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How long do particles spend in vortical regions in turbulent flows?
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We obtain the probability distribution functions (PDFs) of the time that a Lagrangian tracer or a heavy inertial
particle spends in vortical or strain-dominated regions of a turbulent flow, by carrying out direct numerical
simulations of such particles advected by statistically steady, homogeneous, and isotropic turbulence in the
forced, three-dimensional, incompressible Navier-Stokes equation. We use the two invariants, Q and R, of the
velocity-gradient tensor to distinguish between vortical and strain-dominated regions of the flow and partition
the Q-R plane into four different regions depending on the topology of the flow; out of these four regions two
correspond to vorticity-dominated regions of the flow and two correspond to strain-dominated ones. We obtain
Q and R along the trajectories of tracers and heavy inertial particles and find out the time tpers for which they
remain in one of the four regions of the Q-R plane. We find that the PDFs of tpers display exponentially decaying
tails for all four regions for tracers and heavy inertial particles. From these PDFs we extract characteristic time
scales, which help us to quantify the time that such particles spend in vortical or strain-dominated regions of the
flow.
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I. INTRODUCTION

The characterization of the statistical properties of particles
advected by a turbulent flow is a challenging problem.
Not only is it of fundamental interest in fluid mechanics
and nonequilibrium statistical mechanics, but it also has
applications in geophysical fluid dynamics (e.g., raindrop
formation in warm clouds [1–4]) and astrophysics (e.g., planet
formation in astrophysical disks [5,6]). An important challenge
here is to obtain the time that such advected particles spend
in vortical regions of the flow. We build on our studies
of persistence-time statistics in two-dimensional (2D) fluid
turbulence [7] to develop a natural way of defining a time
for which a particle stays in a vortical region in the three-
dimensional (3D) case. We illustrate how this is done for the
case of statistically steady, homogeneous, and isotropic fluid
turbulence by studying turbulent advection of (a) neutrally
buoyant Lagrangian tracers (henceforth called tracers), which
move with the fluid velocity at the particle, and (b) passive,
heavy, inertial particles (henceforth heavy particles), which are
spherical particles that are heavier than the carrier fluid and
smaller than the Kolmogorov length scale η, at which viscous
dissipation becomes significant. The trapping of a tracer into
a vortical region is expected to give rise to very high values
of particle acceleration [8,9]. The heavy particles are ejected
from vortices [10–15] hence they are preferentially found in
strain-dominated regions of the flow. This has been observed
in direct numerical simulations (DNSs) by overlaying the
positions of these particles on a pseudocolor plot of the
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magnitude of the vorticity, in a two-dimensional slice [16–18]
through the simulation domain.

We estimate the time that a tracer or a heavy particle spends
in a vortical or strain-dominated region of the flow by using
the following, well-established technique for distinguishing
between these flow regions [19–21]: At any point in the flow,
the velocity-gradient matrix A has two invariants Q and R

[19,20] (in the incompressible case that we consider, the trace
of A is zero everywhere). Depending upon the signs of R and
� = (27/4)R2 + Q3, we can divide the Q-R plane into four
regions (Fig. 1); in two of these regions two eigenvalues of
A are complex conjugates of each other; and the topology
of the local flow is vortical. The other two regions of the
Q-R plane corresponds to those points for which all the
three eigenvalues of A are real, and the local flow is strain
dominated. In our DNSs, we follow the trajectories of tracers
or heavy particles in time and calculate the velocity-gradient
matrix A at the positions of these particles. The signs of R

and � help us to identify whether a particle lies in a vortical
or a strain-dominated region of the flow at a given instant
of time. To obtain statistics for the time scales over which
such particles stay in vortical or strain-dominated regions of
the flow, it is natural to use the following idea of persistence
from nonequilibrium statistical mechanics: For a fluctuating
field φ, we find the probability distribution function (PDF)
Pφ(tpers), which gives the probability that φ does not change
sign up to time tpers. Persistence times can also be thought of
as first-passage times [22].

Persistence has been studied in many nonequilibrium
systems, e.g., the simple diffusion equation with random
initial conditions [23], reaction-diffusion systems [24], and
fluctuating interfaces [25]. In many systems it has been found
that Pφ(tpers) ∼ tpers

−θ , as tpers → ∞, where θ is called the
persistence exponent [26]. This exponent θ can be universal; it
can be obtained analytically only in a few cases; most often it
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FIG. 1. The flow is topologically different for values of Q and R

that lie in the four regions shown in the Q-R plane (after Ref. [20]);
the black curve is the zero-discriminant line � = 0. Regions A and
B are vorticity-dominated regions; in region A vortices are stretched
and in region B they are compressed. By contrast, regions C and D
correspond to strain-dominated or extensional regions; in region C
fluid elements experience biaxial strain, whereas, in region D, they
feel axial strain. The red dashed curve shows an illustrative path, in
the Q-R plane, as a tracer moves through the fluid in our DNS.

is calculated numerically. We refer the reader to Refs. [26,27]
for reviews of such persistence problems.

In our DNS we calculate the PDF Pφ(tpers) of the times tpers

for which tracers or heavy particles remain in a vortical or
strain-dominated region. We find that, in the frame of tracers
or heavy particles, these PDFs show exponentially decaying
tails, from which we extract the decay times scales. Our study
quantifies the dependence of these time scales on the Stokes
number St = τp/τη, with τp the particle-response or Stokes
time and τη the dissipation-scale time, and provides, therefore,
a natural way of answering the following question: How long
do particles spend in vortical regions in turbulent flows?

The remainder of this paper is organized as follows.
In Sec. II we present the 3D Navier-Stokes equation, the
equations we use for the time evolution of tracers and heavy
particles, and the numerical methods we use to solve these; in
Sec. II A we define the two invariants Q and R, which we use
to distinguish between vortical and strain-dominated regions
of the flow. Section III is devoted to a detailed description of
our results; and Sec. IV contains concluding remarks.

II. MODEL AND NUMERICAL METHODS

We perform a DNS of the incompressible, three-
dimensional, forced, Navier-Stokes (3D NS) equation

∂t u + u · ∇u = ν∇2u − ∇p + f , (1)

∇ · u = 0, (2)

where u, p, f , and ν are the velocity, pressure, force, and
kinematic viscosity, respectively. Our simulation domain is a
periodic box of length 2π . We solve the 3D NS equation by
using the pseudospectral method with N3 collocation points

TABLE I. Table of parameters for our DNS run with N3

collocation points: ν is the kinematic viscosity, δt is the time step, Np

is the number of tracers or heavy particles, kmax is the largest wave
number, ε is the mean rate of energy dissipation; η = (ν3/ε)1/4 and
τη = (ν/ε)1/4 are the dissipation length and time scales, respectively;
λ = √

2νE/ε is the Taylor microscale, where E is the mean energy of
the flow, and Reλ is the Reynolds number based on λ, Il =

∑
k E(k)/k

E
is

integral length scale, where E(k) is the energy spectrum of the flow,
and Teddy = Il/urms is the large eddy turnover time, where urms is the
root-mean-squared velocity of the flow.

N ν δt Np Reλ kmaxη

256 3.8 × 10−3 5 × 10−4 40,000 43 1.56

ε η λ Il τη Teddy

0.49 1.82 × 10−2 0.16 0.51 8.76 × 10−2 0.49

and the 2/3-dealiasing rule [28]. We use a constant-energy-
injection forcing scheme [29], with a rate of energy injection
ε. For time integration we use a second-order, exponential
Adams-Bashforth scheme [30].

Heavy particles obey the following equations [31,32]:

Ẋ = V ,

V̇ = 1

τp
[u(X) − V ], (3)

where X and V denote, respectively, the position and velocity
of the particle, τp is the particle-response time, u(X) is the flow
velocity at the position X , and dots denote time differentiation.
We consider monodisperse spherical particles, with radii
rp � η, material density ρp much greater than the fluid density
ρf , and a small number density, so we neglect (a) the effect
of the particles on the flow (i.e., we have passive particles)
and (b) particle-particle interactions. We also assume that,
as in several experiments, typical particle accelerations, in
strongly turbulent flows, exceed significantly the gravitational
acceleration. We also study the statistics of tracers for which
the equation of motion is

Ẋ = u(X). (4)

We solve Eqs. (3) and (4) by using an Euler scheme in time to
follow the trajectories of Np particles in our DNS. The velocity-
gradient matrix A is calculated at each grid point by using a
spectral method. We use trilinear interpolation to calculate the
components of u(X) and A at the off-grid positions of the
particles. Table I gives the list of parameters we use in our
DNS.

Q-R invariants of the velocity-gradient tensor

We follow Ref. [20] to note that the velocity-gradient
matrix A has three invariants under canonical transformations,
namely, P = Tr(A), Q = −Tr(A2/2), and R = −Tr(A3/3).
Incompressibility yields P = 0, for all the points in our
domain. The nature of the eigenvalues is determined by the
signs of R and � = (27/4)R2 + Q3, the discriminant of the
characteristic equation of A. This allows us to classify each
point in our flow into four regions, in the Q-R plane, as shown
in Fig. 1. If � is large and positive, vorticity dominates the
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flow; if, in addition, R < 0 (region B), vortices are compressed,
whereas, if R > 0 (region A), they are stretched. If � is large
and negative, local strains are high and vortex formation is
not favored; furthermore, if R > 0 (region D), fluid elements
experience axial strain, whereas, if R < 0 (region C), they feel
biaxial strain [20].

III. RESULTS

From our simulations we find that the isosurfaces of
vorticity have tubular shapes that are well known from DNSs
of fully developed turbulence. The heavy particles distribute
themselves away from regions of high vorticity. We consider
the motion of ten species of particles: tracers and nine heavy
particles, with different values of St. We inject Np particles
of each species into the flow. We collect data for averages
after the system of particles and the flow have reached a
nonequilibrium, turbulent, but statistically steady, state. It
has been observed already, by overlaying positions of heavy
particles on two-dimensional contours of vorticity, that the
heavy particles distribute themselves away from regions of
high vorticity. Here we look at time series of R and � obtained
along the trajectory of a particle; typical examples of such time
series for a tracer are shown in Fig. 2. The intersection of any
one of these curves with the black, horizontal line indicates
the migration of a particle from one region of the Q-R plane
to another.

Persistence times via Q and R

We follow the trajectory of each particle and calculate the
components of A and the values of Q and R at the particle
position as a function of time. In Fig. 3 we plot contours of
the joint PDF (JPDF) of Q and R[P (Q,R)], on log scales;
we calculate these values of Q and R along the trajectories

FIG. 2. Plots of R (red dashed line) and the discriminant � of
the characteristic equation for the velocity-gradient tensor (solid blue
line), calculated along the trajectory of a tracer as a function of the
dimensionless time t/Teddy. The intersection of any one of these
curves with the black horizontal line indicates the migration of a
particle from one region of the Q-R plane to another. R and � are
nondimensionalized by �3 and �6, respectively, where � = uη/η.

of tracers and heavy particles, for different values of St. It
is well known (see, e.g., Ref. [20]), that this JPDF has a
teardrop shape, in the filled contour plots of Fig. 3; this shape
is also obtained when we follow tracers and heavy particles
in homogeneous, isotropic turbulence. The shape of this JPDF
indicates that these particles move more often through vortical
regions than through regions with � < 0, where the JPDF has
significant weight predominantly to the right (Q > 0) along
the elongated tail near � = 0. Furthermore, these JPDFs show
that the tracers are more likely to be in vorticity-dominated
regions (region above the black curve in the Q-R plane), as
compared to the heavy particles; in addition, the probability of
finding heavy particles in the vortical regions first decreases
and then increases, as we increase St. A similar trend has been
observed in Ref. [33].

We obtain the PDFs from our DNS as follows: (A) In the
Eulerian framework, by following the time evolution of Q and
R at a fixed point (x,y,z) in space, we determine the time tpers

for which the flow at this point remains in one of the four
regions described above; (B) in the Lagrangian framework
we obtain the time tpers for which a tracer resides in one of
these regions; (C) the same calculation as in (B) but for heavy
particles. For the Eulerian PDFs we use a superscript E, for
tracer PDFs a superscript L, and for heavy-particle PDFs a
superscript I. For each of the four regions in the Q-R plane,
we use the subscripts A, B, C, and D. For example, P I

A denotes
the PDF of times tpers that a heavy particle spends in region A
of the Q-R plane.

In Fig. 4 we show semilog plots of the PDFs of tpers for the
four regions A, B, C, and D, which indicate that these PDFs
display exponentially decaying tails for large values of tpers.
We give the forms of these PDFs, for small values of tpers, in the
insets (lin-lin plots). We find that these PDFs do not go to zero
as tpers → 0. The qualitative natures of these PDFs, for small
tpers, are similar for regions A, C, and D, but not for region
B. These PDFs are obtained by computing the histograms
and, therefore, they suffer from binning errors. To overcome
these errors, we calculate the corresponding cumulative PDFs,
by using the rank-order method [34]. We denote by QI

A the
cumulative PDF (CPDF) that follows from P I

A; clearly,

P I
A(tpers) ≡ d

dtpers
QI

A(tpers). (5)

In Fig. 5 we give semilog plots of QI
A(tpers), for tracers and

heavy particles, in regions A (top right), B (top left), C (bottom
left), and D (bottom right). We observe that all these CPDFs
have exponentially decaying tails, from which we extract the
characteristic time scales Tα (α = A, B, C, or D) that we list in
Table II for all species of particles. We also note that, in regions
A and B, which are vorticity dominated, TA and TB are largest
for tracers; and they decrease as St increases. Furthermore, for
all species of particles, TB > TA. The time scale TC for region
C, which is strain dominated, does not change significantly
with St. The time scale TD for region D, where axial strain
dominates, assumes its lowest value for tracers; and it changes
only marginally as St increases.

To provide a clear answer to the question we pose in the
title of this paper, we must calculate the PDFs of the time tpers

for which heavy particles stay in vortical regions of the flow.
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FIG. 3. Contour plots of the joint PDFs of Q and R, on log scales, calculated along the trajectories of particles with different Stokes numbers,
from the top left corner, (a) tracers, (b) St = 0.1, (c) St = 0.5, (d) St = 1.0, (e) St = 1.4, and (f) St = 2.0. Q and R are nondimensionalized by
�2 and �3, respectively, where � = uη/η. The � = 0 curve is shown by the solid black line; � > 0 corresponds to the vorticity-dominated
region and � < 0 corresponds to the strain-dominated one.

Region: A

Region: C Region: D

Region: B

FIG. 4. Semilog plots of the persistence-time PDFs Pφ(tpers) of the times tpers for the four regimes in the Q-R plane, for different Stokes
numbers; the inset shows Pφ(tpers) for small tpers.
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Region: A

Region: C Region: D

Region: B

FIG. 5. Semilog plots of the cumulative persistence time PDFs (obtained by the rank-order method) for the four regimes in the Q-R plane,
for different values of the Stokes number.

We do this by monitoring the sign of � along the trajectories
of the particles, for � > 0 in vorticity-dominated regions of
the flow and � < 0 in strain-dominated ones. In Fig. 6 we
show the CPDFs tpers for the cases where � remain positive
(left panel) or negative (right panel), along the trajectories
of tracers (St = 0) or heavy particles; we find that these
CPDFs also have exponentially decaying tails. We extract

TABLE II. Values of characteristic time scales Tα for all four
regions of Q-R plane (α = A, B, C, D), calculated in the Eulerian
frame and in the frame of tracers and inertial particles, by fitting
Qα(tpers/Teddy) ∼ exp(−tpers/Tα) to the cumulative PDFs of residence
time.

TA/Teddy TB/Teddy TC/Teddy TD/Teddy

Eulerian 0.13 0.23 0.08 0.13
Tracers 0.37 0.68 0.17 0.37
St = 0.1 0.35 0.63 0.18 0.39
St = 0.2 0.34 0.58 0.18 0.41
St = 0.5 0.34 0.48 0.18 0.42
St = 0.7 0.32 0.45 0.19 0.41
St = 1.0 0.32 0.44 0.19 0.42
St = 1.4 0.30 0.41 0.16 0.42
St = 1.7 0.29 0.39 0.16 0.41
St = 2.0 0.29 0.39 0.15 0.42
St = 2.4 0.28 0.37 0.16 0.39

the time scales Tvortical and Tstrain, for particle residence in
vortical or strain-dominated regions of the flow, respectively,
by fitting exponential functions to these tails. We list these
times in Table III for different values of St. We observe that
Tvortical decreases monotonically as St increases, whereas Tstrain

first increases and then decreases. Furthermore, the values of
Tvortical and Tstrain indicate that tracers, as well as heavy particles
with small values of St, stay longer in vortical regions of the
flow than in strain-dominated ones, because the difference
between Tvortical and Tstrain is large here. By contrast, for heavy

TABLE III. Values of the characteristic time scales, for the
vortical (� > 0) and strain dominated (� < 0) regions, calculated
in the frame of tracers and heavy particles for different values of St.

Tvortical/Teddy Tstrain/Teddy

Tracers 1.44 0.54
St = 0.1 1.11 0.59
St = 0.2 0.97 0.59
St = 0.5 0.73 0.62
St = 0.7 0.71 0.63
St = 1.0 0.64 0.60
St = 1.4 0.59 0.59
St = 1.7 0.56 0.57
St = 2.0 0.55 0.55
St = 2.4 0.55 0.51
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FIG. 6. Semilog plots of the cumulative persistence-time PDFs (obtained by the rank-order method) for vortical (� > 0, left panel) and
strain-dominated (� < 0, right panel) regions, for different values of the Stokes number St (the plot for tracers is labeled by St = 0). From the
slopes of the tails of these PDFs we extract the times Tvortical and Tstrain, for particle residence in vortical or strain-dominated regions of the flow,
respectively.

particles, with high values of St, the difference between Tvortical

and Tstrain is insignificant, so these particles spend roughly the
same amount of time in vortical regions of the flow as in
strain-dominated ones.

IV. CONCLUSIONS

Our DNS of tracers and heavy particles in statistically
steady, homogeneous, and isotropic turbulence in the forced,
3D NS equation has helped us to explore how long such
particles spend in vortical regions of a turbulent flow and in
strain-dominated ones by combining properties of the velocity-
gradient tensor, which is well known in fluid mechanics,
and the notion of persistence times, which has received
considerable attention in nonequilibrium statistical mechanics.
The Q and R invariants play a crucial role in our analysis
of PDFs and CPDFs of persistence times, conditioned on
the values of R and �. The exponential tails of these PDFs
and CPDFs help us to extract time scales that we identify
with particle-residence times in vortical or strain-dominated
regions of the turbulent flow. We hope that our detailed study
of persistence-time PDFs in 3D turbulent flows will lead to
experimental studies of such statistics for tracers and heavy
particles.

Our work is a natural generalization of a similar study
for tracers [7] in two-dimensional, statistically steady, homo-
geneous, and isotropic turbulent flows. In two dimensions,
instead of Q and R, we must use the Okubo-Weiss parameter
� ≡ det(A). This study has found that the PDF of the
persistence time τ , for a Lagrangian particle in vortical regions,
displays a power-law tail, i.e., P �(τ−) ∼ τ−θ

− , where the expo-
nent θ 
 2.9 [7]. By contrast, we show that the residence-time
PDFs in 3D turbulent flows display exponentially decaying
tails, for all species of particles and for all four regions in
the Q-R plane. The most likely reason for this qualitative
difference of persistence-time PDFs (power-law as opposed
to exponential tails) in 2D and 3D fluid turbulence is that,
in the 3D case, the velocity-gradient tensor A always has
one real eigenvalue, so tracers and particles can escape more
easily from vortical regions than they can in 2D turbulent

flows. However, we must also note that the extent of the
power-law region seen in the 2D study [7] increases with
the Reynolds number. The Reynolds numbers that we can
achieve in our 3D DNS is significantly lower than that in the 2D
case. Therefore, very-high-resolution, large-Reynolds-number
DNSs of 3D turbulence with tracers and particles are required
to confirm the absence of power-law tails in persistence-time
PDFs here.

The clustering of heavy particles in 3D fluid turbulence
has been characterized by calculating a correlation dimension,
which decreases first as St increases (for small St), thus
indicating clustering; but this dimension reaches a minimum
value near St 
 0.7, and then increases to a value 
3 (i.e.,
a uniform distribution with insignificant clustering) as St
increases beyond 0.7 [13]. This can be understood in terms
of singularities (caustics) in the (particle) velocity gradient
field; see, e.g., Refs. [35,36] for a review. The intuitive picture
of clustering because of ejection from vortices is not enough
to understand the clustering. Nevertheless, we observe the
following by plotting the joint PDFs of Q and R as measured
along the trajectories of heavy particles (Fig. 3): the probability
of finding the heavy particles in the vortical regions first
decreases and then increases, as we increase St. However,
the characteristic time scales that we have calculated for such
particles in vortical structures behave differently, insofar as
they do not show such a clear, nonmonotonic dependence on
St (see Tables II and III).

Our DNS supports and quantifies the qualitative argument
that heavy particles spend less time than tracers in vortical
regions in 3D turbulent flows. However, the residence time
scales depend only weakly on St, over the range we have in
Tables II and III. Surprisingly, these characteristic time scales
are comparable to the large-eddy turnover time. The values of
these time scales can be used as input parameters in developing
a model for the dynamics of the particles in turbulent flows.
If the same characteristics time scales are calculated for
Eulerian grid points, we find that they are about one-tenth
of the large-eddy turnover time, i.e., they are of the same
order as our Kolmogorov time scale. We see from the tails
of the cumulative PDFs in Fig. 6 that some of the particles
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can reside inside vortical regions for times that are much
longer than Teddy. Therefore, we need to run our DNSs for very
long times to get good statistics. The results we present here
have been obtained by running our DNSs for roughly 80Teddy.
With such long runs, it is not possible to carry out very-high-
resolution DNSs, at high Reynolds numbers and to obtain
reliably the Reynolds-number dependence of persistence
times.

One of the many longstanding questions in turbulence
concerns the lifetime of vortices. Clearly, to measure the
lifetime of a vortex we must have a precise definition of
a vortex, which is, in itself, still controversial (see, e.g.,
Ref. [37]). One of the several different criteria used to define
a vortex, called the Q criterion, is precisely the condition
� > 0 that we have used. If we use this condition to define
a vortex, then the time a tracer particle spends in a vortex
can be considered as a measure of the lifetime of a vortex
itself. Therefore, with this interpretation, we have provided
an answer to the old question: What is the typical lifetime
of vortical structures? The cumulative probability distribution
of the lifetime of a vortex, in homogeneous and isotropic
turbulence, given in Fig. 6, has an exponential tail, which
allows us to define a characteristic lifetime for a vortex; we
give this lifetime in Table III. Other criteria for the definition of
vortical regions can be used to measure the lifetime of vortices;
and these may yield results that are different from those in
Table III. An interesting attempt has been made to measure the
PDF of the lifetime of vortical structures in Ref. [38] by using
a DNS of light bubbles. This study lacked a precise definition
of a vortex and had much smaller run times than those in our
DNSs. Nevertheless, the characteristic lifetime of vortices,
obtained in Ref. [38], are roughly equal to those we find.

An alternative way to define a vortical region (as opposed to
a vortical point) is “to be a compact region of vorticity, possibly
unbounded in one direction, surrounded by irrotational fluid.
Strictly speaking, the viscosity has to vanish for this definition
to make sense, but we suppose that the viscosity is very
small, and we allow transcendentally small vorticity outside
the vortex...” (this quotation is from Ref. [39]). By using
the lifetime of vortical regions, in a model for vortex tubes,
Mori [40] has argued that the characteristic dimension of
vortical regions increases as a power law in time, with a
universal exponent equal to 3/2. As the Q criterion is applicable
to a point, but not to a region, we cannot comment on this result.

An investigation of the dependence of our results on the
added-mass effect, which enters through the density contrast
between the particles and the fluid, is interesting but it deserves
a full study that lies beyond the scope of this paper.
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