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Log law of the wall revisited in Taylor-Couette flows at intermediate Reynolds numbers
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We provide Reynolds averaged azimuthal velocity profiles, measured in a Taylor-Couette system in turbulent
flow, at medium Reynolds (7800 < Re < 18000) number with particle image velocimetry technique. We find
that in the wall regions, close to the inner and outer cylinders, the azimuthal velocity profile reveals a significant
deviation from classical logarithmic law. In order to propose a new law of the wall, the profile of turbulent mixing
length was estimated from data processing; it was shown to behave nonlinearly with the radial wall distance.
Based on this turbulent mixing length expression, a law of the wall was proposed for the Reynolds averaged
azimuthal velocity, derived from momentum balance and validated by comparison to different data. In addition,
the profile of viscous dissipation rate was investigated and compared to the global power needed to maintain the
inner cylinder in rotation.
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I. INTRODUCTION

The present investigation is concerned with the
experimental analysis of turbulent velocity field in a
Taylor-Couette system. Such systems have many applications
in chemical engineering [1,2], fluid mechanics [3,4], rotating
machinery [5], biological applications [6,7], as well as
astrophysics [8–10] and soft matter [11]. Since Taylor’s first
theoretical results (one century ago), a huge amount of work
was dedicated to Taylor-Couette flow [12]. Taylor-Couette
flow was qualified as one of the paradigmatic flows in physics
of fluids [13,14]. It is considered to be among the most
investigated problems in fluid mechanics. However, in spite
of substantial work [15–17], basic questions related to the
wall law of azimuthal velocity or near-wall turbulent structure
dynamics remain unanswered. This paper will address
azimuthal velocity profile at medium Reynolds number.

The geometrical parameters of a Taylor-Couette system are
the inner, ri , and outer, ro, cylinder radii and its height, h.
This leads to a gap width d = ro − ri , radius ratio η = ri/ro,
and aspect ratio � = h/b. The radius ratio η accounts for the
amount of curvature. For a given value of η, gravity being
negligible, only the Reynolds (or Taylor) number is relevant
to parametrize the hydrodynamics. The outer cylinder is at
rest and the inner one is rotating. Its angular velocity is noted
ωi and its rotational speed is N . One can thus define the
Reynolds number, Re = riω(ro − ri)/ν, and Taylor number,
Ta = Re2(1 + η)6/[4(2η)4].

Different transport properties of Taylor-Couette system are
based on the torque, which is needed to maintain the inner
cylinder rotating at a constant angular velocity. The estimation
of the torque can be performed using the dimensionless torque-
G correlation, shown in Eq. (1), proposed by Wendt [18].

G =
{

1.45 η3/2

(1−η)7/4 Re1.5 for 4 × 102 < Re < 104

0.23 η3/2

(1−η)7/4 Re1.7 for 104 < Re < 105
. (1)
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Similar estimations of the torque can be obtained with
more recent correlation proposed by Dubrulle and Hersant
[19] and Paoletti et al. [20] who expressed the torque as a drag
coefficient as shown in Eq. (2):

G

Re2 = K7
η2

(1 − η)3/2

1

ln
[
η2(1 − η) Re2

K8

]3/2 , (2)

where the constants are given as K7 = 0.4664 and K8 = 104,
(following Lewis and Swinney [21]). One can deduce from
the knowledge of the torque, different characteristics such
as inner wall shear stress, τωi = T/(2πr2

i h), (Pa), the outer
wall shear stress, τωo = T/(2πr2

oh), (Pa), and the associated
friction velocities at inner cylinder, U ∗

i = √
τωi/ρ and at outer

cylinder, U ∗
o = √

τωo/ρ, (m/s).
In this paper, local transport properties of Taylor-Couette

flow are investigated through an experimental approach based
on particle image velocimetry (PIV) measurements of instanta-
neous velocity field in a plane. The first issue of this paper is to
investigate the azimuthal velocity profile; in particular, we are
interested in the behavior of the azimuthal velocity in turbulent
flow, in the boundary layer close to the wall. It is known for
some time, since Smith and Townsend [22], that in a Taylor-
Couette flow, “no significant region of logarithmic variation of
velocity can exist” for “any flow Reynolds less than 20000.”
Indeed, a rather limited extent of the logarithmic region is
exhibited at such Reynolds numbers [14,23,24]. However, the
classical values of logarithmic law (1/κ and B) do not provide
a good fit with the data, both experimental data [13,16,21,22]
and DNS simulations [4,25]. Huisman et al. [13] investigated
highly turbulent Taylor-Couette flow (up to Re = 2 × 106).
They observed log law in such ultimate Taylor-Couette regime.
At lower Reynolds number, Ref. [14] performed experiments
and reported that the azimuthal velocity profile does not
follow a log law. They attributed this difference to nonlinear
dependence of turbulent viscosity, and possibly to Taylor rolls.
Ostilla Monico et al. [24] performed DNS simulations of
Taylor-Couette flow. They concluded that the logarithmic layer
is limited to a relatively small range of the domain, providing
insufficient separation of length scales (less than half of a
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SINGH, SUAZO, AND LINÉ PHYSICAL REVIEW E 94, 053120 (2016)

FIG. 1. Diagram of the setup.

decade) to exhibit near-wall cascade corresponding to fully
developed log law profile.

In this paper, we will analyze the azimuthal velocity profile
at medium Reynolds numbers and compare it to the log
law; we will deduce from the measurements a profile of the
mixing length. We will investigate whether (or not) linear (or
nonlinear) dependence of mixing length with respect to wall
distance is observed; based on these results, we will propose a
new expression of the azimuthal velocity close to the cylinders
and compare it to the Reynolds averaged azimuthal velocity.

The second issue is to relate the local hydrodynamics to
the power needed to maintain the inner cylinder rotating at a
constant angular velocity ω. The global power P (Watt) can
be estimated from the knowledge of the torque, P = T ω. An
average value of the viscous dissipation rate of total kinetic
energy 〈ε〉 (W/kg) can then be deduced: 〈ε〉 = P/[ρπ (r2

o −
r2
i )h]. Assuming a logarithmic velocity profile for highly

turbulent flow, Lathrop et al. [26] proposed a correlation to
calculate the global torque. In this paper, we will derive the
profile of viscous dissipation rate of the mean flow kinetic
energy and we will estimate the viscous dissipation rate of
the turbulent kinetic energy, assuming equilibrium between
production and dissipation of turbulent kinetic energy. Finally,
we will compare the average value of viscous dissipation rate
of total kinetic energy to the global estimation 〈ε〉 [Eq. (1)].

II. EXPERIMENTS

A. Description of the case setup

In our Taylor-Couette system (Fig. 1), the inner cylinder
radius is ri = 100 mm and the outer one is ro = 115 mm; its
height is h = 200 mm. This corresponds to a gap width, d =
15 mm, a radius ratio, η = 0.87, and an aspect ratio, � = 13.3.

The fluid is tap water. Four angular velocities of the inner
cylinder, ωi, were investigated (see Table I). The respective
values of the rotational speed N , Reynolds number Re, and
Taylor number Ta are given in Table I, as well as hydrodynamic

characteristics such as inner and outer wall shear stresses,
inner U ∗

i and outer U ∗
o wall friction velocities. The torque T

is estimated using Wendt correlation [Eq. (1)]. Global values
such as the power P needed to maintain the inner cylinder
rotating as well as the volume averaged viscous dissipation rate
of the kinetic energy 〈ε〉 are estimated. The volume averaged
values of viscous dissipation rate of the kinetic energy 〈ε〉 are
compared to the local values at the inner cylinder.

Assuming linear azimuthal velocity radial profile Uθ (δ) in
the viscous sublayer (δ being the radial distance to the inner
cylinder wall), Uθ (δ)/U ∗

i = δU ∗
i /ν, the velocity gradient can

be derived as ∂Uθ/∂δ = U ∗2
i /ν and the local values of viscous

dissipation rate of the kinetic energy can be estimated at the
inner cylinder as εi(δ) = ν(∂Uθ/∂δ)2 = U ∗4

i /ν = const. Its
expression is thus given by εi = U ∗4

i /ν, which constitutes a
general expression of the viscous dissipation rate of kinetic
energy at the wall in turbulent (viscous sublayer) or laminar
flow (Poiseuille, Couette, steady-state pipe flow); these local
values of εi are 23.5 to 14 times larger than the volume
averaged values 〈ε〉. In wall turbulence, in the logarithmic
law region (region of equilibrium between production and
dissipation of turbulent kinetic energy), the local dissipation
rate is inversely proportional to the distance to the wall
ε(δi) = U ∗3

i /(κδi) = U ∗4
i /ν/(κδ+

i ). Thus, at a distance such as
δ+
i = 25, the local dissipation rate of turbulent kinetic energy is

equal to ε(δi) = U ∗3
i /(κδi) = U ∗4

i /ν/(κδ+
i ) = εi/10, thus 10

times smaller than the maximum value of dissipation rate at the
wall. In Table I, averaged values of Kolmogorov microscales
and Taylor microscales are also given; they will be used as an
order of magnitude to estimate the range of length scales that
may be filtered by the PIV technique.

It should be pointed out that the correlation proposed by
Wendt gives an average torque whereas due to Taylor vortex
structure, an axial dependence is expected. Consequently, the
values of shear stresses at the inner and outer wall may be
slightly biased. This will not be considered in the present
paper. In the present work, radial profiles of Reynolds averaged
azimuthal velocity are measured in a plane by PIV system and
analyzed.

B. PIV system

The PIV system consists of a class IV Quantel Big Sky
Laser (15 Hz and λ = 532 nm), FlowSense EO 16 MPixel
camera (4872 × 3248) provided by Dantec Dynamics using
a 60 mm objective having a diaphragm aperture of f/2.8 to
f/32 and a synchronization system. The black colored internal
cylinder is made of PVC, and the transparent external cylinder
is made of Plexiglas. The Taylor-Couette (TC) system is placed
in a parallelepiped box, filled with water to reduce optical
problems. In the experiments reported here, limited to the
analysis of the velocity field in horizontal planes, the camera
was placed on the top of the Taylor-Couette system to capture
the motion of particles in different horizontal planes. Between
the camera and the chosen laser illuminated plane lies the fluid
inside the TC system and above that plane, and the flat and
transparent Plexiglas plate placed on the top of the TC.

The focusing of the camera in the respective plane is
the first step of calibration, which was achieved by using a
calibration plate made of quarter-circular flat plate of stainless
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TABLE I. The global transport properties for the Taylor-Couette system.

Value

Parameters (dimensions) 114 (rpm) 90 70 50

Rotational speed, N (rpm) 114 90 70 50
Angular velocity, ω (rad/s) 11.94 9.43 7.33 5.24
Reynolds number, Re = riω(ro − ri)/ν 1.8 ×104 1.4 ×104 1.1 ×104 7.8 ×103

Taylor number, Ta = Re2(1 + η)6/[4(2η)4] 3.7 ×108 2.3 ×108 1.4 ×108 7.2 ×107

Torque, (Nm), T , using Eq. (1) 0.022 0.015 0.01 0.006
Tip speed, riω (m/s) 1.19 0.94 0.73 0.52
Inner wall shear stress, τwi = τ/(2πr2

i h) (Pa) 1.78 1.19 0.78 0.46
Outer wall shear stress, τwo = τ/(2πr2

o h) (Pa) 1.35 0.9 0.59 0.35
Friction velocity at inner cylinder, U ∗

i = √
τwi/ρ (m/s) 0.042 0.035 0.028 0.021

Friction velocity at outer cylinder, U ∗
o = √

τwo/ρ (m/s) 0.037 0.03 0.024 0.019
Global power, P = τω (Watt) 0.27 0.14 0.07 0.03
Global viscous dissipation rate of kinetic energy, 〈ε〉 = P/[ρπ (r2

o − r2
i )h] (W/kg) 0.132 0.07 0.035 0.015

Local viscous dissipation rate of kinetic energy, εi = U ∗
i 4/ν (W/kg) 3.1 1.4 0.6 0.2

Average Kolmogorov’s microscale, 〈η〉 = (ν3/〈ε〉) 1
4 (μm) 52.5 61.6 73.0 90.5

Average Taylor’s microscale, 〈λ〉 =
√

15νu2
i /〈ε〉 (mm) 1.3 1.4 1.5 1.7

steel, the inner radius being 1 mm larger than the inner
cylinder and outer radius being 1 mm smaller than the outer
cylinder. One face of this plate was marked with horizontal
and vertical lines, 1 mm apart from each other, forming a
1 mm square grid. The camera was focused on this plate
and the images were saved in the computer program as
calibration images. Then the second step for calibrating the
images was conducted by computing a scale factor on the
saved calibrated images. This scale factor was estimated by
selecting two points on the saved images of the plate, and the
known distance between the two points was provided. This
procedure allowed the computer program to estimate the scale
factor between the pixels and mm values along with the clarity
of the images in that particular plane. Different horizontal
planes (and vertical ones not reported here) were investigated.
The vertical distance between two parallel horizontal planes
was set to 10 mm. The results presented here were selected
for the axial location at which the profile for each rotational
speed was the closest to the center of vortex region of a
Taylor vortex observed by PIV acquisition in vertical plane.
Accordingly, the center of vortex region was observed to be
closest at the Zh = 0.675 ± 0.005 for the rotational speeds of
114, 90, and 70 rpms, and at Zh = 0.525 ± 0.005 for 50 rpm,
respectively, (where Zh = z/h). The spatial resolution based
on these aspects for the rotational speeds of 114, 90, and 70
rpm was found to be 125 μm and 175 μm for the 50 rpm,
respectively. It is smaller than the volume averaged Taylor
micro-scale (close to 1 mm), indicating that estimations of
rms values will be accurate (there is no filtering of energy
contributing turbulent length scales). The spatial resolution is
only two times larger than the volume averaged Kolmogorov
scale. Local values of Kolmogorov scale may be five times
smaller than the volume averaged one and thus the direct
estimation of the viscous dissipation rate of turbulent kinetic
energy may be tricky.

Silver coated glass beads of 10 μm size were used as
seeding particles. A time-step size of 75, 75, 150, and
200 μs was used for the 114, 90, 70, and 50 rpm rotational

speed, respectively, with the laser sheet thickness smaller than
1 mm. A total of 2500 image pairs were found to be more
than sufficient for each angular velocity ω at each different
horizontal locations to achieve the statistical convergence of
the first- and second-order fluctuating velocity components.
The acquired data was processed with an image acquisition
system provided by Dantec Dynamics, Dynamicstudio V4.0.
The vector analysis was conducted using the adaptive corre-
lation with overlapping window of 0% and interrogation cell
size of 16 pixels squared for high resolution.

C. Mean flow data

Mean flow data are expressed as Reynolds averaged values
defined as follows [Eq. (3)]:

Uθ (r) = 1

N

N∑
k=1

Uk
θ (r). (3)

Where Uk
θ stands for the kth measurement of the radial

azimuthal velocity component. The number N of events fixed
to 1000 is sufficiently large to reach a statistical converged
mean. In Fig. 2, the Reynolds averaged azimuthal velocity
Uθ profile is plotted versus the radial distance to the wall
δ, in basic geometrical units; the velocity scale is the inner
cylinder velocity, usually named tip velocity, Utip = ωiri and
the length scale is the gap between the cylinders d = ro − ri .
The azimuthal velocity profiles being selected in planes
corresponding to the center of Taylor cells, the Reynolds
averaged radial velocity is almost null. The azimuthal velocity
profiles are plotted for the four angular velocities ωi of the inner
cylinder. The profiles are almost superimposed. The radial
gradients of azimuthal velocity are high close to the inner
and outer cylinders. Indeed, the Reynolds averaged azimuthal
velocity profile presents distinct regions: near the inner and
outer cylinders, a shear-driven boundary layer and in the bulk
of the gap, the bulk velocity profile is flat and the azimuthal
velocity Uθ is close to ωi/2, half the angular velocities of
the inner cylinder, agreeing with previous measurements of
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FIG. 2. Reynolds averaged azimuthal velocity Uθ profile versus
the radial distance to the wall δ for different impeller rotational speeds
N : ◦ 114 rpm, � 90 rpm, � 70 rpm, � 50 rpm; the velocity scale is
the inner cylinder velocity and the length scale is the gap between the
cylinders.

Taylor (1936), Smith and Townsend (1982). This flat profile
of the bulk azimuthal velocity is caused by the advection due
to Taylor vortices rather than by turbulent macromixing.

In Fig. 3, the Reynolds averaged azimuthal velocity Uθ is
now plotted in semilogarithmic scale and in local wall units
U+ against the radial wall distance δ+; in classical wall units,
the velocity scale U ∗

i is the friction velocity induced by the
fluid shearing along the inner cylinder and the length scale is
ν/U ∗

i . In addition, the linear profile of velocity is plotted in
the viscous sublayer as well as the classical log law profile.
Similar trends have been observed close to the outer cylinder.

In Fig. 3, the Reynolds averaged azimuthal velocity profile
does not follow at all the log law. Compared to log law profile,
the experimental data present a strong downwards-bending
correction, for wall distances ranging between 10 and 100.

Following Grossmann et al. [14] and Ostilla et al. [24],
we plot (Fig. 4) the logarithmic diagnostic function δ+ dU+

dδ+ .
A constant value equal to 1/κ = 2.5 should occur for a log
law profile. From the figure, it is clear that in our experiment,
the logarithmic diagnostic function is not constant at all; it
is similar to Ostilla et al. [24] (Fig. 6). It is thus appropriate

δ+
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U
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U
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-U
θ)/U

i*
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15
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FIG. 3. Reynolds averaged azimuthal velocity U+ plotted in
semilogarithmic scale and in local wall units against the inner cylinder
radial distance δ+ from the inner cylinder, for different impeller
rotational speeds N : ◦ 114 rpm, � 90 rpm, � 70 rpm, � 50 rpm;
dotted line: viscous sublayer; dashed line: logarithmic law.
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FIG. 4. Logarithmic diagnostic function δ+ dU+
dδ+ plotted in local

wall units against the inner cylinder radial distance δ+, for different
impeller rotational speeds N : ◦ 114 rpm, � 90 rpm, � 70 rpm,
� 50 rpm; solid line: von Karman κ value.

to look for an explanation, and to revisit the derivation of
the velocity profile, which is based on Reynolds averaged
Navier-Stokes equations.

In this paper, we shall derive in a first part the profile of
turbulent macromixing length from the local momentum bal-
ance, injecting the experimental values of Reynolds averaged
azimuthal velocity component and then propose an empirical
correlation that fits the profile. We shall then inject this
analytical expression of the mixing length in the momentum
balance in order to derive an analytical expression of the
Reynolds averaged azimuthal velocity profile. In a second part,
we shall estimate the radial profile of viscous dissipation rate
of kinetic energy and compare its spatial averaged value to the
global estimation of the power per unit mass needed to rotate
the inner cylinder.

III. DISCUSSION

A. Turbulent mixing length

In cylindrical coordinates in such a Taylor-Couette reactor,
the RANS equations can be simplified assuming that only the
azimuthal velocity component is not null and depends only
on the radial position. This momentum equation (4) can be
expanded as follows:

r2(ν + νt )r
∂ Uθ

r

∂r
= −r2

i U ∗2
i . (4)

Thus, the angular velocity turbulent flux is strictly conserved
in a Taylor-Couette flow: r2τ tot

rθ
= r2

i τ tot
riθ

. Consequently, one
should be able to express the mixing length (or the turbulent
viscosity, see Appendix) by examining the Reynolds averaged
azimuthal velocity profile; in the momentum balance, the
gradient of azimuthal velocity can be estimated from PIV
data processing. As far as the flow is turbulent, outside the
viscous sublayer, one can neglect the molecular viscosity
compared to the turbulent one. Different authors investigated
the modeling of the turbulent viscosity [8,9,14] in the Taylor-
Couette system. The turbulent viscosity can be expressed as
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FIG. 5. Turbulent mixing length profile plotted against the wall distance δ from the (a) inner and (b) outer cylinder; ◦ numerical data;
dashed line: van Driest model; solid line: model corresponding to Eq. (6).

[Eq. (5)] (for further development, see Appendix):

νt (r) = l2
m(r)r

∂ Uθ

r

∂r
. (5)

In this paper, we propose to focus on the mixing length,
introduced by Prandtl. The previous equation can be rewritten
and the estimation of the turbulent mixing length profile based
on momentum balance as follows [Eq. (6)]:

lm(r) = ri

r2

U ∗
i

∂
Uθ
r

∂r

. (6)

The derivation of the turbulent mixing length profile was
performed for the different angular velocities. In our case, two
turbulent mixing length profiles are plotted close to the inner
[Fig. 5(a)] and outer [Fig. 5(b)] walls for the largest angular
velocity.

Recall the van Driest expression of the mixing length,
where δ is the distance to the wall lmvD(δ) = κδ(1 − e−δ+/A).
This relation expresses that far from the wall (δ+ > A), the
mixing length increases linearly with the distance to the wall
(lmvD ≈ κδ) whereas closer to the wall, there is a correcting
factor. Far from the wall, the profile of velocity is logarithmic,
as confirmed by experiments performed for highly turbulent
flow [13]. Recall that in the analysis of the azimuthal velocity
in terms of classical logarithmic law, it was pointed out that
von Karman constant κ should take values slightly modified
compared to the channel flow. At medium Reynolds numbers,
the logarithmic profile is not observed (Fig. 3). As far as
δ+ < A, the van Driest mixing length expression can be
approximated by lmvD(r) = (κ)/A(δ2U ∗)/ν. In our case, the
turbulent mixing length profiles plotted close to the inner and
outer walls are plotted on Fig. 5. Considering the mixing
length profiles close to the inner and outer walls for the
four angular velocities, processed data exhibit a similar trend
that can be modeled as a function of the wall distances
(δi = r − ri ; δo = r − ro).

lmi(r) = Cl

δ2
i U

∗
i

ν
, (7)

lme(r) = Cl

δ2
oU

∗
o

ν
. (8)

The same value of the constant Cl = 0.0075 fits the profiles
of mixing length close to the inner and outer walls. It is
interesting to point out that the trend of our model is similar
to van Driest one, but the value of our constant Cl is half
the ratio κ/A, considering classical values of von Karman
constant κ and A in channel flow. This confirms that the mixing
length profile is nonlinear (quadratic) with respect to the radial
distance to the inner and outer walls.

B. Mean velocity profile close to the walls

It is now possible to derive an analytical expression of
the Reynolds averaged azimuthal velocity profile. Recall the
RANS equation:

r3 ∂ Uθ

r

∂r
lm(r) = −riU

∗
i . (9)

After injecting the mixing length lmi(r) = Cl
δ2
i U

∗
i

ν
, one obtains:

∂

∂r

(
Uθ

r

)
= −riν

Clr2(r − ri)2
. (10)

This can be easily integrated; after derivation, one obtains:

Utip − Uθ (r)

U ∗
i

= − 1

Clr
+
i

ri − 2r

δi

+ 2

Clr
+
i

ri + δi

ri

log

(
δi

ri + δi

)
+ CU (ri + δi)

U ∗
i

.

(11)

where Utip is the velocity of the internal cylinder (Utip = riω).
The mean velocity profiles are plotted in Fig. 6, for the two
rotational velocity of the impeller. The value of the constant
CU is close to Utip/2. In addition, the ratio of the first term of
the right-hand side (R1) of the velocity expression over the
second one (R2) can be expressed as:

R1

R2
= 1

2

ri

r

1 − δi

r

δi

r
log

(
1 + ri

δi

) (12)

In our experiment, the ratio δi/r is less than d/ri = 0.15.
Thus, the ratio R1/R2 is large and it is not surprising that
the Reynolds averaged azimuthal velocity profile significantly
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FIG. 6. Reynolds averaged azimuthal velocity U+ plotted in semilogarithmic scale and in local wall units against the inner cylinder radial
distance δ+ from the inner cylinder (a) = (◦ N = 114 rpm, Re ∼= 18000, CU = 5.1) and (b) = (� N = 90 rpm, Re ∼= 14000, CU = 3.9); dotted
line: viscous sublayer; dashed line: logarithmic law.

departs from a log law profile. Indeed, in our experiment, the
velocity profile evolves as the inverse of the distance to the
cylinder. In a different geometry, such as Huisman et al. [13],
the geometrical ratio d/ri is up to 0.4 and thus the logarithmic
term (R2) may have the same order of magnitude as the first
term (R1). In addition, in the case of high Reynolds number
investigated by these authors, the expression of the mixing
length should be modified: the van Driest type expression
should be substituted to the simplified quadratic expression
[Eq. (6)], that we have proposed at medium Reynolds number.

In order to validate our model, a similar data processing
was applied to Huisman et al. [13] data from Twente turbulent
Taylor-Couette (T3C). Their inner cylinder radius is 0.2 m, the
outer one is 0.279, leading to a radius radio equal to 0.716.
Three profiles of azimuthal velocity have been selected to
illustrate the efficiency of our model (N = 120, 60, and 30
rpm). The turbulent mixing length has been deduced from
the experiments. It is plotted on Fig. 7. Clearly, in the region
close to the wall (δ+

i < 50), the mixing length is quadratic,
similarly to our experiments; however, further away (δ+

i > 50),
the mixing length becomes linear (κ = 0.6). Such behaviors
are similar to van Driest one, but the constants fitting the
experimental data are different from classical ones.

Given this mixing length, one can calculate the azimuthal
velocity profile, following our approach. The velocity profiles
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FIG. 7. Turbulent mixing length profile plotted against the wall
distance δ from the inner cylinder, ◦ Twente turbulent Taylor-Couette
(T3C) data (Re = 2 × 105), dashed line: linear expression based on
κ = 0.6 and solid line: quadratic model based on Cl = 0.0125.

are plotted in Fig. 8. Clearly again, in the region close to
the wall (δ+

i < 50), the Reynolds averaged azimuthal velocity
profile is not logarithmic for each of the inner cylinder velocity
(N = 120, 60, and 30 rpm) but is well predicted by our
model (CU = 6.75, 3.2, and 1.55); however, further away
(δ+

i > 50), the Reynolds averaged azimuthal velocity profile
becomes logarithmic but the constants can be estimated and
they are not the classical ones (B = 7.45, 7.1,6.2; κ = 0.6).
It appears from the different plots that the constant CU varies
with both the geometry and the rotational speed. Clearly, the
value of the constant CU is proportional to the rotational
speed. Additional work is needed to generalize the present
approach.

C. Global characteristics

Our purpose is now to estimate local and global values
of the viscous dissipation rate of total kinetic energy. It is
composed of two terms, the viscous dissipation rate of mean
flow kinetic energy and viscous dissipation rate of turbulent
kinetic energy. In the viscous sublayer, the viscous dissipation
rate of kinetic energy is reduced to the mean flow and it can
be derived analytically; it is roughly constant:

εiV SL(r) = U ∗4
i

ν

(
ri

r

)2

≈ U ∗4
i

ν
, (13)

εoV SL(r) = U ∗4
o

ν

(
ro

r

)2

≈ U ∗4
o

ν
. (14)

Outside the viscous sublayer, the radial profile of viscous
dissipation rate of mean flow kinetic energy can be estimated
from the measurement of the Reynolds averaged azimuthal
velocity:

εMF (r) = ν

[
r
∂
(

Uθ

r

)
∂r

]2

. (15)

Following our approach based on turbulent viscosity, one can
estimate the production of turbulent kinetic energy:

PTKE(r) = νt (r)

[
r
∂
(

Uθ

r

)
∂r

]2

= r2
i

r2
U ∗2

i

[
r
∂
(

Uθ

r

)
∂r

]
− εMF (r).

(16)
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FIG. 8. Reynolds averaged azimuthal velocity U+ plotted in semilogarithmic scale and in local wall units against the inner cylinder
radial distance δ+ from the inner cylinder, ◦ Twente turbulent Taylor-Couette (T3C) data (a) (N = 120 rpm, Re ∼= 200 000, and CU = 6.75,
(b) (N = 60 rpm, Re ∼= 100 000, and CU = 3.2) and (c) (N = 30 rpm, Re ∼= 50000, and CU = 1.55); dotted line: viscous sublayer; dashed
line: logarithmic law.

The resolution of our PIV systems being limited to estimate
directly the viscous dissipation rate of turbulent kinetic energy,
we will consider, in this paper, an equilibrium between
production and dissipation of turbulent kinetic energy, and thus
deduce the viscous dissipation of TKE from the production
term. These three terms are nondimensionalized by the viscous
dissipation rate of kinetic energy at the inner cylinder (U 4

i /ν).
Such terms are plotted on Fig. 9 against the wall distance δ

expressed in local wall units. The total viscous dissipation of

δi
+

0 20 40 60 80 100

V
D

K
E/

i

0

0.2

0.4

0.6

0.8

1

FIG. 9. Viscous dissipation of kinetic energy profile divided by
its inner wall value εi against the inner cylinder radial distance δ+

from the inner cylinder (N = 114 rpm): � TKE production; � mean
KE dissipation; ◦ total KE dissipation.

kinetic energy (VDKE) results from the sum of the mean flow
VDKE and the turbulent VDKE.

At radial position δ+
i larger than 15, the turbulent part of

viscous dissipation rate of kinetic energy dominates whereas
close to the wall, δ+

i < 15, the viscous dissipation rate of
mean flow kinetic energy dominates. In the viscous sublayer,
the local value of viscous dissipation rate of mean flow kinetic
energy is roughly constant εi = U ∗4

i /ν and five times larger
than the viscous dissipation rate of turbulent kinetic energy at
δ+
i = 20. Based on these profiles, one can estimate the mean

value the total viscous dissipation rate of total kinetic energy
(mean flow plus turbulent flow) and one obtains 0.137 W/kg.
This value is very close to the average value estimated in
Table I. Similar result can be obtained with at other rotational
speeds.

IV. CONCLUSIONS

In this paper, we confirm that the azimuthal velocity profiles
do not follow a log law at medium Reynolds numbers; we
deduce from the PIV measurements and momentum balance an
estimation of the mixing length profile. We confirm nonlinear
dependence of the turbulent mixing length with respect to the
distance to the wall and we propose a law of the azimuthal
velocity close to the cylinders. Indeed, in our experiment, the
velocity profile evolves as the inverse of the distance to the
cylinder. This model is validated by comparison to Huisman
data. In the second part, we derived the viscous dissipation rate
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profile of the mean flow kinetic energy and we estimated the
viscous dissipation rate profile of the turbulent kinetic energy,
assuming equilibrium between production and dissipation of
turbulent kinetic energy. Finally, the average value of radial
profile of viscous dissipation rate of total kinetic energy is
estimated and shown to be close to the estimation 〈ε〉 based
on Wendt correlation of the torque.
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APPENDIX

The estimation of the turbulent viscosity profile based on
momentum balance was performed for the different angular
velocities. Considering the turbulent viscosity profiles close
to the inner and outer walls for the four angular velocities,
processed data exhibit a similar trend that can be modeled as
1 + νt/ν = δ+2

i /Cν . Between wall scale distances from 1–50,
the empirical quadratic expression for the turbulent viscosity is
similar to the classical expression proposed by van Driest, with
different constant value. Our simplified expression enables
us to give an analytical solution for the turbulent viscos-
ity νt (r) = (r − ri)U ∗

i (δ+
i )/Cν ≈ κ(r − ri)U ∗

i [1 − e(−δ+
i /A)]2.

This expression was found to fit correctly the turbulent
viscosity profile issued from experimental data, given adapted
Cν values.
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