Suprathermal particles also appear in other types of laser-
plasma interaction experiments e.g., in hohlraums [51], and
also in fusion plasmas [52]. Therefore, although a link to
kappa-type theories may not be rigorously established, in the
laboratory, these seem to capture the generic characteristics
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of electrostatic excitations at least, as observations seem to be
compatible with wave forms predicted by related studies [41].

As opposed to the “textbook” two-component (electron-
ion) plasma picture, experimentally produced laser plasmas
contain several ion species, due to increasingly complicated
composite material targets, leading to multicomponent plasma
configurations [53–56]. Interestingly, secondary ions (rather
than electrons) have recently been argued to contribute to ul-
trafast collisional plasma heating by electrostatic shocks [57].
The role of a minority secondary ion population on plasma
expansion was investigated earlier in a number of stud-
ies [31,58–61]. Our work at hand aims at generalizing those
earlier models by considering a nonthermal (non-Maxwellian)
plasma environment and a finite (arbitrary) admixture of ion
components. From first principles, the presence of secondary
ions in an expanding plasma is manifested in the appearance
of spectral peaks, which are of interest both in experimental
diagnostics and for application purposes [31,59]. As a sim-
plifying hypothesis, one may assume that the plasma does
not change its shape during the expansion process and that
there is no charge separation. Therefore, the expanding plasma
can be studied as a self-similar process. Physically speaking,
this assumption is justified if the system’s scale is much
larger than the characteristic Debye length, and the flow of
both ions and electrons is sufficient smooth (laminar) on the
ionic time scale. The shape of the expanding plasma front
has been investigated via numerical simulation in a number
of studies in the past [25,34,62,63], which corroborated the
general features of the self-similar solution. As a matter of
fact, the aforementioned studies have addressed the expansion
of a collisionless cold-ion fluid against an electron cloud
obeying either a steplike or a Maxwell-Boltzmann distribution.
A critical comparison between the analytical (self-similar)
solution and the numerical results has confirmed that the
self-similar solution can predict the general features of the
expansion front but rather fails to predict the actual position
of the ion front and of the associated electric field at early
times. However, those numerical studies have confirmed that,
with the passage of time, plasma motion approaches the self-
similar picture quite precisely, regardless of the background
electron profile. It is worth mentioning that a series of recent
numerical and experimental studies have established a link
with particle acceleration mechanisms via spontaneous shock
creation during plasma expansion [19–21]. Concluding, the
self-similar solution cannot explain the complete process of
plasma expansion into vacuum, but it succeeds in capturing
the essential features of the problem and bears, in fact, the
significant advantage of analytical tractability.

Our aim in this work, is to elucidate the effect of secondary
ions on the plasma expansion front, in combination with the
role of energetic electrons in the background. A kappa-type
electron distribution function [37,38] is adopted. Adopting
a self-similar analysis, the evolution of the plasma density,
velocity, and electric-field profile is investigated in detail. It
is shown that energetic electrons have a significant effect on
the expansion front dynamics, essentially energizing the front,
thus enhancing the ion acceleration mechanism. Different
special cases are considered, in terms of the relative magnitude
of the ion mass and/or charge state.

The layout of this article is as follows. In Sec. II, an
analytical model is developed and its physical implications
are discussed. The self-similar expansion mechanism is inves-
tigated, adopting different assumptions for the plasma slab,
in Sec. III. The single-ion limiting case (cold- or warm-ion
model) is presented, for reference, and the theory is extended
to a two-ion fluid model, in the presence of heavier (minority)
ions. Finally, Sec. IV summarizes our results and conclusions.

II. THE MODEL

We consider a planar plasma slab consisting of electrons
(absolute charge e, mass me) and two different (positive)
ion populations. The two ion species are characterized by
their respective mass mj , charge qj = zj e, and temperature
Tj , as well as their equilibrium density nj,0, respectively
(for j = 1,2). The plasma is assumed to be quasineutral;
hence, the electron number density inside the slab equals
ne,0 = ∑

zj,0nj,0 at equilibrium.
At t = 0, the plasma is assumed to occupy the negative

semiaxis (for x < 0), while vacuum is assumed to occupy the
positive semiaxis (for x > 0); here x is the distance measured
from the plasma slab, as shown in Fig. 1.

FIG. 1. (a) The interaction of a laser beam with a solid target
is illustrated; note that emission of fast ions from the rear surface
of the target. (b) Ion acceleration mechanism (heuristic plot) due to
laser-target interaction. Both plots have been adapted from Ref. [8],
with permission from the publisher.

053202-2



MULTISPECIES PLASMA EXPANSION INTO VACUUM: . . . PHYSICAL REVIEW E 94, 053202 (2016)

The dynamics of the ions (at t > 0) can be described by the
multifluid model

∂nj

∂t
+ ∂

∂x
(njuj ) = 0,

mjnj

(
∂uj

∂t
+ uj

∂uj

∂x

)
= zj enjE − ∂Pj

∂x
, (1)

∂E

∂x
= 4πe(z1n1 + z2n2 − ne),

where indices j = 1,2 denote ion fluid(s) 1 and 2, respectively.
The notation is self-explanatory: nj is the ion density, uj is the
ion velocity, Pj is the partial ion pressure, mj is the ion mass,
and zj is the ion charge state (for j = 1,2).

The electrons are described by the “kappa” distribution;
hence, their density is given by [37,38]

ne = ne,0

[
1 − e�

Te

(
κ − 3

2

)](−κ+ 1
2 )

, (2)

where � is the electrostatic potential, viz. E = −∂�/∂x. Here,
κ is the (real) spectral index which measures the strength of
the excess superthermality, Te denotes electron temperature,
and e is the electron charge. Note that κ > 3/2 is assumed as
a requirement [37,38].

The neutrality assumption (plasma approximation) is
adopted for analytical tractability. We shall assume throughout
this work that the density gradient scale length is much greater
than the Debye length, so that quasineutrality remains valid
during the expansion procedure. Having adopted the plasma
hypothesis, the Poisson equation for the electrostatic potential
can be replaced by the relation (neutrality condition)

ne = z1 n1 + z2 n2, (3)

assumed to hold at all times.

A. Electric field in a kappa-distributed electron background

Upon inspection of the above equations, it is obvious that
the only interaction between the two ion species is through the
self-consistent electric field, entering the momentum equation
for the ions. We thus need to evaluate the electric field, in order
to close the system of evolution equations. Differentiating
Eq. (2) with respect to x, and using the quasineutrality
relation (3), we obtain

∂ne

∂x
= ∂

∂x
(z1n1 + z2n2)

= e

Te

(
κ − 1

2

)
(
κ − 3

2

)[
1 − e�

Te

(
κ − 3

2

)]−1

(z1n1 + z2n2)
∂�

∂x
.

(4)

The electric field E is thus determined by using Eq. (4) as

E = −∂�

∂x

= −Te

e

1

z1n1 + z2n2

(
κ − 3

2

κ − 1
2

)[
1 − e�

Te

(
κ − 3

2

)]

× ∂

∂x
(z1n1 + z2n2). (5)

The latter equation (5) generalizes the well-known relation

eE = −Te

ne

∂ne

∂x
(6)

for isothermal (inertialess) electrons obeying the Maxwell-
Boltzmann distribution [58]. As expected, Eq. (6) is recovered
from Eq. (5) in the limit κ → ∞. We shall assume adiabatic
ion motion, which implies

∂Pj

∂x
= 3Tj,0

n2
j,0

n2
j

∂nj

∂x
(for j = 1,2), (7)

where index zero denotes values at the initial time t = 0.
Combining Eqs. (1)–(7), we obtain

∂nj

∂t
+ ∂

∂x
(njuj ) = 0,

∂uj

∂t
+ uj

∂uj

∂x
= −3Tj,0

mj

nj

n2
jo

∂nj

∂x

− zjTe

mj

1

z1n1 + z2n2

(
κ − 3

2

κ − 1
2

)

×
[

1 − e�

Te

(
κ − 3

2

)]
∂

∂x
(z1n1 + z2n2).

(8)

Note that the neutrality assumption (3) was adopted in the last
step, to eliminate the electron density.

B. Scaling

For analytical convenience, we shall now introduce normal-
ized variables, according to the following scaling:

T = ωp,1t, X = x

λDi

, Nj = nj

nj0
,

Vj = uj

cs

, and φ = e�

Te

. (9)

Here, the time (T ) and space (X) variables are re-
spectively normalized by the (ion) plasma period ω−1

p,1 =
(4πe2n1oz

2
1/m1)−1/2 and the (ion) Debye length λD,1 =

(4πz1e
2n1o/kBTe)

1/2
; the number density Nj (j = e,1,2) and

the velocity Vj are normalized by the unperturbed number den-
sity nj0 and ion acoustic speed cs = (z1kBTe/m1)1/2; finally,
the electrostatic potential φ is normalized by kBTe/e, where
Te denotes the electron temperature and e is the elementary
(electron) charge. Furthermore, the following dimensionless
parameters are defined:

δ = z2 n20

z1 n10
, γ = q2/m2

q1/m1
= z2 m1

z1 m2
. (10)

The physical meaning of these parameters is transparent, as
they respectively represent the charge density ratio and the
specific charge (charge-to-mass) ratio, between the two ion
populations. Note that δ → 0 (and γ becomes irrelevant) in
the vanishing “secondary-ion” limit (n2 = 0).
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Applying the above scaling, Eqs. (1) are cast in the
dimensionless form:

∂N1

∂T
+ ∂

∂X
(N1V1) = 0, (11)

∂V1

∂T
+ V1

∂V1

∂X
= − ∂φ

∂X
− α1N1

∂N1

∂X
, (12)

∂N2

∂T
+ ∂

∂X
(N2V2) = 0, (13)

∂V2

∂T
+ V2

∂V2

∂X
= −γ

∂φ

∂X
− α2N2

∂N2

∂X
, (14)

∂2φ

∂X2
= (1 + δ)ne − N1 − δN2. (15)

We have defined the quantity

αj = 3

z1

Tj,0

Te

n2
10

n2
j,0

m1

mj

; (16)

i.e., essentially,

α1 = 3
T1,0

z1Te

and α2 = 3

z1

T2,0

Te

n2
10

n2
2,0

m1

m2
,

adopting the notation in Ref. [58]. Finally, we have defined the
kappa-related parameters:

a = κ − 3
2 and b = κ − 1

2 . (17)

The procedure adopted above in order to determine the
electric field E—see Eqs. (4)–(6)—may now be adapted to
the rescaled (dimensionless) formulation of the problem. In
dimensionless form, Eq. (4) becomes

1

ne

∂ne

∂X
= b

a

(
1 − φ

a

)−1
∂φ

∂X
. (18)

Thus, the electric field becomes

E = − ∂φ

∂X
= −

(
a

b

)(
1 − φ

a

)
1

ne

∂ne

∂X
. (19)

By using the neutrality assumption

ne = 1

1 + δ
(N1 + δN2),

one obtains

E = −
(

a

b

)(
1 − φ

a

)
1

N1 + δN2

∂

∂X
(N1 + δN2). (20)

By using Eq. (20) with Eqs. (11)–(15), we get

∂N1

∂T
+ ∂

∂X
(N1V1) = 0,

∂V1

∂T
+ V1

∂V1

∂X
= −α1N1

∂N1

∂X

−
(

a

b

)(
1 − φ

a

)
∂

∂X
[ln(N1 + δN2)],

∂N2

∂T
+ ∂

∂X
(N2V2) = 0,

∂V2

∂T
+ V2

∂V2

∂X
= −α2N2

∂N2

∂X
− γ

(
a

b

)(
1 − φ

a

)

× ∂

∂X
[ln(N1 + δN2)]. (21)

III. SELF-SIMILAR EXPANSION SCHEME

The system of partial differential equations (PDEs) (21)
may now be transformed into a set of ordinary differential
equations (ODEs) by assuming that all dependent vari-
ables are functions of the similarity parameter ξ = X/T

alone [23,24,58]. Equations (21) thus take the form

(V1 − ξ )N ′
1 + N1V

′
1 = 0,

(V1 − ξ )V ′
1

= −α1N1N
′
1 −

(
a

b

)(
1 − φ

a

)
[ln(N1 + δN2)]′,

(V2 − ξ )N ′
2 + N2V

′
2 = 0,

(V2 − ξ )V ′
2

= −α2N2N
′
2 − γ

(a

b

)(
1 − φ

a

)
[ln(N1 + δN2)]′, (22)

where prime denotes differentiation with respect to ξ . As a
boundary condition, we require that there should exist a point
ξ0 such that

V1(ξ0) = 0, V2(ξ0) = 0,

N1(ξ0) = 1, N2(ξ0) = δ. (23)

Equation (22) can be written in matrix form as

⎛
⎜⎜⎜⎝

V1 − ξ α1N1 + a
b

(
1 − φ

a

)
1
N

0
(

a
b

)(
1 − φ

a

)
δ
N

N1 V1 − ξ 0 0

0 γ a
b

(
1 − φ

a

)
1
N

V2 − ξ α2N2 + γ a
b

(
1 − φ

a

)
δ
N

0 0 N2 V2 − ξ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

V ′
1

N ′
1

V ′
2

N ′
2

⎞
⎟⎟⎟⎠ = 0, (24)

where we have used the relation N = N1 + δN2.

The latter system of equations will form the working
toolbox for the analysis that follows. Before proceeding with
our study of the two-ion fluid flow dynamics, we shall consider

the single-ion limiting case, as it derives from the above model,
for the sake of comparison with earlier works, but also to gain
valuable insight in the model and its limitations.
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A. Single-cold-ion fluid limit

We consider first the slab as consisting of electrons and
light ions (protons) only and the ions are initially cold. So,
in the single (N2 = V2 = 0) cold (α1 = 0) ion case, Eqs. (22)
reduce to

(V1 − ξ )
N ′

1

N1
+ V ′

1 = 0,

a

b

(
1 − φ

a

)
N ′

1

N1
+ (V1 − ξ )V ′

1 = 0. (25)

At this stage, the derivative terms in Eqs. (25) may be treated
as independent variables. Considering the resulting set of
algebraic equations, the determinant of the system must vanish
for nontrivial solutions to exist:∣∣∣∣ V1 − ξ 1

a
b

(
1 − φ

a

)
V1 − ξ

∣∣∣∣ = 0. (26)

We choose the positive solution, corresponding to an expansion
in the +x direction and a velocity increasing with increasing
x, so the solution of the determinant is

V1 = ξ +
√(

a

b

)(
1 − φ

a

)
. (27)

With the boundary condition (23), we obtain ξ0 = −√
a
b
, i.e.,

ξ0 = −
(

2κ − 3

2κ − 1

)1/2

. (28)

Interestingly, this relates the speed to the sound speed, since
the ratio a/b = (2κ − 3)/(2κ − 1) is essentially related to the
sound speed (squared) for non-Maxwellian plasmas within the
kappa-distribution approach [37,38,47] (see that a/b → 1 in
the infinite κ , i.e., Maxwellian limit).

Combining Eqs. (25) and (27), we find

dφ

dξ
= 2b

1 − 2b

√
1

b
(a − φ). (29)

One can derive a self-similar solution for the system under
the assumption of charge quasineutrality, for the potential, the
ion fluid speed, and for the ion density. The set of analytical
expressions for the state variables thus obtained reads

φ(ss) = −1

(1 − 2b)2

{
b(ξ − ξ0)

[
2

√
a

b
(2b − 1) + ξ − ξ0

]}
,

V1 = ξ +
√

a

b

(
1 − φ(ss)

a

)
,

N1 =
(

1 − φ(ss)

a

)−b

. (30)

In the limit (κ → ∞), i.e., for a Maxwellian distribution, one
readily recovers

φ(ss) = −(ξ + 1),

V1 = ξ + 1,

N1 = exp[−(ξ + 1)] = exp(−V1). (31)

FIG. 2. Single cold-ion fluid model: The state variables [(a) electrostatic potential, (b) electric field, (c) ion fluid speed, and (d) density] are
depicted versus ξ , following (30). Larger values of κ recover the known Maxwellian result [23,24,58].
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These expressions are identical to those obtained earlier
for electron-ion plasma [23,24,58] considering Maxwellian
electrons.

We can see from Eq. (31) that the density profile expo-
nentially decreases, extending to infinity into vacuum, thus
representing a rarefaction wave which propagates into the
unperturbed plasma with velocity cs , that is, the ion acoustic
speed. The velocity increases linearly from zero at ξ = −1 to
attain a constant value (cs) at ξ = 0. In our case, Eq. (30) with
superthermal effect through κ , we can see the velocity increase
linearly from zero at ξ = ξ0 (the rarefaction wave) and with
cs,(κ) = 2

1−2b

√
abcs at ξ = 0, where cs,(κ) is the modified ion

acoustic speed in terms of κ .
The influence of superthermality on the ion density,

velocity, and electric field is depicted in Fig. 2. We can see that
ion acceleration is enhanced due to an excess in superthermal
electrons, i.e., upon decreasing κ .

B. Single-warm-ion model

Retaining the thermal pressure term in Eq. (22), the single-
ion model equations read

(V1 − ξ )
N ′

1

N1
+ V ′

1 = 0,

[
α1N

2
1 +

(
a

b

)(
1 − φ

a

)]
N ′

1

N1
+ (V1 − ξ )V ′

1 = 0. (32)

The compatibility (vanishing determinant) condition now
becomes ∣∣∣∣ V1 − ξ 1

α1N
2
1 + (

a
b

)(
1 − φ

a

)
V1 − ξ

∣∣∣∣ = 0, (33)

which implies

V1 = ξ +
√

1

b

[
a − φ + bα1

(
1 − φ

a

)−2b]
. (34)

Requiring V1 = 0 and φ = 0 at ξ = ξ0, we obtain ξ0 =
−

√
a+bα1

b
.

For κ → ∞, i.e., for a Maxwellian electron distribution,
we recover [58]

V1 = ξ +
√

1 + α1 exp(2φ). (35)

Combining Eqs. (32) and (34) with the neutrality condition
z1N1 = ne, we find that the electrostatic potential is given by
the equation

dφ

dξ
= −

2ab
(
1 − φ

a

)2b+ 3
2

√
a
b

+ α1
(
1 − φ

a

)−(2b+1)

4b2α1 + a(2b − 1)
(
1 − φ

a

)2b+1 . (36)

The electrostatic potential, ion velocity, and ion density
are obtained numerically upon solving Eqs. (32) and (36)
numerically. These results are shown in Figs. 3 and 4.

FIG. 3. Single (warm) ion fluid model: The effect of superthermality is shown, following Eqs. (32) and (36). The state variables [(a)
electrostatic potential, (b)electric field, (c) ion fluid speed, and (d) density] are depicted versus ξ . We have considered α1 = 1, as an indicative
value.
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FIG. 4. Single (warm) ion fluid model: The effect of thermal pressure is shown, following Eqs. (32) and (36). The state variables [(a)
electrostatic potential, (b) electric field, (c) ion fluid speed, and (d) density] are depicted versus ξ . We have considered κ = 2 as indicative
value.

Figure 4 shows the effect of the ionic thermal pressure
on ion acceleration. Upon increasing the ion temperature,
the velocity of the expansion front increases, suggesting that
thermal effects energize the ions, as intuitively expected.

C. Two-cold-ion species plasma: The role of minority ions

Here, we consider that, in addition to the main ions N1,
of mass m1 and charge z1, the plasma slab contains a small
admixture of ions of mass m2 and charge z2. Accordingly,
the variation of the second fluid is assumed to be slow,
viz. N ′

2 � N ′
1 [64]. Taking N2 � N1, Eq. (24) decouples

(neglecting partial pressure α1 = α2 = 0),

(V1 − ξ )N ′
1 + N1V

′
1 = 0,

(V1 − ξ )V ′
1 � −a

b

(
1 − φ

a

)
(ln N1)′, (37)

(V2 − ξ )N ′
2 + N2V

′
2 = 0,

(V2 − ξ )V ′
2 � −γ

a

b

(
1 − φ

a

)
(ln N1)′, (38)

or, in matrix form:⎛
⎜⎜⎜⎝

V1 − ξ a
b

(
1 − φ

a

)
1

N1
0 0

N1 V1 − ξ 0 0

0 γ a
b

(
1 − φ

a

)
1

N1
V2 − ξ 0

0 0 N2 V2 − ξ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

V ′
1

N ′
1

V ′
2

N ′
2

⎞
⎟⎟⎟⎠ � 0.

(39)
The solution of Eq. (37) is, once again, given by Eq. (30),

implying that

(V2 − ξ )V ′
2 � −γ

dφ(ss)

dξ
. (40)

This is an approximate relation for V2, in terms of the self-
similar solution φ(ss) that was given by Eq. (30).

The numerical results from the latter equations are depicted
in Fig. 5. Note that the variables (N1 and V1) corresponding
to the (dominant) first ion fluid remain precisely as they were
obtained in Sec. III B above, since Eq. (37) is still valid in this
case (as discussed earlier in this section) and it does not involve
the second (minority ion) population N2. However, the second
(minority ion) population is affected by the first, as obvious in
Eqs. (38) and (40) above.

It is worth mentioning that the “minority-ion” fluid as-
sumptions N2 � N1 and N ′

2 � N ′
1 are a posteriori satisfied
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FIG. 5. Two (cold) ion-fluid model, with minority ions (N2 � N1): The effect of superthermality is shown, following Eqs. (40). (a) The
second (minority) ion-fluid speed and (b) density are depicted, versus the self-similar space variable ξ (taking α1 = α2 = 0 and γ = 1/3, i.e.,
z1 = z2 and m2 = 3m1). Note that the variables corresponding to the dominant first fluid are omitted, since they are exactly given in Fig. 2
above, obtained from Eq. (37), in this case too.

by the numerical values obtained for the density variables; see
Fig. 5(c).

D. Two-warm-ion model: The role of minority ions

Here, we consider the plasma slab as consisting of
two warm-ion species. Under the minority (second) ion

assumption, viz. assuming N2 � N1, Eq. (24) becomes

(V1 − ξ )
N ′

1

N1
+ V ′

1 = 0,

(V1 − ξ )V ′
1 � −α1N1N

′
1 − a

b

(
1 − φ

a

)
(ln[N1])′, (41)

FIG. 6. Minority ion two-fluid model (warm): The effect of superthermality is shown, following Eqs. (42) (taking κ = 2, α1 = 1, and
γ = 1/3, i.e., z1 = z2 and m1 = 3m2).
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FIG. 7. Electric field, electrostatic potential, density, and velocity profiles of the two ion species with δ = 1, γ = 1/3, and α1 = α2 = 0,
i.e., z1 = z2, m2 = 3m1, and n20 = n10. Different values of κ have been considered (see inset).

(V2 − ξ )N ′
2 + N2V

′
2 = 0,

(V2 − ξ )V ′
2 � −α2N2N

′
2 − γ

a

b

(
1 − φ

a

)
(ln[N1])′, (42)

or, in matrix form, ⎛
⎜⎜⎜⎝

V1 − ξ α1N1 + a
b

(
1 − φ

a

)
1

N1
0 0

N1 V1 − ξ 0 0

0 γ a
b

(
1 − φ

a

)
1

N1
V2 − ξ α2N2

0 0 N2 V2 − ξ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

V ′
1

N ′
1

V ′
2

N ′
2

⎞
⎟⎟⎟⎠ � 0. (43)
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The system of Eqs. (42) may be solved numerically.
The results are shown in Figs. 6 for the minority (second)
ion species. As in the cold-ion case above, the variables
corresponding to the dominant first fluid remain as they were
obtained in Sec. III B above, since Eq. (41) is not affected by
the second population N2.

E. Two-warm-ion model: Arbitrary ion admixture

For the sake of analytical tractability (and also, for
comparison with Ref. [58]), we have assumed above that the
concentration of the secondary ions is much lower that that of
the principal ion population, i.e., δ � 1; hence, the influence of
the secondary ion (2) population on the motion of the main ion

fluid was practically negligible. Now, we turn to the full two-
fluid problem where these concentrations may be comparable
in order of magnitude; i.e., the plasma slab contains a mixture
of two types of ions in an arbitrary proportion, manifested by
a finite value of δ (<1). The expansion of the plasma slab into
vacuum is described by the system of Eqs. (24). Considering
all the derivatives (V ′

1,N
′
1,V

′
2,N

′
2) as independent variables and

the resulting set of equations as an algebraic (Cramer) system,
the secular (vanishing determinant) condition resulting from
Eqs. (24) may be cast in the form

(
a
b

)(
1 − φ

a

)
N1
N

(V1 − ξ )2 − α1N
2
1

+
(

a
b

)(
1 − φ

a

)
γ δN2

N

(V2 − ξ )2 − α2N
2
2

= 1. (44)

FIG. 8. Electric field, electrostatic potential, density, and velocity profiles of the two ion species with δ = 1, γ = 1/3, and α1 = α2 = 1
(just as in Fig. 7). Different values of κ have been considered (see inset).
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This equation cannot be solved analytically to find
N1,N2,V1,V2. However, it can be used to determine ξ0 as the
negative root of a polynomial equation, which corresponds to
an expansion in the +x direction and a velocity increasing
with increasing x. Assuming the initial condition (23) above,
it is straightforward to show that Eq. (44) leads to

ξ 4
0 + Aξ 2

0 + B = 0, (45)

viz.,

ξ0 = −
[−A + √

A2 − 4B

2

]1/2

, (46)

where A = −[a(1 + γ δ) + b(α1 + α2)(1 + δ)]/[b(1 + δ)]
and B = bα1α2(1 + δ) + a(α2 + α1γ δ). The negative sign
in the latter expression for ξ0 denotes the fact that the a
rarefaction wave moves in the direction opposite to that of
the expanding plasma. The modified speed of the rarefaction
wave is ξ0 (which essentially represents the sound speed
in the presence of the two ion components). It may be
appropriate to compare to the (far simpler) expression (28)
above, which is indeed recovered in the limit δ = 0 with
α1 = α2 = 0.

In order to investigate the full problem, i.e., retaining the
secondary ion fluid inertia, we have solved the system of
Eqs. (24) numerically, taking into account the condition (44)

FIG. 9. Electric field, electrostatic potential, density, and velocity profiles of the two ion species with κ = 2, γ = 1/3, and α1 = α2 = 1,
i.e., z1 = z2 and m2 = 3m1. Different values of δ have been considered (see inset).
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and the initial value of the self-similar variable ξ0 (46). The
result of the numerical integrations is shown in Figs. 7 and 8 for
the cold- (α1 = α2 = 0) and warm- (α1 = α2 = 1) ion case(s),
respectively. The plots depicted in Fig. 7 actually represent the
same set of variables (namely, γ = 1/3 and α1 = α2 = 0) as
the one shown in Figs. 2 and 5, except for the fact that the
assumption N1 � N2 is now dropped; viz., a finite value of
N2 is assumed in Fig. 7 (where δ = 1 is taken, rather δ � 1),
as in Fig. 5. Similarly, the plots depicted in Fig. 8 represent
the same set of variables (namely, γ = 1/3 and α1 = α2 = 1)
as the one shown in Figs. 3 and 6, except that a finite value of
N2 is assumed in Fig. 8 (i.e., δ = 1), rather δ � 1, as in Fig. 6.
In all of Figs. 2–8, we have considered a set of indicative
(ad hoc) parameter values, namely z2 = z1 and m2 = 3m1,

corresponding to γ = 1/3 (the values of δ are presented in the
respective caption). We have solved the system numerically
for many different values of the relevant parameters and we
have found the same qualitative behavior.

Upon a simple inspection of Figs. 2 and 5 on one hand and
Fig. 7 on the other, in comparison with one another, we see
that, for different values of the superthermal spectral index κ ,
the electric field and the velocity of the ion species increases
for higher values of the density ratio δ. For large values of κ

(i.e., in the Maxwellian limit), Figs. 4 and 5 in Ref. [58] are
exactly recovered, thus corroborating our results.

As shown in Fig. 7, for small values of κ , the number density
N1 and N2 decrease sharply at the expansion front; considering
thermal effects (in Fig. 8), the transition is smoother.

FIG. 10. Electric field, electrostatic potential, density, and velocity profiles of the two ion species with κ = 2, γ = 16, and α1 = α2 = 1,
i.e., z1 = z2, m1 = 16m2, and n20 = n10. Different values of δ have been considered (see inset).
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We have also investigated the effect of the density ratio δ

for two cases: γ < 1 (Fig. 9) and γ > 1 (see Fig. 10).
Case 1. For γ (= z2m1/z1m2) < 1, Figs. 9(a) and 9(b) show

that the electric field increases with increasing density ratio
δ(= z2n20/z1n10). From Figs. 9(c) and 9(e) we can see that the
concentration of the ions falls rapidly, attaining zero at some
distance from the source plasma. Finally, Figs. 9(d) and 9(f)
show that the velocity of both ions increase upon increasing δ,
i.e., for a stronger second ion concentration.

Case 2. For γ > 1, contrary to the previous case (1), we
have considered a large value of γ (γ = 16, e.g., z2 = z1 and
m1 = 16m2), actually inspired by Ref. [60]. As physically
expected, the second ion inertia is dominant here. This is

reflected in the plots in Figs. 10(a) and 10(b), which show that
the electric field decreases upon increasing δ. Figures 10(c)
and 10(e) also show that the concentration of both ions
decreases slowly with increasing δ. Furthermore, in Figs. 10(d)
and 10(f) we see that the velocity now increases faster for
higher δ. This is intuitively expected, since the faster the
first (“principal”) ion fluid accelerates during the expansion
process, the heavier the secondary ions are (γ > 1) if the
second ion fluid inertia is retained in the description.

As a final test, we have integrated numerically the full fluid
equations for a small value of the ratio N2/N1 (= 0.1) in order
to compare to the analytical solution obtained in Sec. III C
above (for N2 � N1). The result, shown in Fig. 11, could

FIG. 11. Electric field, electrostatic potential, density, and velocity profiles of the two ion species with δ = 0.1, γ = 1/3, and α1 = α2 = 0,
i.e., z1 = z2, m2 = 3m1, and n20 = 0.1n10. Different values of κ have been considered (see inset).
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not be more satisfactory: A simple comparison with Figs. 2
and 5 shows that all variables are practically identical, in all
case, aside from a small change in the density N2 (due to the
inertia of the second fluid being retained: cf. Figs. 11 and 5).
It therefore appears that the analytical result, obtained by
neglecting the secondary ion inertia, succeeds in capturing the
essential features of the expansion process for small values of
the density ratio N2/N1. As expected, larger values of N2/N1

(and of M2/M1) may lead to substantial deviation, however.
The latter considerations, based on Fig. 11, refer to the cold-

ion model and to a given (arbitrary) set of parameter values. We
have repeated the same procedure (numerical integration) in a
wide range of values, and are able to assert that the behavior
described above is generic, i.e., valid throughout a wide range
of parameters. (The corresponding plots are here omitted for
brevity.)

IV. CONCLUSIONS

Summarizing, we have established an analytical model to
study the self-similar expansion of semi-infinite multispecies
plasma slab into vacuum. We have taken into account the
effect of the initial temperature of the plasma slab on the
electrostatic field at the plasma slab and vacuum interface
and on the acceleration of the escape ions from the slab. Our
findings recover earlier results in the respective limits, in terms
of the model parameter values.

We have also studied the effect of a non-Maxwellian
electron distribution on the plasma expansion mechanism
in various cases. The expanding plasma front appears to be
accelerated by the suprathermal electrons (i.e., for lower values
of the superthermality index κ) more efficiently, as intuitively
expected. For infinite κ , the Maxwellian limit is recovered.

Finally, we have studied the effect of the finite inertia
of the second ion fluid, by integrating the exact system of
equations numerically, for finite (non-negligible) values of the

second-to-first ion density ratio δ and for different values of the
relative charge-to-mass ratio γ . We have shown that including
the second ion inertia modifies the analytical result only
quantitatively (retaining the general qualitative characteristics
of the expansion front) and even more so for heavier secondary
ions, as physically expected.

The analytical model employed in our study certainly has its
limitations and possible shortcomings. Clearly, the self-similar
solution is a special solution of the fluid equations and it
does not allow for a detailed characterization of the entire
process. The self-similar solution is worthy and useful in its
own merit for the description of the plasma expansion in a
simple and analytically tractable way. Numerical simulations
suggest that, with the passage of time, the expanding plasma
profile approaches the form provided by the self-similar
methodology [25,34,62,63]. Furthermore, we have assumed
that the electron temperature remains constant throughout
the plasma expansion process. This is adopted as an ad hoc
assumption in our study for the sake of tractability. This
hypothesis may be questioned by meticulous interpretation
of (e.g., PIC) plasma simulations. The latter, though imposed,
goes beyond our scope in this study.

Our results are important in various physical situations
involving plasma expansion, including ion acceleration ap-
plications for medical purposes, astrophysical situations, and
laser-assisted fusion schemes. PIC simulations [19–21] should
be undertaken in the future to corroborate our results.

ACKNOWLEDGMENTS

Our work was supported financially by Queen’s University
(QUB), Centre for Plasma Physics (CPP). One of us (I.S.E.)
acknowledges financial support via an Egyptian Government
fellowship. Dr. Brian Reville (Queen’s University Belfast) is
warmly thanked, both for technical assistance and for a number
of inspiring discussions.

[1] E. L. Clark, K. Krushelnick, M. Zepf, F. N. Beg, M. Tatarakis,
A. Machacek, M. I. K. Santala, I. Watts, P. A. Norreys, and
A. E. Dangor, Phys. Rev. Lett. 85, 1654 (2000).

[2] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M.
Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster,
M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger,
D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski,
J. Johnson, M. D. Perry, and E. M. Campbell, Phys. Rev. Lett.
85, 2945 (2000).

[3] S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000).
[4] P. McKenna, D. Neely, R. Bingham, and D. Jaroszynski (eds.),

Laser-Plasma Interactions and Applications (Springer, Berlin,
2013).

[5] A. Macchi, A Superintense Laser-Plasma Interaction Theory
Primer (Springer, Berlin, 2013).

[6] M. Borghesi, A. J. Mackinnon, D. H. Campbell, D. G. Hicks,
S. Kar, P. K. Patel, D. Price,, L. Romagnani, A. Schiavi, and O.
Willi, Phys. Rev. Lett. 92, 055003 (2004).

[7] S. V. Bulanov, T. Z. Esirkepov, D. Habs, F. Pegoraro, and T.
Tajima, Eur. Phys. J. D 55, 483 (2009).

[8] A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85,
751 (2013).

[9] S. Busold et al., Nucl. Instrum. Methods Phys. Res., Sect. A
740, 94 (2014).

[10] N. Naumova, T. Schlegel, V. T. Tikhonchuk,, C. Labaune, I. V.
Sokolov, and G. Mourou, Phys. Rev. Lett. 102, 025002 (2009).

[11] C. Regan, T. Schlegel, V. T. Tikhonchuk, J. J. Honrubia, J. L.
Feugeas, and P. Nicola, Plasma Phys. Controlled Fusion 53,
045014 (2011).

[12] V. T. Tikhonchuk, A. Colatis, A. Vallet, E. Llor Aisa, G.
Duchateau, Ph. Nicola, and X. Ribeyre, Plasma Phys. Controlled
Fusion 58, 014018 (2015).

[13] Y. Zhang, C. Charles, and R. Boswell, Phys. Rev. Lett. 116,
025001 (2016).

[14] S. V. Bulanov, T. Zh. Esirkepov, V. S. Khoroshkov, A. V.
Kuznetsov, and F. Pegoraro, Phys. Lett. A 299, 240 (2002).

[15] V. Malka, S. Fritzler, E. Lefebvre, E. d’Humires, R. Ferrand,
G. Grillon, C. Albaret, S. Meyroneinc, J. P. Chambaret, A.
Antonetti, and D. Hulin, Med. Phys. 31, 1587 (2004).

[16] C. M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T.
Lin, and A. Pollack, Laser Phys. 16, 639 (2006).

[17] K. W. D. Ledingham, W. Galster, and R. Sauerbrey, Br. J. Radiol.
80, 855 (2007).

[18] S. D. Kraft et al., New J. Phys. 12, 085003 (2010).

053202-14

https://doi.org/10.1103/PhysRevLett.85.1654
https://doi.org/10.1103/PhysRevLett.85.1654
https://doi.org/10.1103/PhysRevLett.85.1654
https://doi.org/10.1103/PhysRevLett.85.1654
https://doi.org/10.1103/PhysRevLett.85.2945
https://doi.org/10.1103/PhysRevLett.85.2945
https://doi.org/10.1103/PhysRevLett.85.2945
https://doi.org/10.1103/PhysRevLett.85.2945
https://doi.org/10.1063/1.874030
https://doi.org/10.1063/1.874030
https://doi.org/10.1063/1.874030
https://doi.org/10.1063/1.874030
https://doi.org/10.1103/PhysRevLett.92.055003
https://doi.org/10.1103/PhysRevLett.92.055003
https://doi.org/10.1103/PhysRevLett.92.055003
https://doi.org/10.1103/PhysRevLett.92.055003
https://doi.org/10.1140/epjd/e2009-00138-1
https://doi.org/10.1140/epjd/e2009-00138-1
https://doi.org/10.1140/epjd/e2009-00138-1
https://doi.org/10.1140/epjd/e2009-00138-1
https://doi.org/10.1103/RevModPhys.85.751
https://doi.org/10.1103/RevModPhys.85.751
https://doi.org/10.1103/RevModPhys.85.751
https://doi.org/10.1103/RevModPhys.85.751
https://doi.org/10.1016/j.nima.2013.10.025
https://doi.org/10.1016/j.nima.2013.10.025
https://doi.org/10.1016/j.nima.2013.10.025
https://doi.org/10.1016/j.nima.2013.10.025
https://doi.org/10.1103/PhysRevLett.102.025002
https://doi.org/10.1103/PhysRevLett.102.025002
https://doi.org/10.1103/PhysRevLett.102.025002
https://doi.org/10.1103/PhysRevLett.102.025002
https://doi.org/10.1088/0741-3335/53/4/045014
https://doi.org/10.1088/0741-3335/53/4/045014
https://doi.org/10.1088/0741-3335/53/4/045014
https://doi.org/10.1088/0741-3335/53/4/045014
https://doi.org/10.1088/0741-3335/58/1/014018
https://doi.org/10.1088/0741-3335/58/1/014018
https://doi.org/10.1088/0741-3335/58/1/014018
https://doi.org/10.1088/0741-3335/58/1/014018
https://doi.org/10.1103/PhysRevLett.116.025001
https://doi.org/10.1103/PhysRevLett.116.025001
https://doi.org/10.1103/PhysRevLett.116.025001
https://doi.org/10.1103/PhysRevLett.116.025001
https://doi.org/10.1016/S0375-9601(02)00521-2
https://doi.org/10.1016/S0375-9601(02)00521-2
https://doi.org/10.1016/S0375-9601(02)00521-2
https://doi.org/10.1016/S0375-9601(02)00521-2
https://doi.org/10.1118/1.1747751
https://doi.org/10.1118/1.1747751
https://doi.org/10.1118/1.1747751
https://doi.org/10.1118/1.1747751
https://doi.org/10.1134/S1054660X06040165
https://doi.org/10.1134/S1054660X06040165
https://doi.org/10.1134/S1054660X06040165
https://doi.org/10.1134/S1054660X06040165
https://doi.org/10.1259/bjr/29504942
https://doi.org/10.1259/bjr/29504942
https://doi.org/10.1259/bjr/29504942
https://doi.org/10.1259/bjr/29504942
https://doi.org/10.1088/1367-2630/12/8/085003
https://doi.org/10.1088/1367-2630/12/8/085003
https://doi.org/10.1088/1367-2630/12/8/085003
https://doi.org/10.1088/1367-2630/12/8/085003


MULTISPECIES PLASMA EXPANSION INTO VACUUM: . . . PHYSICAL REVIEW E 94, 053202 (2016)

[19] G. Sarri, M. E. Dieckmann, I. Kourakis, and M. Borghesi,
Phys. Plasmas 17, 082305 (2010).

[20] G. Sarri, G. C. Murphy, M. E. Dieckmann, A. Bret, K. Quinn,
I. Kourakis, M. Borghesi, L. O. C. Drury, and A. Ynnerman,
New J. Phys. 13, 073023 (2011).

[21] G. Sarri, M. E. Dieckmann, I. Kourakis, and M. Borghesi,
Phys. Rev. Lett. 107, 025003 (2011).

[22] A. V. Gurevich, L. V. Pariiskaya, and L. P. Pitaevskii, Sov. Phys.
JETP 22, 449 (1966).

[23] J. E. Allen and J. G. Andrews, J. Plasma Phys. 4, 187 (1970);
J. E. Crow, P. L. Auer, and J. E. Allen, ibid. 14, 65 (1975).

[24] P. Mora and R. Pellat, Phys. Fluids 22, 2300 (1979).
[25] P. Mora, Phys. Rev. Lett. 90, 185002 (2003).
[26] P. Mora, Phys. Plasmas 12, 112102 (2005).
[27] T. Grismayer, P. Mora, J. C. Adam, and A. Héron, Phys. Rev. E
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