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A model, along with analytical and numerical solutions, is presented to describe a wide variety of one-
dimensional slow flows of compressible heat-conductive fluids. The model is based on the approximation of
uniform pressure valid for the flows, in which the sound propagation time is much shorter than the duration of
any meaningful density variation in the system. The energy balance is described by the heat equation that is
solved independently. This approach enables the explicit solution for the fluid velocity to be obtained. Interfacial
and volumetric heat and mass sources as well as boundary motion are considered as possible sources of density
variation in the fluid. A set of particular tasks is analyzed for different motion sources in planar, axial, and central
symmetries in the quasistationary limit of heat conduction (i.e., for large Fourier number). The analytical solutions
are in excellent agreement with corresponding numerical solutions of the whole system of the Navier-Stokes
equations. This work deals with the ideal gas. The approach is also valid for other equations of state.
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I. INTRODUCTION

Compressible fluid dynamics is most often associated with
high-velocity gas motion. However, the compressibility may
be a key factor in a wide class of arbitrarily slow flows,
when the essential part of the flow occurs in a small enough
domain, in which the pressure equalization time is much
shorter than the characteristic time of the density variation.
Then, the pressure may be treated as uniform over the whole
task region, while the other thermodynamic parameters vary
(homobaric approximation). Gas motion around or inside a
slowly expanding bubble or around a droplet with surface
temperature variation and/or interfacial mass exchange are the
illustrative snapshots from the class of such tasks.

In many circumstances, the creeping gas flows have high
symmetry, so that at least locally the flow may be considered
as unidirectional. Symmetry of the flow and uniformity of
the pressure facilitate finding analytical solutions for the gas
velocity profiles, which is the goal of the paper.

A. Precedent theoretical studies

Surprisingly, only a few analytical studies of the ve-
locity fields in the homobaric approximation have been
conducted. The pioneering theoretical work was done by Lord
Rayleigh [1], who took into consideration the influence of
gas density variation on heat transfer in a gas. He found an
analytical solution describing one-dimensional heat transfer
in a spherical layer of air in the absence of mass forces. The
solution was obtained from a linearized energy equation under
the assumption of uniform pressure. The equation of state was
taken to be linear instead of using the ideal gas equation, and
the solution was obtained only for the temperature profile,
assuming that gas displacement does not influence the heat
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propagation. This simple model served as a starting point in
the investigation of thermoacoustic phenomena.

In Ref. [2], Lord Rayleigh’s solution was improved by
adding the integral mass conservation equation to find the
pressure as a function of time. It was noted that the homobaric
approximation excludes acoustic waves from the solution. The
numerical solution of the updated model substantially deviated
from the numerical solution of the conservation equation
system with nonuniform pressure and an advective term in the
energy equation. In Ref. [3], the above mentioned discrepancy
is attributed to an inaccurate computational scheme.

Using boundary layer analysis and time-scale decompo-
sition, the authors of Refs. [3,4] studied the subsidence to
thermal equilibrium of a confined ideal gas at slow and rapid
boundary heating. An analytical solution was obtained in the
form of a power series with the Mach number being a small
parameter. Their works laid a sound foundation for thermoa-
coustic wave investigation at a relatively fine time scale.

In Refs. [5–7], only the first-order Mach number compo-
nents were retained in the momentum and energy equations,
establishing the basis of the homobaric approximation. The
approach appeared to be quite productive in the general
analysis of homobaric flows and enabled the development of
considerably simplified numerical schemes.

The effect of gas density variation on one-dimensional heat
transfer was analyzed in detail in Refs. [8–10], where moving
and permeable boundaries were also considered. It was shown
that the velocity may be excluded from the full system of
equations by formal mathematical transformations [6,9]. Nev-
ertheless, most of their solutions were obtained numerically,
focused on the influence of advection on heat propagation.
Dimensionless criteria for the validity of the heat conduction
equation in compressible flows were developed in Ref. [10]
and are applied and discussed in Sec. II A of this article. The
smallness of the kinetic energy as compared to the variation
of the total energy was proposed as an alternative criterion in
justifying the use of homobaric approximation. It was pointed
out that in view of the thermal phenomena description, the
homobaric approximation plays an intermediate role between
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FIG. 1. Gas flow sources in different geometries and typical flow velocity profiles: (a) a cavity with temperature variation on the walls; (b)
moving boundary; (c) gas inflow and outflow on the boundaries; and (d) distributed mass source of heat and/or mass.

the thermodynamics and the full theory of heat transfer in
gases. The equation system was generalized for chemically
reacting gas mixtures in Refs. [6,7,11].

Analytical solutions for the velocity field are in great need
because solving the full system of conservation equations
for the compressible media at low Mach number by existing
numerical methods requires enormous computing resources.
In this paper, we further simplify the above referenced works
by excluding the advection term from the energy equation. This
allowed us to obtain the analytical solution for the gas velocity.

B. Examples of high-symmetry gas creep flows

Before proceeding to the formulation of the model and
analysis of the solutions, we present typical examples of
pertinent flows to give a better view of the diversity of tasks
and possible application of the results. First, we illustrate the
variety of the gas motion sources and geometries, assuming
that the influence of the mass forces is negligible.

Among the most frequent realizations is the time-dependent
temperature profile T (r,t) in the region limited by two
boundaries, as shown in Fig. 1(a). The nonstationary,
nonuniform temperature modifies the gas density field,
leading to gas displacement with a typical velocity profile
as presented below on the same figure. The animation in the
Supplemental Material [12] presents an example flow in a
planar gap induced by variation of the temperature of one of
the planes. This thermally driven motion is well manifested
in microgravity conditions, in absence of natural convection,
which prevails at normal gravity.

One or both boundaries may move, as shown in Fig. 1(b).
Gas flow through one or both boundaries is another source
of the gas motion, as illustrated in Fig. 1(c) in the axially
symmetric case, top view. Particularly, it happens between
permeable tubes or for the phase transition on the boundaries.

Finally, the source that modifies the gas density may be
distributed in the volume. A cloud of microscopic particles
floating in a spherical cavity illustrates such systems, as
shown in Fig. 1(d). In the latter case, the gas motion starts
when the cloud is subjected, for example, to the external
illumination that heats the particles and consequently modifies
the temperature profile in the gas. The particles also may be a

source of gas mass variation due to phase transition, chemical
reaction, etc.

1. Fuel tanks of space vehicles

The reduced-gravity environment requires consideration
of the nongravity sources of fluid motion [13]. The first
quantitative analysis having practical interest and experimental
verification was said to have been done during the Apollo
space program [2,14,15], targeting transient processes in a
cryogenic propellant tank or the sizing of supercritical storage
systems. In these tasks, gas motion resulted from the variation
of gas density because of varying boundary temperature.
The main interest in these and later papers was related
to the extreme cases of thermally driven pressure variation
generating thermoacoustic waves or the “piston effect” in
fluids near the critical point [16,17]. However, the study in
this paper is limited to the uniform pressure condition.

2. Measurement of aerosol particle transport properties

In the area of aerosol sciences and dust cloud mechanics,
measurement of particle transport properties is of basic
importance, as they define the forces in the equation of particle
motion. The particle velocities ideally should be measured in
the reference frame of gas, while in reality the measurements
are done in the fixed laboratory reference frame. In all such
experiments, the gas creep is inevitable, and the velocity field
should be well defined. The capacitor-type geometry of the
cell, as in Fig. 1(a), is used in many microgravity experiments
on thermophoresis [18–26] and diffusiophoresis [25], where
the top and bottom plates were at different temperatures or
provided the diffusive matter flux from one plate to the other.
Investigation of negative thermophoresis was performed in
the axisymmetric geometry in Refs. [27,28]. Transition from
normal gravity to microgravity in the drop tower flight led to
small but not negligible temperature variation in the cell and
thus that of the gas density field. In the latter experiments,
for example, the velocity accuracy should be on the order
of 1 μm/s so that even the slightest gas motion should be
considered.
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3. Moving boundaries and boundary mass sources

Piston displacement, as shown in Fig. 1(b), is a typical
presentation of one-dimensional gas flow, assuming that
the piston moves slowly enough and lateral boundaries are
sufficiently far. In applications, this task may be complicated
by the presence of a temperature profile varying in time and
eventual volumetric and/or boundary gas sources.

A bubble or a droplet with a varying diameter and,
eventually, with varying temperature, and evaporation or
condensation on the boundary and in the gas, represents a
centrosymmetric analog of the previous example. Burning
droplets have been a subject of many microgravity experi-
ments [29] related to the gas motion in the external region
with respect to the boundary. An example of the internal task is
illustrated by the experiments on measurement of evaporation
and condensation coefficients in the spherical chamber of
fixed diameter, with the source of the investigated substance
deposited on the internal chamber surface [30].

Homobaric approximation is valid for the description of
acoustic cavitation and sonoluminescence of bubbles [31,32].
For example, a water vapor bubble of diameter d = 10−4 m,
oscillating in a sound field with frequency f = 105 Hz, at room
temperature, has the reference time τf = 10−5 s. Reference
sound propagation time in the bubble interior is τc = d/c ≈
10−7 s, which is much less than τf .

Permeable walls facilitate creating one-dimensional creep
flows. It may be the internal region of a hollow porous sphere
or, as illustrated in Fig. 1(c), a space between two plates or the
inner part of a tube. The flow characteristics outside may be
arbitrary, if they do not violate the symmetry limitation in the
internal region.

4. Distributed sources

Such systems are quite common: in atmospheric aerosols,
the microscopic droplets surround relatively big rain drops;
burning droplets stay in the cloud of particles of burning
products, also participating in mass and heat transfer. A
number of microgravity experiments have been devoted to
the investigation of dust clouds simulating protoplanetary
matter formation [33] and to the investigation of complex
plasma [34,35]. Typically, the micron-sized particles form
a centimeter-sized cloud, filling only the central part of
a chamber, schematically presented in Fig. 1(d). In pho-
tophoretic experiments, the intensive infrared light illuminates
the cloud. Upon introducing the illumination, particles heat
the gas, leading to its expansion in the central part. Periodic
temperature variation in the thermophoretic trap [36,37] results
in a similar type of alternative cloud contraction-expansion
motion. Silica particles, most often used in such experiments,
are hygroscopic and may contain an important quantity of
absorbed water, which should be in equilibrium with the vapor
in the gas. Heating the gas or illuminating the particles, one
can shift the equilibrium, which leads to additional absorption
or desorption and thus to the gas flow.

C. Goals and short description

Examples presented in the current section illustrate one-
dimensional homobaric flows of heat-conductive gas at low

Mach number. The variety of such systems is characterized by
the flow symmetry type (flat, axial, or spherical); quasistation-
ary or essentially nonstationary heat propagation; type of the
gas motion sources; and particular time dependencies.

The one dimensionality of the gas flow is the distinctive
peculiarity of these tasks, making the momentum equation
trivial. It suffices to apply the equation of state and of the mass
conservation law. We propose a consistent approach to solving
such tasks, and present analytical solutions and typical flow
patterns.

In Sec. II, we formulate the problem, present a model, and
provide a general solution of one-dimensional gas creeping
flow in the approximation of uniform pressure. The general
solution is presented in different forms, which later simplifies
obtaining particular analytical solutions or getting solutions in
the cases when not all the limitations are valid. We introduce
approximations in the description of the thermal field that
considerably simplify the analytics.

A set of particular exact and approximate solutions is ob-
tained in Sec. III for a variety of gas motion sources in a closed
domain: time-dependent thermal boundary conditions, moving
boundaries, interfacial, and distributed matter sources. In most
cases, the solutions are obtained in planar, axisymmetric,
and centrosymmetric geometries. The solutions of Sec. III
are obtained for quasistationary heat propagation (i.e., for
large Fourier numbers Fo � 1), leaving the tasks of small
and intermediate Fourier numbers for subsequent publication.
The discussion and conclusions are provided in the final two
sections.

The material in this paper is presented in a detailed manner
to facilitate practical application of the results. The total
number of particular statements is, however, too large to be
covered completely. Sometimes, the solutions are rather bulky
but can be efficiently obtained with symbolic computation
programs.

II. MODEL

The internal flow of a heat-conductive viscous gas is
generally described by the boundary problem for the system
of conservation equations (mass, momentum, and energy) and
an equation of state. No general solution is available in such a
statement. High symmetry and relatively low gas velocities
reduce the problem complexity, allowing determination of
analytical solutions.

A. Problem formulation and model assumptions

The variety of compressible fluid flows is considered to be
under the following limitations.

(i) The gas flow field is one dimensional, specified by the
only velocity r component.

This can be a flow with the planar symmetry, as in
Figs. 1(a) and 1(b), an axisymmetric flow, as in Fig. 1(c),
or a centrosymmetric flow, as in Fig. 1(d). The flow domain
is limited by two rigid boundaries, generally, in the state
of displacement. The boundary r1(t) is considered to be
internal and may physically disappear, being transformed into
an element of symmetry at r1 = 0. The boundary r2(t) is
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considered to be external, so that r2(t) > r1(t), with t denoting
time.

(ii) The gas density ρ is related to the pressure p and the
temperature T by the equation of state of the ideal gas:

p = ρRT, (1)

where R is the specific gas constant. Other equations of state
may be used in this model as well. Some solutions in Sec. III
will use the adiabatic law p/p0 = (ρ/ρ0)γ as an equation of
state, where γ is the specific heat ratio. Index “0” designates
the initial value of a variable.

(iii) The gas pressure is spatially uniform, p = p(t), or,
in other words, the flow is homobaric. To understand what
restrictions this condition imposes on the system properties,
we analyze here the momentum equation being nondimension-
alized by the scale of the dynamic pressure:

γ Ma2ρ̃

(
Sh

∂ũ

∂t̃
+ ũ

∂ũ

∂r̃

)
= −∂p̃

∂r̃
+ γ Ma2

Re

[
4

3

1

r̃n

∂

∂r̃

(̃
rn ∂ũ

∂r̃

)
− n

ũ

r̃2

]
. (2)

Each variable ϕ in Eq. (2) is nondimensionalized as ϕ̃ = ϕ/ϕ,
where ϕ is the variable scale. Thus, all the terms have order
of unity, except dimensionless multipliers Re, Ma, and Sh.

In Eq. (2), Ma = u/c is the Mach number, with c =
√

γRT

being the sound velocity, Sh = L/ut is the Strouhal number,
Re = ρuL/η is the Reynolds number, u is the gas velocity, L is
the domain dimension, and η is the gas viscosity. In Eq. (2) and
hereafter, the exponent n denotes the flow symmetry: n = 0
for planar, n = 1 for axial, and n = 2 for central symmetry.

It is clear from Eq. (2) that the pressure gradient becomes
small at three simultaneous conditions: Ma2 � 1, Ma2Sh �
1, and Ma2/Re � 1. For the first condition, we postulate
Ma � 1. The second condition can be rewritten as MaL/ct �
1. Because the time resolution we are interested in is much
rougher than acoustic time L/c, the second condition is always
fulfilled. The validity of the third condition can be shown
using the kinetic theory of gases, which gives the following
expression for the gas viscosity:

η = ρvml

3
, (3)

where l is the mean free path in the gas, and the mean velocity
of the gas molecules vm can be expressed through the sound
velocity c as vm = c

√
3/γ . Then, the Reynolds number can

be rewritten as

Re = ρuL

η
=
√

γ

3

uL

cl
=
√

γ

3

Ma

Kn
, (4)

where Kn = l/L is the Knudsen number.
Keeping in mind the condition Ma � 1, we see that the

multiplier Ma2/Re ≈ Ma × Kn in the square-bracketed term
of Eq. (2) is small at Kn � 1. In this study, we work with the
basic continuous media approach, which demands Kn � 1.

Omitting in Eq. (2) all the negligible terms, we have
∂p/∂r = 0, stated in assumption (iii). The homobaric ap-
proximation automatically filters out the sound propagation
phenomena from the solution. The medium in the model is

homogeneous (i.e., the influence of relative motion of medium
phases or gas components is negligible).

(iv) The energy balance in the gas is described by the heat
equation

ρcp

∂T

∂t
= λ

rn

∂

∂r

(
rn ∂T

∂r

)
+ Q, (5)

where cp is the isobaric specific heat, and λ is the thermal
conductivity. The heat production rate Q(r,t) may include
homogeneous and heterogeneous components: the first, as a
result of chemical reactions between gas species and energy
absorption from the illumination, and the second, as a result
of all heat and mass transfer processes on the eventual small
solid and liquid particles suspended in the gas.

Equation (5) follows from the comparison of different
process contributions in the heat balance. For this, we nondi-
mensionalize the energy equation, scaling it by the conductive
term, the first item on the right-hand side

ρ̃

(
1
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∂T̃

∂t̃
+ Pe ũ

∂T̃

∂r̃

)
= 1

r̃n

∂

∂r̃
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∂r̃

)
+ 1
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γ − 1

γ

dp̃

dt̃

+ Pr Ma2(γ −1)

(
∂ũ

∂r̃

)2

+ QL2

λT
Q̃,

(6)

where Pe = uL/χ is the Peclet number, Pr = cpη/λ is the
Prandtl number, Fo = χt/L2 is the Fourier number, and χ =
λ/ρcp is the heat diffusivity.

The proposed model deals with the processes for which
heat transfer due to advection [second term on the left-hand
side of Eq. (6)] is negligible in comparison with heat
conduction. In [10], it was shown that in the particular case of
thermally driven flows, the advective heat propagation can be
ignored when

β�T � 1, β = ρ

(
∂

∂T

1

ρ

)
p

, (7)

where β is the thermal expansion coefficient of the medium
and �T is the reference temperature difference across the
domain. Additionally, the validity of this important limitation
is proven a posteriori in Sec. IV by direct comparison of
analytical solutions of the current model with the results of
the full-scale numerical simulation.

The term with the pressure time derivative in Eq. (6) is only
important at low Fourier number. In [10], it is shown that for
flows driven by temperature variation, the pressure variation
in the heat balance can be neglected if

(γ − 1)L2

βT λ�T V

(
Q +

∫
S

qndσ

)
� 1, (8)

where V is the domain volume, and the integral in the paren-
theses designates the total heat flux through the boundaries.

The pressure time derivative in Eq. (6) can be expressed
through the temperature using the general solution (12) for the
pressure obtained in the next section. This substitution reduces
Eq. (6) to an independent partial integrodifferential equation
with a single dependent variable T . The third term on the right-
hand side of Eq. (6) is responsible for the viscous dissipation.
It is negligible in comparison with the heat conduction term
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because Ma2 � 1 according to the homobaricity condition,
and Pr ∼= 1 for gases.

We distinguish essentially unsteady cases characterized by
low Fourier number Fo � 1 and quasistatic cases Fo � 1
characterized by relatively quick heat propagation when the
final temperature profile is formed nearly instantaneously as
a function of time-dependent boundary conditions. At high
Fourier number (i.e., for quasistatic cases), Eq. (5) reduces to
the Poisson equation

λ

rn

∂

∂r

(
rn ∂T

∂r

)
= −Q. (9)

To complete the problem statement, we specify the boundary
conditions for each particular solution in this paper. The
boundary conditions can be expressed through the temperature
or the heat flux, can depend on time, and can be posed on
moving boundaries. In the unsteady case, we should add the
initial condition T (r,0) = T0(r) to close the problem.

The temperature profile in the gas is thus defined solely by
the linear equation of heat conduction (5) or (9), boundary
conditions, and eventual initial condition. The solution of
the energy equation is thus independent from the momentum
equation. The fluid motion is driven by relatively slow variation
of its density ρ(r,t) due to heat and matter sources, and
displacement of the boundaries, and is defined fully by the
continuity and heat equations.

B. General solution and its properties

Gas density variation in time is the characteristic feature of
the processes studied in this paper. It may be a result of the
temperature profile variation from boundary and/or volumetric
heat sources, of the boundary motion, of matter production
on the boundaries, and in the volume of the domain. From
the conservation law, the whole mass of the gas within the
boundaries is equal to the initial gas mass plus the mass
produced by the matter sources during time interval 0 to t :

∫ r2(t)

r1(t)
ρ(ξ,t) ξndξ =

∫ r2(0)

r1(0)
ρ(ξ,0) ξndξ +

∫ t

0
S(τ )dτ, (10)

where ρ(r,t) is the gas density. Both sides of Eq. (10) are
divided by a constant geometrical multiplier from integration
by the rest dimensions.

The system under consideration may be thermodynamically
open. Generally, it includes the heat q1(t),q2(t) and matter
j1(t),j2(t) fluxes through the boundaries as well as the
volumetric heat Q(r,t) and matter J (r,t) sources due to
chemical reactions, phase transition, radiation sources, etc.
The gas may contain a dispersed second phase in the form of
droplets or solid particles that may influence the temperature
profile between the boundaries as well as the gas production
intensity. Space distribution of the second phase should not
necessarily be uniform, and external agents such as irradiation
may modulate the temperature profile and gas production
intensity.

The function representing the cumulative matter source
intensity in Eq. (10) is

S(t) =
∫ r2(t)

r1(t)
J (ξ,t) ξndξ + rn

1 j1(t) − rn
2 j2(t), (11)

where ji are projections of the fluxes ji on the r axis.
We suppose here that the initial pressure p0 and the

initial temperature distribution T0(r) are known parameters.
Combining Eqs. (1) and (10) and assumption (iii), we get the
pressure at arbitrary time t ≥ 0:

p(t) = p0∫ r2(t)
r1(t)

ξndξ

T (ξ,t)

[∫ r2(0)

r1(0)

ξndξ

T0(ξ )
+ R

p0

∫ t

0
S(τ )dτ

]
. (12)

The concept of finding the fluid velocity field u(r,t) is based on
the following. To define the local gas velocity u at a distance r ,
we apply the mass conservation law for a gas volume between
one of the boundaries and the virtual surface at the distance r .
The local gas velocity u thus coincides with the velocity of the
virtual surface ṙ . Hereafter, the dot above a function of time
denotes the time derivation.

From the conservation law, the mass variation rate in an
arbitrary gas volume [r1,r] is

d

dt

∫ r

r1(t)
ρ(ξ,t) ξndξ =

∫ r

r1(t)
J (ξ,t) ξndξ + rn

1 j1(t). (13)

The Leibniz rule for the derivative gives∫ r

r1(t)

∂ρ

∂t
ξndξ + rnρu − rn

1 ρ(r1,t)ṙ1

=
∫ r

r1(t)
J (ξ,t) ξndξ + rn

1 j1(t), (14)

where the velocity of the virtual surface r(t) coincides with the
local gas velocity u(r,t) ≡ ṙ(t). From Eq. (14), the velocity is

u(r,t) = 1

rnρ(r,t)

{
rn

1 [ρ(r1,t)ṙ1 + j1(t)]

+
∫ r

r1(t)
J (ξ,t) ξndξ −

∫ r

r1(t)

∂ρ

∂t
ξndξ

}
. (15)

Typically, we will omit arguments in u(r,t) = u, T1(r,t) =
T1, It (r,t) = It , etc., only retaining them when we need to
stress their meaning. Targeting a concise form of presentation,
we introduce the following notation:

I (r,t) ≡
∫ r

r1(t)

ξndξ

T (ξ,t)
, (16a)

It (r,t) ≡
∫ r

r1(t)

∂T

∂t

ξndξ

T 2(ξ,t)
, (16b)

IJ (r,t) ≡
∫ r

r1(t)
J (ξ,t) ξndξ. (16c)

From Eqs. (1) and (15) follows the basic expression for the
gas velocity:

u = T

T1

( r1

r

)n

ṙ1 + T

rn

[
It + R

p

(
rn

1 j1 + IJ

)− ṗ

p
I

]
, (17)

where we have chosen the volume of mass conservation
between the first boundary r1(t) and the imaginary moving
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surface with coordinate r . When the second boundary r = r2(t)
is taken as a reference, the gas velocity is

u = T

T2

( r2

r

)n

ṙ2 + T

rn

{
It − It (r2,t)

+ R

p
[IJ − IJ (r2,t) − rn

2 j2] + ṗ

p
I

}
. (18)

Velocity values calculated from Eqs. (17) and (18) are
identical, and it is a matter of convenience to choose either (17)
or (18) depending on a particular task. We will refer only to
Eq. (17) unless otherwise stated. It is important to note that
limitations (i–iv) should be valid in the volume, to which the
mass conservation law is applied. Away from the reference
volume, the model limitations may be violated.

Knowing the current pressure value p(t) is important for the
cases with boundary and volume gas sources; otherwise, we
need to know the ratio ṗ/p in Eq. (17). It may happen that the
pressure is known a priori, and there is no need, or it is simply
impossible, to evaluate pressure from Eq. (12). In particular,
it is the situation when all the processes occur in the internal
region, which is much smaller than the outer part. Whatever
happens in the internal region only negligibly affects the total
pressure, which may be considered as constant. As a result, the
pressure-dependent second term in square brackets in Eq. (17)
disappears, which simplifies the calculation. It may be the
case that the pressure is externally regulated, for example, by
some moving parts of the outer boundary or by the gas pressure
controllers being limited in space inlet and outlet areas. The ve-
locity calculation approach may still be applied unless the lim-
itations (i–iv) are not violated in the region between r1 and r .

In spite of the fact that the pressure in our approach is
considered to be uniform, it has the same importance as the
other terms in Eq. (17) when it is time dependent. It is easy
to illustrate, assuming that the boundary r1 does not move,
the temperature is constant, and there are no gas sources at
r1 and in the volume between r1 and r . From (17), we obtain
time- and space-dependent gas velocity defined solely by the
uniform pressure variation:

u = − 1

rn

ṗ

p

∫ r

r1

ξndξ = − rn+1 − rn+1
1

(n + 1)rn

ṗ

p
. (19)

Equating velocity in Eq. (17) to zero, we obtain conditions
allowing the gas to remain at rest at a distance r . In particular,
for a time-varying temperature profile T (r,t) and in the absence
of mass sources, the pressure should be regulated according to
the following condition:

p = p0 exp

[∫ t

0

It (r,τ )

I (r,τ )
dτ

]
. (20)

The flow profile arising from the boundary mass source may be
completely leveled by imposing boundary motion according to

ri = −R

∫ t

0

Ti(τ )ji(τ )dτ

p(τ )
, i = 1,2. (21)

The pressure-dependent term ṗ/p in Eq. (17) will now
be defined through the parameters of the system in the
whole domain [r1,r2]. It may be defined directly using the
expression for the pressure (12) or by isolating ṗ/p from
two expressions, (17) and (18). The general solution for the

velocity u(r,t) representing explicitly all the sources of gas
motion is

u = T

rn

{
rn

1

T1
ṙ1 + It + R

p

(
rn

1 j1 + IJ

)
−
[

rn
1

T1
ṙ1 − rn

2

T2
ṙ2 + It (r2,t) + RS

p

]
I

I (r2,t)

}
, (22)

i.e., the gas motion as a result of the displacement of the two
boundaries, the temperature variation and gas sources on both
boundaries, and the volumetric gas production.

The first four terms in expression (22) define the input of all
the sources of gas motion between the reference boundary and
the imaginary moving surface with coordinate r . Last three
terms in the square brackets represent the influence of the
pressure variation ṗ/p in the whole region. Below, the gas
velocity is subdivided into three constituents to highlight the
influence of particular gas motion sources:

u = uB + uT + uJ

= T

T1

( r1

r

)n

(1 − A)U1 + T

T2

( r2

r

)n

AU2

+ T

rn
[It − AIt (r2,t)] + RT

prn
[IJ − AIJ (r2,t)]. (23)

The ratio

A(r,t) = I (r,t)

I (r2,t)
=
∫ r

r1

ξndξ

T (ξ,t)

/∫ r2

r1

ξndξ

T (ξ,t)
(24)

can be interpreted as a geometrical factor depending on
the position of the radius vector between the boundaries:
0 � A(r,t) � 1, becoming zero at r = r1 and unity at r = r2.
The geometrical factor A(r,t) acquires a simple form for the
uniform temperature profile

A = rn+1 − rn+1
1

rn+1
2 − rn+1

1

. (25)

The velocities Ui combine the influence of the boundary
motion and the presence of the interfacial mass sources:

U1 = ṙ1 + RT1

p
j1, U2 = ṙ2 − RT2

p
j2. (26)

From Eqs. (16) and (23) follows that the “thermal” constituent
of the velocity uT vanishes if the temperature is uniform, even
if it varies in time [T = T (t)]. Similarly, the “mass source”
constituent uJ vanishes in the case of a uniform distributed
source [J = J (t)].

The cross influence of the motion sources is clearly seen
from Eq. (23). Each of three velocity constituents becomes
zero when its corresponding source is not active, but all of
them contain implicit dependence on the other active sources.
Indeed, according to Eq. (12), displacement of boundaries and
mass sources varies the pressure, being a part of the expressions
for the constituents uB and uJ . Temporal variation of the
temperature profile modifies the geometric factor A because
it is a part of all the constituents in the general expression.
However, the cross influence typically is relatively weak.

Gas velocity, defined in different ways in Eqs. (17), (18),
(22), and (23), can easily be calculated numerically and in
many particular cases analytically. However, the analytical
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solutions are often quite bulky because of the temperature in
the denominator under the integral sign. For the cases when
the maximal deviation of the temperature is smaller than the
absolute temperatures on the boundaries, we found it practical
to decompose into series the inversed temperature and the
square of the inversed temperature. First, we introduce the
reference temperature, for example T = (T1 + T2)/2, which
is an average of the current temperatures on the boundaries.
The small parameter is then the relative deviation of the local
temperature from the reference temperature

α = T − T

T
. (27)

Retaining first-order terms in the decompositions, we obtain

1

T
≈ 1

T
(1 − α + · · · ) = 1

T
− T − T

T
2 + · · · , (28a)

1

T 2
≈ 1

T
2 (1 − 2α + · · · ) = 1

T
2 − 2

T − T

T
3 + · · · . (28b)

The decompositions of (28), containing the temperature
only in the numerators, are used in the integrals (16), while
everywhere else we use the exact temperature values and
profiles known from the heat equation (5). This approximation
often gives accurate results, even in the cases when the tem-
perature variation span becomes comparable to the reference
temperatures. In most practical cases, it is sufficient to use
the 0th approximation [just the first terms in the right parts
of Eq. (28)], which we will use below and will refer to as a
uniform inversed temperature approximation (UIT):

T = T (t), for T in denominators in integrals

T = T (r,t), elsewhere.
(29)

This works surprisingly well. In the example calculations of
Sec. III, this zero-order approximation provides maximum
relative velocity deviation from the exact solution of less than
α. For the best accuracy, the uniform temperature T (t) should
be chosen as most representative for the area with the highest
rate of density variation.

The geometrical factor A in the UIT approximation
becomes the same as defined in Eq. (25) for the uniform
temperature profile, and the thermal gas velocity constituent in
Eq. (23) transforms into an expression much more convenient
for analytics:

uT ≈ 1

rn

T

T
2

(∫ r

r1

∂T

∂t
ξndξ + rn+1 − rn+1

1

rn+1
2 − rn+1

1

∫ r2

r1

∂T

∂t
ξndξ

)
.

(30)

UIT approximation gives the following simple estimation of
pressure:

p ≈ p0
T

T 0
+ n + 1

rn+1
2 − rn+1

1

RT

∫ t

0
S(τ )dτ . (31)

One of the main utilities of the UIT approximation comes
from the fact that virtually all of the particular exact solutions
for gas velocity contain the T2 − T1 term in the denominator

that produces a singularity at equal boundary temperatures.
The limit of the exact solutions at T1 → T2 is bounded, and it
coincides with the solution in the UIT approximation.

When the main sources of the gas motion are concentrated
near one of the boundaries, say, boundary one, the gas velocity
from the Taylor decomposition of Eq. (17) is

u(r1 + �r) ≈ U1 + �r

[
ṙ1

T1

∂T

∂r

∣∣∣∣
r1

− n
ṙ1

r1
+ ∂T /∂t

T
− ṗ

p
+ RT

p

(
J1 − nj1

rn
1

)]
.

(32)

This expression excludes calculating the integrals. It is partic-
ularly useful when (r − r1) � L so that the term ṗ/p may be
neglected. Note that the result depends on the dimensionality
factor n.

For a thin space between the two boundaries, the gas
velocity in axisymmetric and centrosymmetric cases (n = 1 or
2) becomes similar to that for the one-dimensional symmetry
(n = 0). When the distance between the two boundaries is
much less than the wall radii (L � ri), we substitute self-
standing r , r2, and ξ by r1. At the same time, we should
retain r in the integral limits and in T = T (r,t) as well as
ξ in all the terms of the type T (r,t) and J (r,t) under the
integral sign because they may vary substantially within the
slot. Independently of the dimensionality factor n, the velocity
expression in Eq. (17) is thus reduced to

u ≈ T

T1
ṙ1 + T

∫ r

r1

(
1

T

∂T

∂t
− ṗ

p

)
dξ

T
+ RT

p

(
j1 +

∫ r

r1

J dξ

)
= T

T1
(1 − A)U1 + T

T2
AU2

+T

(∫ r

r1

∂T

∂t

dξ

T 2
− A

∫ r2

r1

∂T

∂t

dξ

T 2

)
+RT

p

(∫ r

r1

J dξ − A

∫ r2

r1

J dξ

)
(33)

with the geometrical factor A:

A(r,t) =
(∫ r2

r1

dξ

T

)−1 ∫ r

r1

dξ

T
. (34)

Concluding the model section, it is important to make a note
about proceeding from the general solution to the analytical
solution of a particular task. The current model includes a
set of gas motion sources and three possible dimensionalities.
Various combinations result in nearly 500 particular tasks in
quasisteady case (large Fourier number) and a similar quantity
for small Fourier number. Additionally, for the sources,
one should define particular temporal functions, so that the
overall variety of the particular cases becomes overwhelmingly
wide. Therefore, in the following section, we focus on a
set of representative particular tasks, demonstrating exact
and approximate analytical solutions along with numerical
results and comparative analysis aimed at defining typical
characteristics of one-dimensional homobaric gas flows.
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III. PARTICULAR CASES

In this section of the paper, we find solutions for gas flows
generated by each possible motion source and for various
combinations of them, introducing particular dependencies
ṙi(t), Ti(t), J (t), and ji(t) in the general solution. The major
aspect of the analysis is related to the thermally driven flows
that we estimate as most frequent. We limit the variety of
the thermal tasks by the quasistatic heat equation (9), which
corresponds to high Fourier number.

As an example of real-life conditions when the quasisteady
approach is accurate, we can discuss the experiment for
simulation of astrophysical dust clouds [36] in a chamber with
heating elements placed at a distance 4 cm in the chamber,
which is filled by air with pressure 30 Pa at room temperature.
The frequency of the temperature variations was 2 Hz. For the
above mentioned conditions, the Fourier number is Fo ≈ 23,
which is sufficient to use the quasistatic approximation.

In all the considered cases, the exact analytical solutions
and their approximations are obtained. In all the cases, the
presence of both boundaries and particular conditions on them
are essential for the formation of the velocity profiles.

A. Boundary temperature variation

Below, we treat the problems of the gas motion in a domain
restricted by two nonmoving boundaries r1(t) = r10, r2(t) =
r20, when one or two thermal boundary conditions vary in
time. Nonuniformly heated gas starts flowing from regions
where local time derivative ∂T /∂t is positive (higher) when
compared to the regions where it is negative (lower). The
animation in the Supplemental Material [12] illustrates this
explanation with synchronously animated temperature and
velocity profiles, along with a velocity vector field.

We use the known solutions of the quasistatic heat equa-
tion (9) with the boundary conditions of the first type

T (r1,t) = T1(t), T (r2,t) = T2(t) (35)

for all three geometries (planar, axisymmetric, and centrosym-
metric) to find the gas velocity and pressure. The expressions
for gas velocity and pressure obtained below for the boundary
conditions (35) are applicable for any other thermal boundary
conditions. For example, in the case of boundary conditions
of the second type, say (∂T /∂r)|r=r2 = −q2(t)/λ, Eq. (9) has
the solution

T = T1 − q2

λ
(r − r1), (36)

from where T2 = T (r2) = T1 − q2L/λ, which should be used
as the temperature on the second boundary in Eq. (35).

Due to the relative simplicity of the quasistatic temperature
distribution, it appears possible to obtain exact analytical
solutions, when mass sources are absent. Substituting J (r,t) =
0, ji = 0, and ṙi = 0 (i = 1,2) in Eqs. (12) and (23), we obtain
the gas velocity profile

u = uT = T

rn

[
It − I

It (r2,t)

I (r2,t)

]
(37)

and the time-dependent pressure

p = p0
I (r2,0)

I (r2,t)
. (38)

The analysis of the gas flow for particular cases is
performed for linear or periodic temperature variation in time
on the boundaries. The linear temporal profile of temperature
variation is convenient to find analytical solutions and for
illustrations. In practice, the surface heating is often realized
applying constant power of heat production, activated at
a given moment. The corresponding temporal profiles are
complicated functions, but in the initial interval they are often
well described by linear dependence.

The goal of the further analysis is to visualize typical gas
velocity profiles, to compare our analytical and approximate
solutions with the corresponding numerical simulation in
the full Navier-Stokes equation system, to give an idea of
what happens when a quasisteady regime is no longer valid
(Fo � 1), and to highlight profile peculiarities for different
dimensionalities n.

1. Infinite heated plates (n = 0)

Suppose that the gas fills a gap of width L between
parallel solid plates with coordinates r1 and r2. The boundary
temperatures vary in time as given by functions T1(t) and T2(t).
This is the classical configuration of measurement cell, which
is widely used in experimental studies of heat transfer and
transport phenomena. The plate dimensions in reality are finite,
but the small distances between them allow the side effect
influence in the central part of the cell to be neglected. In the
absence of volumetric heat sources (Q = 0), the temperature
distribution for the quasistationary heat equation (9) in the
planar gap r1 � r � r2 is a linear function of the coordinate r:

T = (r − r1)T2 + (r2 − r)T1

L
. (39)

Knowing the temperature, we can readily obtain the gas
pressure from Eqs. (38), (39), and (16a):

p = p0
ln(T20/T10)

ln(T2/T1)

T2 − T1

T20 − T10
. (40)

Hereafter, T10 ≡ T1(0), T20 ≡ T2(0), and p0 are the boundary
temperatures and the pressure at t = 0, respectively. If T20 =
T10, then Eq. (40) has a discontinuity which is resolved as

p
∣∣
T10=T20 = p0

T2 − T1

T10 ln(T2
/
T1)

. (41)

Upon introducing the normalized dimensionless coordinate
fixed on the gap walls as

x = r − r1

L
, L = r2 − r1, (42)

the temperature profile of Eq. (39) transforms into

T = x T2 + (1 − x) T1. (43)

From Eqs. (43), (16a), (16b), and (37), the gas velocity
profile is

u = L

[
T

ln(T/T1)

ln(T2/T1)
− xT2

]
Ṫ2/T2 − Ṫ1/T1

T2 − T1
. (44)

It is important to note that the velocity profile in (44) is scalable
by the distance between the boundaries L.

In the UIT approximation, the velocity profile becomes
as simple as a parabola with the extremum in the mid-plane
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between the plates:

uUIT = Ṫ2 − Ṫ1

2T
2 T (x − 1)xL, (45)

and the pressure obeys the simple isochoric law p/p0 = T /T 0.
The expression for the velocity has a singularity when T1 → T2

at Ṫ1 
= 0 and/or Ṫ2 
= 0. The limit exists and coincides with
the UIT approximation (45) with T (t) = T1 = T2.

The profile always has a single extremum located in

X = T1

T2 − T1

[
exp

(
T2

T2 − T1
ln

T2

T1
− 1

)
− 1

]
. (46)

For T1 → T2, the velocity extremum is located in the middle of
the region: X = 1

2 . At greatly different boundary temperatures,
the extremum can be significantly shifted from the middle:
X → e−1 at T2 � T1 and X → 1 − e−1 at T1 � T2. The gen-
eral expression for the extreme velocity remains proportional
to L:

u(X) = Ṫ2/T2 − Ṫ1/T1

T2 − T1
T1L

×
[

T2

T2 − T1
− exp

(
T2

T2 − T1
ln

T2

T1
− 1

)]
. (47)

The velocity profiles near the boundaries are well described by
linear functions, particularly when the extremum is strongly
shifted from the domain center. The velocity slopes on the
boundaries are defined by the Taylor decompositions

u′
i =

[
T2 − T1

ln(T2/T1)
− T(3−i)

]
Ṫ2/T2 − Ṫ1/T1

T2 − T1
, i = 1,2. (48)

Below, we analyze the gas flow for a particular case
of periodic temperature variation on the left and constant
temperature on the right boundary:

T1 = T0 + �T sin(ωt), T2 = T0. (49)

Dimensionless velocity is introduced as a ratio ũ = u/umax,
where umax = Lω�/8 is the maximal velocity in time and
space obtained from Eq. (47). The velocity profile along
coordinate x depends only on two dimensionless parameters:
ratio � = �T/T0 and dimensionless time τ = ωt :

ũ = 8

tan τ

{
− x

1 + � sin τ
+
(

x − 1 − x

1 + � sin τ

)

× ln[1 − x + x/(1 + � sin τ )
]

ln(1 + � sin τ )

}
. (50)

For a quantitative treatment, we took relative temperature
variation � = 0.2. Figure 2(a) shows velocity profiles in a
quasistationary gas flow regime. At the time instants τ =
iπ, i ∈ Z, all the profiles coincide. At given �, no visible
difference is seen between the exact solution and the first-order
approximation (28). Even zero-order UIT approximation (29)
deviates from the exact solutions at particular time instants
with maximal relative values of less than 0.15. It should
be considered as a good approximation in view of the
rather large temperature variation � = 0.2. See Supplemental
Material [12] for animated solution of the gas flow in a planar
gap.

FIG. 2. Flow between two heating plates: (a) Dimensionless
velocity profiles for boundary conditions (49) with � = �T /T0 =
0.2: the exact analytic solution (50) (thin solid lines), the UIT approx-
imation (dashed-dotted lines), and the first-order approximation (28)
(thick dashed lines) at several time instants (numbers near the curves
show the ωt value). The diamonds locate the velocity extrema. (b)
Comparison of the analytical solution (52) (solid line) and three
numerical solutions (red diamonds Fo = 10, green squares Fo = 1,
and blue circles Fo = 0.1) for boundary conditions (51) at the time
instant τ = kt/T0 = 1

15 .

Figure 2(b) illustrates what occurs upon transition from
the quasistationary to the nonstationary regime of flow.
The velocity profiles are presented for antisymmetric linear
temperature variation on both boundaries

T1 = T0 + k t, T2 = T0 − k t. (51)

The velocity is normalized by umax = kL/4T0, which corre-
sponds to u(X) at t = 0. After normalization, the velocity is
completely defined only by dimensionless coordinate (42) and
dimensionless time τ = kt/T0:

ũ = 4

τ (1 − τ )

{
−1 − τ

1 + τ
x +

(
1 − 2τ

1 + τ
x

)
× ln[1 − 2xτ/(1 + τ )]

ln[(1 − τ )/(1 + τ )]

}
. (52)

The solution is defined at τ < 1 because T2 becomes zero at
τ = 1, and the velocity tends to infinity.

The CFD numerical full-scale simulations were conducted
using the ANSYS FLUENT software with the mesh generated in
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GMSH software [38]. The simulation is performed for a set of
values of the Fourier number defined as Fo = χT0/kL2.

The graphs clearly show that the numerical and analytical
solutions coincide when the model requirement on high
Fourier number is fulfilled (Fo = 10). The maximal relative
deviation of the velocity calculated at Fo = 1 is less than
0.07, but it is already more than 0.5 at Fo = 0.1. The velocity
maximum slightly moves from its central position at Fo = 10
toward the right wall for smaller Fo when τ → 1. The
formation of a flat zone in the central part is a typical property
of essentially nonstationary flows in the current example.

2. Two coaxial infinite cylinders (n = 1)

For an annular gap (n = 1) between two infinitely long
cylinders, the solution of Eq. (9) with boundary conditions (35)
is

T = T1 + (T2 − T1)
ln y

ln G
, (53)

where the dimensionless coordinate y is linearly related to x

from Eq. (42):

y = r/r1 = 1 + (G − 1)x. (54)

New dimensionless coordinate y makes the expressions
shorter. The “tube-in tube” configuration is common for heat
exchangers and chemical reactors.

Solutions in nonplanar geometries (n > 0) contain a new
parameter: a ratio of external and internal radii

G = r2

r1
. (55)

As with the previous task, all the solutions can be extended
on any type of thermal boundary conditions, replacing Ti by
T (ri,t) from redefined boundary conditions.

Explicit expressions for pressure and velocity through the
boundary conditions follow from Eqs. (38) and (37) as

p = p0
T2 − T1

T20 − T10

E(G,0) − E(1,0)

E(G,t) − E(1,t)

× exp

[
2

(
T1

T2 − T1
− T10

T20 − T10

)
ln G

]
, (56)

u = Ṫ2/T2 − Ṫ1/T1

(T2 − T1)2

L ln G

[E(G,t) − E(1,t)](G − 1)y

×[E(y,t)(G2T1 − T2)T + E(1,t)(y2T2 − G2T )T1

−E(G,t)
(
y2T1 − T

)
T2], (57)

where L = r2 − r1 and E(y,t) = Ei[ 2T (y,t)
T1(t)−T2(t) ln G], with Ei

being the exponential integral function of the real argument.
The UIT approximation from Eq. (30) gives a simple

expression

uUIT = Ṫ2 − Ṫ1

2T
2

LT

(G − 1)y

[
G2

G2 − 1
(1 − y2) + y2 ln y

ln G

]
(58)

that coincides with the limit of Eq. (57) in the singularity
case when T1 → T2 at Ṫ1 
= 0 and/or Ṫ2 
= 0. The velocity

FIG. 3. Flow between two heating cylinders: (a) Profiles of
dimensionless velocity at several values of the ratio G = r2/r1

(numbers near the curves). The profiles are calculated at t = 0
for the periodic boundary conditions (49) with � = �T /T0 = 0.2.
(b) Comparison of the analytical (solid line) and three numerical
solutions (red diamonds Fo = 10, green squares Fo = 1, and blue
circles Fo = 0.1) in the case of linear boundary conditions (51) at
τ = kt/T0 = 1

15 and G = 10.

extremum and its coordinate in the UIT approximation are

uUIT(XUIT) = Ṫ2 − Ṫ1

2T
2

LT

G − 1

1 − �(G)√
2
(
G2 − 1

)
�(G) ln G

, (59)

XUIT = 1

G − 1

{
exp

[
�(G)

2
+ G2 ln G

G2 − 1
− 1

]
− 1

}
, (60)

where �(G) = W0[ 2G2 ln G
G2−1 exp (2 − 2G2 ln G

G2−1 )] with W0 being
the single-valued Lambert function. Both formulas give
accurate results for not too high values of G. The relative
deviation from the exact value is less than 0.15, even for
G → ∞.

In the same manner as for the flat geometry, we present
in Fig. 3 analysis of the gas flow for two particular types
of time-dependent boundary conditions (49) and (51). The
velocity is normalized similarly, by Eq. (59). Properties of
the velocity profiles are very close to those in the planar case
(n = 0) as well as the velocity profiles for periodic temperature
variation in Fig. 3(a). The latter profiles correspond to three
different values of G at the time instant when the temperature
time derivative is maximal. Upon growing of G, the velocity
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extremum shifts toward the internal boundary r1, and for G →
∞ the extremum location X → 1/e.

The influence of the transition from quasistationary (Fo �
1) to essentially nonstationary (Fo � 1) regimes of heat
transfer on the velocity profiles is illustrated in Fig. 3(b). The
main features are similar to those for the flat geometry (n = 0),
accounting for the shift of the velocity maximum toward the
inner boundary and increasing asymmetry of the profiles at
growing G.

3. Two concentric spheres (n = 2)

For the gas confined between two concentric spheres from
Eq. (9) and boundary conditions (35), we obtain the following
temperature profile:

T = θ + φ

y
, θ = GT2 − T1

G − 1
, φ = T1 − T2

G − 1
, (61)

where y is the dimensionless coordinate (54) and G is the ratio
of the wall radii defined by Eq. (55).

The auxiliary integrals in Eq. (37) are expressed through θ

and φ :

I = L3

(G − 1)3

(
y3 − 1

3θ
− φ

y2 − 1

2θ2

+φ2 y − 1

θ3
− φ3

θ4
ln

yθ + φ

θ + φ

)
,

It = L3

(G − 1)3

[
θ̇

θ2

y3 − 1

3
+
(

φ̇

2
− φθ̇

θ

)
y2 − 1

θ2

+
(

3φ2θ̇

θ
− 2φφ̇

)
y − 1

θ3

+
(

φ4θ̇

θ4
− φ3φ̇

θ3

)
y − 1

(yθ + φ)(θ + φ)

+
(

3φ2φ̇

θ4
− 4φ3φ̇

θ5

)
ln

yθ + φ

θ + φ

]
. (62)

The exact solutions for pressure and velocity follow from
Eqs. (38) and (37). The UIT approximations may be expressed
in a compact way without θ and φ. The pressure is defined by
the first term on the right-hand side of Eq. (31), while the
velocity is

uUIT = − Ṫ2 − Ṫ1

2T
2
y2

LT

G − 1

(G − y)(y − 1)G[G + (G + 1)y]

G3 − 1
.

(63)
The velocity extremum and its coordinate in the UIT

approximation are

uUIT(XUIT)

= Ṫ1 − Ṫ2

2T
2

LT

G − 1

⎡⎢⎣ G

G − 1
− 3G3(

G3 − 1
)(

2G2

G+1

)2/3

⎤⎥⎦, (64)

XUIT =
3

√
2G2

G+1 − 1

G − 1
. (65)

FIG. 4. Boundary temperature variation: (a) Velocity extremum
location as a function of decimal logarithm of the ratio G = r2/r1

in all three geometries for boundary conditions (49) at τ = 0 and
fixed r1. (b) Comparison of the velocity distributions in different
symmetries for linear boundary conditions (51) at dimensionless
time τ = kt/T0 = 1

15 and G = 10. Dashed lines are for the UIT
approximation.

Analytical expressions for the gas velocity related to the
time-dependent boundary conditions (49) and (51) are not
presented here because they are too bulky. The tendencies
for the velocity profile transformation are becoming more
profound for central symmetry. The shift of the velocity
extremum toward the internal boundary is illustrated in Fig. 4.

The higher G becomes, the more the velocity extremum is
shifted toward the internal boundary [Fig. 4(a)]. Unlike planar
and axisymmetric cases, the velocity extremum in centrosym-
metric tasks asymptotically tends to x = 0 at G → ∞. Typical
velocity profiles for n = 0,1,2 at linear temperature variation
on the walls (51), dimensionless time τ = kt/T0 = 1

15 , and
G = 10 are presented in Fig. 4(b). The velocity is normalized
by the maximal velocity for the planar geometry (47).

The gas velocity profiles always have the same sign in the
whole domain for all the flows driven by the time-dependent
thermal boundary conditions. In other words, there cannot
be stagnant points, except for boundaries. The proof of this
statement is based on the general solution for the velocity (22),
where the multiplier T/rn may be omitted as always positive.
The velocities are zero on the boundaries. Therefore, to have
no sign alteration between the boundaries, the velocity profile
should have a single extremum. Taking the space derivative
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from the expression in the square brackets in Eq. (37) and
equating it to zero, we obtain the equation to find the roots for
the extrema of the velocity profiles as ∂T /∂t = T C(t).

The function C(t) is the ratio of the definite integrals
in Eq. (37) and thus does not depend on coordinates. This
equation always has only one solution due to monotonicity of
the temperature profile between the boundaries [the property
of the general solution of Eq. (9)], thus giving the proof for
the sole extremum in the whole domain.

B. Moving boundaries and boundary mass sources

Suppose that there are no volumetric sources [J (r,t) = 0]
and the temperature is always uniform (∂T /∂r = 0) or static
(∂T /∂t = 0). From Eq. (23), it follows that in both cases, the
only source of motion may be related to the boundaries uB :

u = uB = T

T1

( r1

r

)n

(1 − A)U1 + T

T2

( r2

r

)n

AU2, (66)

with the geometric factor A from Eq. (25). We recall that the
velocities U1 and U2 comprise the velocity of the boundary
displacement and the gas velocity on the boundary because of
surface mass sources, according to Eq. (26). The two effects are
identical for the generation of the gas motion and peculiarities
of its pattern (in the case of moving boundaries, instantaneous
pattern). The pressure is still defined by the full equation (12).

1. Boundary displacement

Here, we analyze gas flow induced by motion of rigid
walls in the absence of any mass and heat sources. Boundary
velocity must be much less than the sound propagation velocity
[ṙi � c] to meet model assumption (iii). All possible acoustic
phenomena are thus filtered out from the solution. The solution
gives the velocity “averaged” over multiple “acoustic times.”

In the isothermal approximation T (r,t) = T0 and in the
absence of mass sources on the boundaries Ui = ṙi , the
pressure from Eq. (12) is

p = p0
rn+1

20 − rn+1
10

rn+1
2 − rn+1

1

, (67)

where r20 and r10 are the boundary coordinates at t = 0. For
the adiabatic approximation p/p0 = (ρ/ρ0)γ in assumption of
uniform temperature T = T (t), the pressure is

p = p0

(
rn+1

20 − rn+1
10

rn+1
2 − rn+1

1

)γ

. (68)

Gas density in the adiabatic process equals that in the
isothermal process, and the gas velocity in both cases is

u =
(
rn+1 − rn+1

1

)
rn

2 ṙ2 + (
rn+1

2 − rn+1
)
rn

1 ṙ1(
rn+1

2 − rn+1
1

)
rn

. (69)

In the axisymmetric and the centrosymmetric geometries,
moving boundaries generate particular components of gas
motion. To highlight the peculiarities of this case, we impose
an additional requirement, considering that the gas density
is constant. The whole volume remains the same, while the

boundaries should move as

ṙ2 =
(

r1

r2

)n

ṙ1. (70)

For the flat geometry, we obtain ṙ2 = ṙ1. Obviously, the gas is
motionless in a coordinate system that is fixed with one of the
boundaries. In axisymmetric and centrosymmetric geometries,
the gas does move with respect to each boundary, with the
velocity u = (r1/r)nṙ1, in spite of the fact that the pressure and
gas density are stationary and uniform. The center of gravity

of the gas mass evolves as rcgrav = [rn+1
2 − rn+1

1 ]
1/(n+1)

in the
coordinate system fixed on the element of symmetry.

Below, we combine moving boundaries and quasistationary
temperature variation.

2. Moving boundaries with varying temperatures

Consider a planar (n = 0) gas flow generated by heated
walls which are in a state of motion. The expression for the
pressure comes from Eq. (38):

p = pT

r20 − r10

r2 − r1
, (71)

where pT is the solution for nonmoving heated boundaries
given by Eq. (40). The resultant velocity can be presented as
an algebraic sum from two sources, according to Eq. (23) :

u = uT + (r2 − r)ṙ1 + (r − r1)ṙ2

r2 − r1
, (72)

where uT is the solution for nonmoving heating boundaries
from Eq. (44) with r1 and r2 replaced by r1(t) and r2(t), and t

is a parameter.
To give an example of the joint action of the sources, we

consider a particular task when the temperature of the left wall
has a sinusoidal temporal component, while the wall itself is
in antiphase periodic displacement. The right wall stays at rest
at a constant temperature:

T1 = T0 + �T sin(ωt), r1 = r10 − �r sin(ωt),

T2 = T0, r2 = r20.
(73)

The following analysis of the velocity profiles is based
on UIT approximation; otherwise, the expressions are too
bulky. The defining parameters can be reduced to the sine
phase ωt and two dimensionless complexes: � = �T /T0,
δ = �r/(r20 − r10) where δ is the relative wall displacement.
In Fig. 5(a), the velocity profiles are presented for � = 1

15 ,
δ = 0.01, so that the wall velocity and the gas velocity due to
thermal expansion are comparable. The velocity is normalized
by umax and plotted versus dimensionless coordinate x =
(r − r10)/(r20 − r10). The maximum velocity umax in time and
space is a maximum of the left boundary velocity at t = 0:
uB = ω�r and the velocity at the extremum point at t = 0:
uextr = ω��r(2δ/� − 1)2/8δ.

In Fig. 5(b), one can see how the relation between
the relative temperature amplitude � and relative boundary
displacement δ changes the shape of the velocity profiles:
when � > 2δ, the profile has distinct extremum and there is
a stagnant point with zero velocity, otherwise the profile is
monotonous. Velocity profiles obtained by numerical simula-
tion in ANSYS FLUENT software under an Fo � 1 condition
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FIG. 5. Heating and moving wall: (a) Analytic profiles (thin solid
curves) of dimensionless gas velocity for boundary conditions (73)
at � = �T/T0 = 1

15 , δ = �r/(r20 − r10) = 0.01. Thick dashed lines
represent the solution for constant temperature of the left wall T1 =
T0. The numbers next to the curves show corresponding values of ωt .
(b) Dimensionless velocity profiles from Eq. (72) (solid curves) and
numerical simulation (symbols), at t = 0, � = 1

15 , and three values
of δ (numbers next to the curves). The profiles are normalized by
corresponding wall velocity.

almost coincide (relative error not more than 2.5%) with the
analytic profiles.

The results of the analysis may be treated in a way that if the
temperature of one of the walls varies in time, it is possible to
reduce the induced gas velocity by moving the same wall. The
velocity profile will be lower, and there may appear a point
with zero velocity. For � > 2δ, the stagnant point r = r0 falls
within the domain. The coordinate of the stagnant point for
the above mentioned conditions is

r0(t) = r1(t) + 2(r20 − r10)δ/�. (74)

The splitting of the solution into two independent terms,
similarly to Eqs. (71) and (72), in general is not valid for
other geometries, but it gives a good approximation when at
least one of the terms is small.

3. Boundary mass sources

In this section, we consider gas motion driven by mass
sources j1(t) and j2(t) on the boundaries in a closed do-
main with nonmoving boundaries and constant temperature
T (r,t) = T0. In this case, the gas velocity is defined by Eq. (66),

where Ui = RT0ji/p, and the pressure from Eq. (12) is

p = p0 + RT0
n + 1

rn+1
2 − rn+1

1

∫ t

0

[
rn

1 j1(τ ) − rn
2 j2(τ )

]
dτ. (75)

Such systems happen in cavities with some physicochemical
transformations on the walls, such as phase transition, ab-
sorption, chemical reaction, etc. Another realization of such
a system is related to permeable walls, as shown in Fig. 1(c).
For the latter case, we present two particular illustrative cases:
(1) stationary gas density in the domain and (2) equal flow
densities on both boundaries. For the first case, one may
imagine constant overpressure in the region behind the first
permeable wall and an open space outside the second, also
permeable, wall. The gas flows through the cavity, maintaining
constant pressure and thus density in the cavity. The flow
densities are related in the same manner as for the moving
boundaries (70), i.e., j2 = (r1/r2)nj1. In this case, the gas
pressure is constant (p = p0) and the velocity is

u = RT0j1

p0

1

yn
, (76)

where y is the dimensionless coordinate (54). The extreme
velocity in time and space is umax = U1 = RT0j1/p0.

The second case of equal in or out fluxes j1 = −j2 ≡ j0

may be illustrated by the cavity bounded by two walls of
identical permeability; the pressure outside the cavity, r < r1

and r > r2 is the same but is not equal to the uniform pressure
inside the cavity r1 < r < r2. The velocity from Eq. (66) and
the pressure from Eq. (75) are

u = RT0j0

p

(G + 1)Gn − (Gn + 1)yn+1

(Gn+1 + 1)yn
, (77)

p = p0 + RT0j0(n + 1)(G − 1)

L

Gn + 1

Gn+1 − 1
t, (78)

where G is the ratio of the wall radii (55). The velocity is
maximal at t = 0.

The dimensionless velocity profiles corresponding to the
illustrative cases mentioned above are presented in Fig. 6. The
velocity is normalized by RT0j0/p(t), and it depends only on x

defined by Eq. (42) and on G. The calculations are conducted at
G = 5. At large G for n > 0, the dimensionless velocity profile
in almost the whole domain is described by linear function
with the slope −1 [see dashed curve on Fig. 6(b)]. In the
planar case (n = 0), the slope is −2. When G tends to unity,
the dimensionless velocity profiles at n > 0 are identical to
that at n = 0. The location of the stagnant point (where u = 0)
is

x0 = Gn

Gn + 1

G + 1

G − 1

(
G−n + 1

G + 1

) n
n+1

− 1

G − 1
. (79)

C. Distributed sources

Upon illumination, gas molecules absorb part of the irradia-
tion energy, leading to the variation of the gas temperature and
its density. Homogeneous nonuniform chemical reactions have
the same effect. Small cloud particles, heated by illumination
or changing their temperature due to the phase transition,
represent other cases of distributed thermal sources. All of
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FIG. 6. Boundary mass sources: (a) Velocity profiles at constant
gas density, i.e., for boundary fluxes j2 = (r1/r2)nj1. (b) Profiles for
equal inflow and outflow fluxes j1 = −j2 ≡ j0. The radii ratio is
G = 5 everywhere except for the dashed curve in the plot (b).

them are defined by Q(r,t) in our model. Similarly, there may
exist distributed mass sources represented by J (r,t). Space
nonuniformity may be rather complicated, as consisting of
sequential cloud layers of different density variation intensity.

To highlight peculiarities of such systems, in the two follow-
ing examples we idle all the sources except for homogeneous
and heterogeneous (cloud) mass sources with simple profiles
of space nonuniformity. The boundaries stay at rest, there are
no boundary mass sources, Ui = 0, and the gas temperature
profile does not vary in time. The gas velocity profile for
nonuniform volumetric matter source from Eq. (23) is a
function of the coordinate

u =
[
IJ − IJ (r2,t)

I (r2,t)
I

]
RT

prn
(80)

scaled by the linearly growing in time pressure:

p = p0 + R
IJ (r2,t)

I (r2,t)
t. (81)

1. Arrhenius-type kinetics

Here, we analyze gas motion induced solely by the
distributed mass source in the planar case n = 0. For constant
temperatures on both boundaries T1(t) = T1, T2(t) = T2, and
T1 > T2 the temperature profile is given by Eq. (39). We
assume that the volumetric mass production rate follows the

Arrhenius-type kinetics:

J (r) = J0 exp

[
− E

RT (r)

]
. (82)

In spite of the fact that the temperature profile is stationary, the
motion does arise because of mass production rate dependence
on the nonuniform temperature.

The solutions for the velocity and the pressure are defined
by Eqs. (80) and (81) with following integral functions:

IJ = J0L

T2 − T1

{
T exp

(
− E

RT

)
− T1 exp

(
− E

RT1

)
−
[

Ei

(
E

RT

)
− Ei

(
E

RT1

)]
E

R

}
, (83)

where L = r2 − r1, and

I = L

T2 − T1
ln

T

T1
. (84)

In Eq. (83), Ei is the exponential integral function of the real
argument. The function It in Eqs. (16) equals zero in the
current thermally stationary case. This solution is inconvenient
for practical calculations because it contains nonelementary
functions. The UIT approximation gives zero gas velocity. The
first-order approximation is defined by the first two terms in
Eq. (28). IJ and I are then integrated in elementary functions:

I 1
J = J0RT

2

E

L

T2 − T1

[
exp

(
−E

R

2T − T

T
2

)

− exp

(
−E

R

2T − T1

T
2

)]
(85)

and

I 1 = T2 − T1

2T
2

r2 − r2
1

L
+ 2

r − r1

T
− 2

T r − T1r1

T 2
. (86)

Figure 7(a) presents the gas velocity profiles for numerical
simulation in the full Navier-Stokes equation system, for the
exact analytical solution and for the first approximation. The
numerical simulation is conducted for high Fourier number.
The velocity is normalized by a reference value uref =
LJ0RT1 exp(−E/RT1)/p0. Dimension analysis showed that
the system-defining parameters can be reduced to two di-
mensionless complexes: α = T2/T1 and � = E/RT1. The
numerical solution coincides with the exact analytical solution.
The relative error of the first-order approximation is not worse
than 15%. The shape of the space profile of the gas velocity
is similar to that in the case of heated walls: zero velocity on
both boundaries and one extremum in-between. The sign of the
velocity is opposite to the sign of the temperature gradient. The
maximal velocity decreases in time from the very beginning.
In the limit of � → 0, the dimensionless velocity can be
approximated by

ũ(� → 0) = [1 + (α − 1)x]{x ln α − ln[1 + (α − 1)x]}
(α − 1)τ + ln α

,

(87)
where τ = J0RT1t/p0.
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FIG. 7. Distributed mass sources with Arrhenius-type kinetics:
(a) Gas velocity profiles obtained from the exact solution (solid
black curve), first approximation (dashed green curve), and numerical
simulation in ANSYS FLUENT (red circles) at α = 0.3, � = 34 versus
dimensionless coordinate x (42). (b) Velocity extremum location
(solid lines) and inflection point location (dashed lines) as functions
of � at three values of α denoted next to the curves.

The results of the parametric analysis of the velocity profile
are shown in Fig. 7(b). At fixed α, the increase of � shifts the
velocity extremum toward the hot wall, arbitrarily close to it,
and decreases the value of the extreme velocity itself. At almost
equal boundary temperatures (α → 1) and moderate activation
energy (� < 1), the extremum point tends to the middle of the
gap X → 1

2 . Unlike the velocity profiles in the case of heating
walls, the velocity profiles due to a distributed source get an
inflection point in a certain range of parameters. The inflection
point is always between the velocity extremum and the cold
wall. The larger the α, the narrower the � range where the
inflection point exists. The latter is illustrated in Fig. 7(b)
by the dashed curve for α = 0.9. The velocity profiles in the
planar geometry (n = 0) are qualitatively similar to those in
two other geometries (n = 1,2).

2. Heterogeneous mass source (aerosol cloud)

A nonuniform distributed mass source simulates, particu-
larly, gas absorption or condensation on microparticles. The
results are valid for any dimensionality n and may be related
to the transition periods in astrophysical [33,36] and complex

plasma [34,35] research in microgravity. We suppose that a
cloud of size rc is in the center of a chamber with the size
r2. The cloud particles and the gas are in the state of mass
exchange with intensity J (r,t) at uniform temperature T (t).
The pressure is defined by expression (81), and the gas velocity
follows from Eq. (23) and geometrical factor from Eq. (25) as

u = RT

p

[
IJ

rn+1
− IJ (r2,t)

rn+1
2

]
r. (88)

Expanding the intensity function in Taylor series near the
center, and retaining the zero-order term J (0,t) ≡ J0 in the
first integral in the brackets, the gas velocity is

u ≈ RT J0

(n + 1)p

[
1 − n + 1

J0r
n+1
2

IJ (r2,t)

]
r. (89)

The latter expression has a typical structure for such processes:
the gas velocity is directly proportional to the distance
from the center and to the volumetric gas production intensity
in the central part of the cloud. The velocity is partly
compensated by the pressure growth defined by the constant
second term in the brackets of Eq. (89).

Peculiarities of the gas velocity profiles clearly follow from
the steplike intensity function taken as J0 for 0 � r � rc and
as zero for rc � r � r2, giving

u = RT J0

(n + 1)p

⎧⎨⎩
[
1 − (

rc

r2

)n+1
]
r, 0 � r � rc(

rc

r2

)n+1 rn+1
2 −rn+1

rn , rc � r � r2.

(90)

Figure 8(a) presents gas velocity profiles in plane geometry
(n = 0) for clouds of different sizes rc as compared to the
cavity dimension r2, being used as a filling factor parameter
0 < rc/r2 < 1. An example of such a situation is a dust cloud
illuminated by the light sheet resulting in variation of the
mass production intensity in the illuminated as compared to
nonilluminated region. The coordinate r , in this case, is the
distance from the mid-plane of the beam in either directions,
and it should always be much smaller than the beam height.
Figure 8(b) highlights peculiarities of the profiles with respect
to the geometry factor n in a wide cavity (rc/r2 = 0.01).

Inside the cloud, all the profiles grow linearly. The slope
is the highest for all dimensionalities n in an open cavity,
rc/r2 → 1. In a closed cavity, the slope decreases, while the
cloud fills a bigger part of the cavity, and the gas does not
move at all when the cloud fills the cavity completely, rc =
r2 [curve 1 in Fig. 8(a)]. The coordinate of the highest gas
velocity always coincides with the moving cloud boundary.
The velocity attains its maximal value

umax = r2
RT J0

p
(n + 2)−

n+2
n+1 (91)

when the boundary is located at rc/r2 = (n + 2)−
1

n+1 , being
equal to 0.5 for n = 0, to 3−1/2 for n = 1, and to 2−2/3 for
n = 2.

In a spherical cavity (n = 2), the correction due to the
limited dimensions of the cavity is relatively small. Inside
the cloud, the correction is defined by the second term in the
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FIG. 8. Gas velocity profiles from Eq. (90) for a steplike function
of distributed mass source: (a) parametric dependence on the filling
factor rc/r2, the values are next to the curves, plane geometry (n = 0);
(b) parametric dependence on the dimensionality for fixed rc/r2 =
0.01. All the velocities are normalized by rcRT J0

(n+1)p [1 − ( rc
r2

)n+1].

brackets of Eq. (90). Already for rc/r2 = 1
3 , the correction to

the profile in the open cavity is less than 0.04, thus justifying
the use of the open cavity approximation (rc/r2 → 1) inside
and outside the cloud. Realistic profiles of the intensity J

are smoother in the region of the cloud boundary. All previous
conclusions on the gas velocity profile properties are still valid,
keeping in mind that the velocity profiles around the cloud
boundary rc will also be smoother.

From Taylor’s decomposition (32), the motion law near the
center of symmetry is

u ≈ 1

n + 1

[
Ṫ0

T0
− ṗ

p
+ RT J0

p

]
r. (92)

The term ṗ/p is negligible for the approximation of an open
cavity. The law of motion is simple and universal: the gas
velocity is directly proportional to the distance from the
element of symmetry. Being periodically modulated, such
velocity field creates a central pseudopotential for the particles
moving in the gas. It allows to trap them in the same way as
realized in the widely used dynamic balancing method [39].
The gas velocity field defined by Eq. (92) is unidirectional in a
three-dimensional space, contrary to the particle motion field
in the electrodynamic balance characterized by simultaneous
contraction-expansion displacement. The latter promises in-

teresting applications of these trapping techniques in aerosol
physics.

D. Void cavity with active boundary

In the absence of an internal boundary, the reference
boundary becomes a plane of symmetry for n = 0, an axis
of symmetry for n = 1, and a center of symmetry for n = 2.
The expression for the gas velocity follows straightforwardly
from Eq. (17), equating to zero all other functions at r1 = 0:

u = T

rn

[
It − ṗ

p

∫ r

0

ξndξ

T

]
+ RT

p

IJ

rn
, (93)

where the pressure is defined by Eq. (12) at r1 = 0. The
latter expression is useful when the ratio ṗ/p may be defined
independently in some manner, as was mentioned earlier.
Otherwise, relating ṗ/p to the parameters of the gas motion
sources, the velocity from Eq. (22) and the factor A are

u = uB + uT + uJ = T

T2

( r2

r

)n

A

(
ṙ2 − RT2

p
j2

)
+ T

rn
[It − AIt (r2,t)] + RT

prn
[IJ − AIJ (r2,t)], (94)

A =
(∫ r2

0

ξndξ

T

)−1 ∫ r

0

ξndξ

T
. (95)

Models without a physical internal boundary simulate different
important experimental systems and natural processes, partic-
ularly related to the microgravity environment. One example
was described in Sec. III C 2. Below, we present some other
realizations.

The simplest example is a gas volume inside a cavity. It may
be a gas inside a bubble floating in gas or immersed in liquid, a
gas inside an elastic balloon, etc. Here, we assume that there are
no dispersed second phase or external heat sources modulating
temperature and volumetric mass production profiles in the
cavity. In this case, all the profiles are uniform in space and
may only vary in time, i.e., T = T (t) and J = J (t). The
geometrical factor A as defined by Eq. (25) transforms into
A = (r/r2)n+1. The second and the third terms in Eq. (94)
disappear, and the velocity in the internal region 0 < r < r2

reduces to

u = uB = r

r2

(
ṙ2 − RT

p
j2

)
. (96)

The gas velocity grows linearly from zero on the element
of symmetry to the boundary gas velocity, irrespective of
the dimensionality parameter n. It is interesting to note that
the velocity in Eq. (66) does depend on the dimensionality
parameter n in the presence of the internal boundary (see
Fig. 6). From Eq. (96), we receive an obvious but important
observation for verification purposes: no gas motion occurs in
a cavity with uniform variation of temperature T = T (t), mass
production intensity J = J (t), and with boundary conditions
ṙ2 = 0, j2 = 0.

A syringe-type geometry gives an example of the realization
of a flat slot cavity n = 0, when the distance between the
moving piston and the opposite wall is much smaller than the
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diameter. The gas far from the side walls moves according to
Eq. (96). It is important to note that the plane of symmetry
here is the virtual plane at equal distance from the piston and
the opposite wall. The plane of symmetry, therefore, moves
with a velocity twice as low as that of the piston in the frame
of the syringe. It is the distance from the moving symmetry
plane that denotes r .

Axisymmetric geometry n = 1 may be illustrated by the
radial gas motion inside a tube with the gas passing through
permeable walls. The velocity is defined by Eq. (96) for ṙ2 = 0.

In a spherical geometry n = 2, it may be a balloon or a
bubble with inside gas motion defined by Eqs. (93), (94),
or (96), in the simplest case. Abrupt evaporation from the
walls inside a spherical cavity was used in one of the methods
to measure evaporation and condensation coefficients [30].
According to the experimental procedure, the chamber radius
was less than 100 mm and total pressure was lower than
1 Pa. The chamber was thermally stabilized, and then the
temperature rapidly rose or fell to different values, resulting
in evaporation or condensation of the investigated substance
deposited on the internal chamber surface. The conditions
corresponded to high Fourier number. Expression Eq. (96) with
ṙ2 = 0 describes gas motion velocity in the cavity. The pressure
dependence on temperature is an independent experimental
function in such experiments and, therefore, the gas velocity
may be calculated alternatively using Eq. (93) for J = 0.

IV. DISCUSSIONS

In view of the wide diversity of the phenomena and of the
particular realizations of one-dimensional homobaric flows
treated in the paper, it seems reasonable to highlight the main
features of the system, the model, and the solutions as well as
commenting on the model limitations.

A. Peculiarities of the system

1. Task geometry

We studied one-dimensional cases in which the gas flow
may only be normal to the boundaries. This condition
imposes the following topological limitations on the possible
arrangement of the gas volume. Generally, there should be
two nonintersecting surfaces: parallel for n = 0, coaxial for
n = 1, and concentric for n = 2. For coaxial and concentric
geometry, we may distinguish internal boundaries r1 and
external boundaries r2 > r1. One of the boundaries for n = 0
as well as the external boundary for n = 1 and 2 may be treated
formally as being at infinity. However, in this approximation,
the zone of the model validity only will be near the internal
boundary, giving an outside nonphysical solution. The internal
boundaries for n = 1 or 2 will “disappear” for r1 = 0, being
transformed into an axis or a center of symmetry, respectively.
For n = 0, it will be an infinite slot with a plane of symmetry
at the origin r1 = 0 and the external boundary at r2. This
case is similar to the usual plane task with identical boundary
conditions at r2 and −r2.

2. Model assumptions

The basic assumption of the current model is the uniformity
of the gas pressure, applicable when the reference times of all

the processes in the system are much longer than the acoustic
time. Mathematically, it is valid at small Mach numbers Ma �
1. In one-dimensional geometry, it allows the gas velocity to
be obtained using the mass conservation condition and the
equation of state without solving the momentum equation.

If the gas flow has a component due to temperature
variation, the energy equation must be solved. In the current
model, it is reduced to the heat equation, which does not
contain gas velocity. After the analytical expressions for
the velocity are obtained as in Sec. III A, the validity of
this assumption can be proved directly as follows. For the
flat geometry, the maximal possible velocity is estimated
from Eq. (45) as umax < ṪmaxL/4T for Ṫ1 = −Ṫ2 = Ṫmax.
Considering that Ṫmax ≈ �Tmax/�tmin = χ�Tmax/Fo L2, the
estimate of the maximal Peclet number in quasistationary
regime gives Pemax = umaxL/χ � �Tmax/4Fo T � 1. Hence,
the influence of advection defined by the second term on
the left-hand side of the energy equation (6) is negligible. In
axisymmetric and centrosymmetric geometries, the maximal
velocities are even lower, as shown in Fig. 4(b). The inequality
is more pronounced in the nonstationary regime, as illustrated
in Figs. 2(b) and 3(b).

At high Fourier number, the pressure variation term can be
neglected in the energy equation. The influence of the pressure
variation may be very low in the following practical cases:
in flat geometry when the temperature variation on the two
boundaries is equal but of opposite sign; in axisymmetric
and centrosymmetric geometry when the active zone is
concentrated near the internal boundary; and near the element
of symmetry when the extension of the zone is sufficiently
smaller than the dimension of the whole region.

In certain cases, especially in practical applications, the
model still may be valid in the region of interest in spite of
the outer region properties not obeying the limitations of the
current model. Particularly, the gas flow outside the reference
volume may not be one dimensional. The current model still
will be valid as far as it is possible to define the gas pressure
p and its time derivative ṗ in the reference [r1,r] region.
Experimentally, it may be realized, for example, by pressure
measurements.

3. Solution method

To find the gas velocity u, we introduce a virtual surface at
a distance r from the reference boundary to define the volume,
to which the mass conservation law is applied. The local gas
velocity u thus coincides with the velocity of the virtual surface
ṙ . The pressure is defined from the mass conservation law for
the whole domain; being uniform, it does not require spatial
integration. After these transformations, the velocity and the
pressure are expressed through the integrals with respect to r of
the functions of temperature profiles and eventual distributed
mass sources. The solution procedure is completed by finding
temperature profiles from the heat equation and substituting
them into the integrals.

It is a matter of convenience to choose one or another
boundary as a reference in addition to the virtual surface.
Typically, we choose the internal boundary. It is noteworthy
that the expressions for the gas velocity, as for example
Eq. (17), contain only characteristics defined in the reference
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region, here in [r1,r]. Whatever happens outside the reference
region is taken into account by the uniform gas pressure p and
its time derivative ṗ. They may be explicitly expressed through
the characteristics of the whole [r1,r2] region from Eq. (12).

4. Velocity profile shapes

The variety of velocity profiles for Fo � 1 are illustrated
in Fig. 1. When boundary temperature variation in time is the
only source of gas motion, the velocity profiles are always
as in Figs. 2 and 4 having zero on the boundaries and one
extremum in-between. One of the most illustrative and useful
results is the expression for the gas velocity in the flat gap of
width L between two walls with varying temperatures T1 and
T2 expressed in UIT approximation from Eq. (45) as

uUIT = Ṫ2 − Ṫ1

T1 + T2
(x − 1)xL, x = r − r1

L
, (97)

where r1 is the coordinate of the left wall. The velocity profile
is parabolic, with the maximum umax = (Ṫ2 − Ṫ1)L/8T̄ . The
solution is applicable to the thin layer in axisymmetric
and centrosymmetric geometries as well. We refer to the
Supplemental Material presenting the animated solution for
the velocity.

In the presence of distributed sources, there may appear a
flex point shifted toward the internal boundary for cylindrical
and centrosymmetric geometries, as in Figs. 1(d) and 8.

5. Significance and maximal effects

Significance of the flows under consideration depends upon
objectives of the task. Even gas velocity as low as one
micrometer per second may be of crucial importance in the
investigation of transport phenomena, particularly studying the
negative thermophoresis of aerosol particles [27,28]. It is of
interest, however, to identify the systems and parameters that
result in the highest possible velocities and gas displacement.
Generally, this will be accomplished on the way to maximizing
the spatial nonuniformity, increasing the rate of its variation
and the extension of the “active” zone. For the order-of-
magnitude analysis, we rewrite Eq. (92) as

u ≈ 1

n + 1

lmax

�t

[
�T

T
+ �mg

mg

− �p

p

]
, (98)

where lmax is the extension of the zone of most intensive
gas density variation during �t , as a result of deviation of
temperature �T and mass �mg in the reference volume, and
of the overall pressure �p in the system.

Although Eq. (92) is obtained for the systems with the
element of symmetry as the internal boundary, it is also
relevant when the internal boundary exists but does not move
and there is no mass sources on it. If the internal boundary
does move, the origin of the coordinates should be placed on
the moving boundary. Expression (98), being transformed in
the form u�t/lmax, defines the estimate of the total maximal
relative expansion and contraction of the zone of most active
gas density variation.

Moving boundaries vary pressure and result in gas dis-
placement according to Eqs. (66)–(69), with velocities that
may attain subsonic values. Gaining high velocities due to
temperature variation is also possible in a homogeneous

fixed-volume system as well as in the systems with distributed
sources of gas motion. Here is an example of maximal
velocity estimation in a homogeneous fixed-volume system
for a flat slot, n = 0, with two walls at a fixed distance L.
One wall is heated so that its initial temperature T increases
by �T during �t . Variation of temperature profile results
in gas motion with the velocity in the maximum that we
express through the Mach number as cMa. Supposing that
the temperature profile variation is the only reason for the
gas motion, the order-of-magnitude estimate from Eq. (98)
gives the relation between the temperature growth rate and
other system parameters as �T/�t ≈ cMaT/lmax. For a slot
dimension lmax = 0.1 m, ambient temperature T = 300 K,
and αc = 0.003 corresponding to the maximal gas velocity
1 m s−1, the order of magnitude estimate gives �T/�t ≈
3000 K s−1, which is a quite realistic value for millisecond
heating processes. The exact solution (44) and very accurate
UIT approximations from Eq. (45) require about an eight times
higher temperature growth rate. This discrepancy is because
the pressure variation in Eq. (98) in the above estimate was
neglected.

B. Beyond the model limitations

1. Local one dimensionality

Only rare real-life systems are strictly one dimensional.
The model, however, may be used to estimate the maximal
effects or to obtain accurate local approximations. Some
examples are presented in Sec. I B. In Ref. [9] it is noted
that the homobaric approximation may be applied to the
two-dimensional boundary layer problem to find components
perpendicular to the layer.

The break of symmetry due to gravity may be neglected
for sufficiently small system dimensions, low pressure, and/or
rapid processes, such as droplet ignition. We expect that the
current model may be applied for local estimates of rather
complicated phenomena, such as vertical motion in heated or
cooled atmosphere [40], replacing molecular kinetic coeffi-
cients by the effective parameters by considering turbulence,
altitude dependencies, etc.

2. Superposition of flows

To a certain extent, the current model may be applied to
essentially asymmetric systems. Suppose that we have a set of
gas motion sources inside a spherical cavity with neutral outer
boundary. This paper provides analytical solutions only for a
single source with central symmetry. To obtain a quantitative
outlook, we compared results of the full-scale numerical
simulation with the estimates based on the analytical solutions
for the following system. Two small spheres with radii rS and
temperatures T1(t) and T2(t) are placed in a spherical cavity
with outer radius R and temperature T0. The small spheres
are located equidistantly with respect to the cavity center at 2l

between their centers.
Numerical simulation was conducted using ANSYS FLUENT

for R = 50rS , l = 5rS , T1(t) = T2(t) = T0 + kt . The gas pres-
sure value was chosen sufficiently low to meet the requirement
Fo � 1 for a quasistationary temperature distribution.
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FIG. 9. Gas flow generated by two small heating spheres inside
a spherical cavity at t = 0.05T0/k. Hollow circles for numerical
velocity profiles and solid lines for superposition of two analytical
solutions: (a) radial components u(r,0) along the axis in the equatorial
plane and (b) axial components u(0,z) along the axis through the
sphere centers.

The analytical estimate is based on the solution for a small
sphere with the previously mentioned characteristics placed
exactly in the cavity center (see Sec. III A). Gas velocity for a
combination of two spheres is calculated as a vector sum of the
two solutions. The comparison of the analytical and numerical
profiles are in Fig. 9, where the dimensions of the cavity, the
small spheres, and the distance between them are in the same
scale.

In the equatorial plane, the u(r,0) numerical and analytical
solutions are in very good agreement, as shown in Fig. 9(a).
The maximum discrepancy is 5% near the extremum of the
velocity profiles, which is at a distance of about 2l = 10rS .
It is not a surprise that the u(0,z) velocity components of
analytical and numerical solutions between the spheres (−l +
0.5rS) � z � (l − 0.5rS) have nothing to do with each other,
as shown in Fig. 9(b). However, in the outside region for |z| �
(l + 0.5rS), the solutions are comparable with a maximum
discrepancy of 18% on the extremum of the velocity profile,
again at approximately the distance between the spheres.

The example shows that the superposition principle gives
quite an accurate estimate of the resultant gas velocity in the
region outside the sources, in the cases when the sources are
sufficiently small, far from each other as well as from the outer
boundary, and quite close to the element of symmetry.

3. One-dimensional shear flows

Here, the flow is unidirectional, but the flow rate is not
uniform laterally. Suppose two infinite plates are parallel
to z, with varying-in-time, antiparallel temperature gradients
along the plates: T1(z) = T0 + C(t)z and T2(z) = T0 − C(t)z.
The position and the value of the maximal flow velocity are
defined by Eqs. (46) and (47). The maximal flow velocity is
approximately in the middle between the planes, and from
Eq. (45) it is estimated as u(xmax,z) ≈ −zĊ(t)(r2 − r1)/ ¯4T0,
giving uniform shear flow ∂u/∂z.

V. CONCLUSIONS

In this paper, we presented a class of analytical solutions
of gas velocity profiles for one-dimensional creeping flow in
the approximation of uniform pressure. The general solution
was obtained for the flows between two boundaries in planar,
axial, and central symmetries for different types of motion
sources. The latter comprised the boundary time-dependent
temperatures Ti(t) and heat fluxes qi(t), boundary motion
ṙi(t) and mass sources ji(t), distributed mass J (r,t), and heat
sources Q(r,t).

We demonstrated that within the limitations of the model,
the exact analytical solutions were identical to the numerical
results obtained on the basis of the full system of the Navier-
Stokes equations in the computational fluid dynamics software
ANSYS FLUENT.

In view of the immense variety of particular cases, we re-
stricted ourselves to finding analytical solutions and analyzing
them for a set of representative tasks limited by quasistationary
heat transfer (Fo � 1), with Poisson equation for temperature.
Particular solutions are presented in three categorizing tables
for planar, axial, and central symmetries. The elements of
Table I give references for the sections with appropriate
solutions. Gas motion sources were combined in three groups
per expression (23) (i.e., boundary, thermal, and distributed
mass sources). References on the cases with single active
sources are in the diagonal table elements. Solutions describing
combined action of two sources occupy nondiagonal elements.
A table with all combinations of task characteristics, is not
appropriate for the current publication because it would be
multidimensional and would contain hundreds of elements.

Most studied in this paper are the particular cases with
single motion source: temperature profile variation. The
problems are solved for all three types of symmetry and two
types of boundary conditions: periodic and linear temperature
variation. The variety of velocity profiles may be reduced to a
simple hump-shaped curve, always having zero velocity on the
boundaries, with one extremum in-between as it is illustrated
by the animation in the Supplemental Material. The extremum
location depends on the boundary temperature ratio and on the
wall radius ratio (in nonplanar geometries). In planar geometry,
at moderate difference between the boundary temperatures,
velocity profiles are close to parabola, with the extremum
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TABLE I. Categorizing table of solutions, including types of symmetry and motion sources. Table elements provide references to the
corresponding formulas in the paper.

n = 0 n = 1 n = 2

uT uB uJ uT uB uJ uT uB uJ

uT (44) (44), (72) uT (57) uT (62), (37)

uB (66) uB (66), (97) uB (66), (96)

uJ (80), (83), (84); (90) uJ (90) uJ (90)

around the mid-plane. It is shown that the gas flows in one
direction in the whole domain at any moment for all three
types of symmetries.

The general solution for both boundary displacement and
boundary mass sources is obtained for arbitrary geometry un-
der the assumption of temperature uniformity. The two effects
are combined in one solution because they produce similar
velocity profiles. Instantaneous velocity profile has a nonzero
value, at least on one of the boundaries, and approaches the
opposite boundary value by law ϕ(G)r + ψ(G)/rn, where a
linear component prevails at extreme values of the wall radius
ratio G. A single stagnant point (velocity equal to zero) can
appear in the domain, for example, in the case of gas inflows
on both boundaries.

As an example of combined action of two motion source,
a flow induced by simultaneous motion and heating of one of
the boundaries is considered in a planar gap. The contributions
of both motion sources in this particular case are additive:
velocity is a sum of one term due to gas heating and another
term due to the wall displacement. A stagnant point can appear
when the wall moves out of the domain and its temperature
grows at the same time (or vice versa).

Distributed mass sources are presented in two particular
solutions. In the first solution, in a planar geometry, the source
intensity depends on temperature according to Arrhenius law,
while the temperature profile remains stationary. The velocity
profile is similar to that in the task with heating walls, but
it can have an inflection point depending on the temperature
difference and the activation energy. In the general case, the
profiles may acquire multiple flex points as well as additional
local extrema and/or zeros. The second solution describes
isothermal mass production in the central part of a domain
without an inner boundary. It is shown that the velocity
grows linearly in the mass-producing region, while outside
it decreases as 1/rn.

We proposed a simple estimation of the maximal gas
velocity (98), which may attain high values. The boundaries
of the stability for the flow patterns should still be evaluated.
Upon taking adequate precautions, the results may be used
beyond the model limitations. Thus, flow one dimensionality
may be sufficient only locally; in certain complex systems, the
velocity may be well approximated by the superposition of the
velocities from a series of independent sources. This approach
may be applied to some uniform shear flows.

We proposed using the uniform inversed temperature (UIT)
approximation in denominators of the integrals in general
solution. It made analytics much easier, while the solutions

were still accurate and their interpretation was much clearer.
Exact solutions for boundary time-dependent temperatures
Ti(t) in the quasistationary regime of heat transfer were
compared with the numerical calculations in transition (Fo≈
1) and essentially nonstationary (Fo � 1) regime of heat
transfer. The differences between solutions are found to be
negligible for Fo > 10. The corrections become noticeable
for Fo ≈ 1, attaining about 0.03 of the maximal velocity
values and quickly growing for lower Fourier number so
that the quasistationary approximation gives more than twice
higher velocities for Fo = 0.1. Analytical solutions and the
analysis of the velocity profiles in the essentially nonstationary
regime will be presented in a separate publication. The
analytical solutions may be used as reference in validating
numerical methods for slow flows in compressible fluid
dynamics.

We anticipate the application of the results in planning and
processing of the experiments dealing with high accuracy mea-
surements of the kinetic coefficients and transport properties
of suspended particles, especially in microgravity conditions.
The results may be useful in the evaluation of pertinent gas
creep components in single bubble dynamics, condensation
and evaporation phenomena, droplet burning, etc.

Periodic processes should be of practical interest in aerosol
mechanics and dust cloud manipulation. Close to the bound-
ary (32) or element of symmetry (92), the gas velocity grows
linearly with the distance. Being periodically modulated,
such flow results in a secular drift of particles suspended
in the gas, giving rise to such applications as promoting
particle deposition, jet focusing, and growth of cloud particle
number concentration in a spherically symmetric confining
pseudopotential.

The approach of this paper may be extended to other
compressible fluids with different equations of state, allowing
study of motion in nonideal gases, liquids, or solid elastic
media. The model may be generalized for multicomponent
gases, considering gas density variation because of diffusion
and chemical reactions.

The authors expect that the simplicity of the model, clear
physical meaning, and wide variety of possible particular cases
will make it useful in university class works, especially with
use of symbolic computation software.
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