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Helical turbulent Prandtl number in the A model of passive vector advection
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Using the field theoretic renormalization group technique in the two-loop approximation, turbulent Prandtl
numbers are obtained in the general A model of passive vector advected by fully developed turbulent velocity field
with violation of spatial parity introduced via the continuous parameter ρ ranging from ρ = 0 (no violation of
spatial parity) to |ρ| = 1 (maximum violation of spatial parity). Values of A represent a continuously adjustable
parameter which governs the interaction structure of the model. In nonhelical environments, we demonstrate that
A is restricted to the interval −1.723 � A � 2.800 (rounded to 3 decimal places) in the two-loop order of the
field theoretic model. However, when ρ > 0.749 (rounded to 3 decimal places), the restrictions may be removed,
which means that presence of helicity exerts a stabilizing effect onto the possible stationary regimes of the system.
Furthermore, three physically important cases A ∈ {−1,0,1} are shown to lie deep within the allowed interval of A

for all values of ρ. For the model of the linearized Navier-Stokes equations (A = −1) up to date unknown helical
values of the turbulent Prandtl number have been shown to equal 1 regardless of parity violation. Furthermore,
we have shown that interaction parameter A exerts strong influence on advection-diffusion processes in turbulent
environments with broken spatial parity. By varying A continuously, we explain high stability of the kinematic
MHD model (A = 1) against helical effects as a result of its proximity to the A = 0.912 (rounded to 3 decimal
places) case where helical effects are completely suppressed. Contrary, for the physically important A = 0 model,
we show that it lies deep within the interval of models where helical effects cause the turbulent Prandtl number
to decrease with |ρ|. We thus identify internal structure of interactions given by the parameter A, and not the
vector character of the admixture itself being the dominant factor influencing diffusion-advection processes in
the helical A model.

DOI: 10.1103/PhysRevE.94.053113

I. INTRODUCTION

Diffusion-advection processes in turbulent environments
represent both experimentally and theoretically an important
topic of study in the field of fluid motion [1–5]. In this
respect, the so-called Prandtl number is frequently used to
compactly characterize the quantitative properties of flows
under the study [2,3]. For all admixture types, it is defined
as the dimensionless ratio of the coefficient of kinematic
viscosity to the corresponding diffusion coefficient of a given
admixture. For example, in the case of thermal diffusivity,
the corresponding (scalar) Prandtl number equals the ratio of
kinematic viscosity to the coefficient of molecular diffusivity
[3]. Since both the kinematic viscosity and the diffusion
coefficient for the given admixture are material and flow
specific quantities, the resulting Prandtl numbers have always
to be specified at distinct conditions required to characterize
the flow and are thus often found in property tables alongside
with other material specific properties [1,2,6,7].

However, in the high Reynolds number limit, the state
of fully developed turbulence manifests itself by reaching
effective material and flow independent values for both
the kinematic viscosity and the corresponding diffusion
coefficient. We commonly refer to such effective values as
the turbulent viscosity coefficient and turbulent diffusion
coefficient [3,4]. Consequently, in fully developed turbulent
flows the resulting values of the Prandtl numbers are universal
for a given admixture and do not depend either on microscopic
or macroscopic properties of the flow under the consideration.
Usually, we refer to them as the turbulent Prandtl numbers of
given admixture type [1,2,8,9].

In other words, the state of fully developed turbulence
allows study of advection-diffusion processes in a general
material and flow unbiased manner [3,4]. Moreover, it is
well known that fully developed turbulent systems are well
tractable for analytic investigations which would otherwise be
difficult or even impossible [9,10]. Fully developed turbulent
flows represent therefore a theoretically as well as experimen-
tally valuable scenario for analytic studies of how different
admixtures are transported within the underlying turbulent
environment.

In this respect, several authors have recently analyzed the
question of how the tensorial nature of the admixtures under
consideration may alter the diffusion-advection processes
[11–15]. As a starting point for the present analysis, we briefly
discuss Refs. [11,15] where the aforementioned turbulent
Prandtl was central in the approach to the problem. In
Ref. [15], turbulent scalar Prandtl number was investigated
in the model of passive advection while in Ref. [11] two
other models, namely, the so-called kinematic MHD model
and a passively advected vector field within the A = 0 model,
were included into the analysis. Furthermore, the authors of
Ref. [11] show that introduction of spatial parity violation
(helicity) into the turbulent flow represents not only a highly
realistic physical scenario, but it additionally has the advantage
of pronouncing differently the specific tensorial and interaction
properties of the studied models from which the authors
argue that the structure of interactions exerts more impact
on diffusion-advection processes than the tensorial nature
of the advected field itself. The drawback of the analysis
performed in Ref. [11] lies in the fact that interactions in
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the given models could not be varied in any way. Extending
the results beyond the three selected models represents thus
merely a hypothesis. However, two of the analyzed models,
namely, the kinematic MHD model and the aforementioned
A = 0 model represent special cases of the general A model
of passive vector advection as first defined in Ref. [16]. To
avoid confusion, we stress that the present general A model is
restricted only to the passive vector advection and it should not
be confused with the A model according to the classification
of Halperin and Hohenberg [18] or with the A model of forced
Navier-Stokes equation introduced in Refs. [19,20]. The name
of the present model is actually drawn from the commonly
used notation for the parameter A [11–17,21] which appears
in its definition (see Sec. II for more details). The parameter
A plays actually a central role in an appropriate definition of
a unified description of a wide variety of vector admixture
models. Since it is only required to be real with no further
restrictions being obvious, it may take values of A = 1 and 0
which give the kinematic MHD model and the A = 0 model,
respectively. Moreover, it also encompasses the important case
of the so-called linearized Navier-Stokes equations [21]. Thus,
the general A model represents a tool to unite several distinct
but physically important cases into one single model. However,
as already seen in Ref. [16], further restrictions on A may arise
and we discuss those in Sec. V.

A step towards the aforementioned generalization was
already undertaken in Ref. [14]. However, only the case of
fully symmetric turbulent environment was considered and,
consequently, only limited insights into the problem was
gained. Without considering helical effects, assertions made
by the authors of Ref. [11] remained therefore completely
unverified. It is therefore of high interest to include spatial
parity violation into the general A model. Additionally, the
authors of Ref. [14] constraint the values of A only to the
interval 〈−1,1〉 and omit the important physical cases beyond
the limit of their analysis. Taking together, although the
general A model has attracted a lot of attention recently
(see Refs. [12,13,21]), only the case of fully symmetric
turbulent environment has been analyzed so far. Furthermore,
the analysis has been limited only onto the values −1 � A � 1
case. Here, we consider the general helical case and further
extend the calculations to all physically allowed values of A.

To perform the investigations discussed above, we use the
well established tools of the field renormalization group (RG)
technique, as presented, for example, in Refs. [9,10,22], which
was widely used in the field of fully developed turbulence
without admixtures [23–29] as well as for advection-diffusion
processes of several admixtures including passive scalar
admixture [15,30–35], magnetic admixtures [36–40], and also
vector admixtures [11–14,21,41–44]. The two-loop techniques
for calculation of the turbulent Prandtl number within the A

model used here are similar to those of Ref. [15]. The resulting
helical values of turbulent Prandtl number are then analyzed
to finally investigate the hypothesis raised in Ref. [11].

The paper is structured as follows. In Sec. II, the A model
of passive advection of the vector admixture is defined via
the stochastic differential equations. The emphasis is laid
on the meaning of the parameter A for the structure of
interactions. In Sec. III, field theoretic equivalent of stochastic
differential equations of the A model is introduced. The UV

renormalization of the model is discussed in Sec. IV which
is then concluded with the calculation of the IR stable fixed
point of the basic RG equations. The two-loop calculation
of the helical Prandtl number is presented in Sec. V where
also the helical dependence of the turbulent Prandtl number
is discussed with special attention given to the influence
of tensorial interaction structures on the diffusion-advection
processes in the A model studied here. Obtained results are
then briefly reviewed in Sec. VI.

II. MODEL A OF PASSIVE VECTOR ADVECTION
WITH SPATIAL PARITY VIOLATION

We consider a passive solenoidal vector field b ≡ b(x)
driven by a helical turbulent environment given by an in-
compressible velocity field v ≡ v(x) where x ≡ (t,x) with t

denoting the time variable and x the d dimensional spatial
position (later d = 3 strictly). Apparently, v and b are
the divergence free vector fields satisfying ∂ · b = ∂ · v = 0.
Additionally, within the general A model of passive advection
the following system of stochastic equations is required:

∂tb = ν0u0�b − (v · ∂)b + A(b · ∂)v − ∂P + fb, (1)

∂tv = ν0�v − (v · ∂)v − ∂Q + fv, (2)

where ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi
,� ≡ ∂2 is the Laplace operator,

ν0 is the bare viscosity coefficient, u0 is the bare reciprocal
Prandtl number, P ≡ P (x) and Q ≡ Q(x) represent the pres-
sure fields while the stochastic terms fv, fb and the parameter
A are discussed later in this section. The subscript 0 denotes
unrenormalized quantities in what follows (see Sec. IV for
more details).

Let us now briefly review the physical meaning of A.
First, we note that Galilean symmetry requires A only to be
real but the cases A ∈ −1,0,1 represent various physically
important models [14,21,41,43]. For A = 1, the kinematic
MHD model is recovered, the A = 0 case leads to passive
advection of a vector field in turbulent environments, and
finally A = −1 represents the model of the linearized Navier-
Stokes equations [21]. The parameter A stands in front of the
so-called stretching term [41] and due to its continuous nature
it represents a measure of specific interactions allowed by
Galilean symmetry. Varying A allows therefore to investigate
a variety of passively advected vector admixtures with different
interaction properties. Although A may take any real values, it
is frequently discussed only in the smallest possible continuous
interval encompassing the three special cases A ∈ {−1,0,1}.
Contrary, we extend the analysis to all physically allowed
values of A (see Sec. V for more details) which allows a
straightforward discussion of the influence of interactions on
advection-diffusion processes.

The previously undefined stochastic terms fv and fb

introduced in Eqs. (1) and (2) represent sources of fluctuations
for v and b. For energy injection of b we assume transverse
Gaussian random noise fb = fb(x) with zero mean via the
following correlator:

Db
ij (x; 0) ≡ 〈

f b
i (x)f b

j (0)
〉 = δ(t)Cij (|x|/L), (3)
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where L is an integral scale related to the corresponding
stirring of b while Cij is required to be finite in the limit
L → ∞ and for |x| 	 L it should rapidly decrease, but
remains otherwise unspecified in what follows. Contrary, the
transverse random force per unit mass fv = fv(x) simulates
the injection of kinetic energy into the turbulent system on
large scales and must suit the description of real infrared
(IR) energy pumping. To allow the later application of the
RG technique, we shall assume a specific, powerlike form of
injection as usual for fully developed turbulence within the RG
approach (for more details, see Refs. [9,10,27]). Nevertheless,
although a specific form is used, universality of fully developed
turbulence ensures that the results obtained here may easily be
extended to all fully developed turbulent flows. Additionally,
it allows easy generalization to environments with broken
spatial parity by defining suitable tensorial properties of the
correlator of fv. For this purpose, we prescribe the following
pair correlation function with Gaussian statistics:

Dv
ij (x; 0) ≡ 〈

f v
i (x)f v

j (0)
〉

= δ(t)
∫

ddk
(2π )d

D0k
4−d−2εRij (k)eik·x. (4)

Here, d denotes the spatial dimension of the system, k is the
wave number with k = |k|, and D0 ≡ g0ν

3
0 > 0 is the positive

amplitude with g0 being the coupling constant of the present
model related to the characteristic ultraviolet (UV) momentum
scale 	 by the relation g0 
 	2ε. The term Rij (k) appearing
in Eq. (4) encodes the spatial parity violation of the underlying
turbulent environment and its detailed structure is discussed
separately in the text below. Finally, the parameter ε is related
to the exact form of energy injection at large scales and assumes
a value of 2 for physically relevant infrared energy injection.
However, as usual in the RG approach to the theory of critical
behavior, we treat ε formally as a small parameter throughout
the whole RG calculations and only in the final step its physical
value of 2 is inserted [9,22].

Further, in Eq. (4), we encounter typical momentum
integrations which lead to two troublesome regions, namely,
the IR region of low momenta and the UV region of high
momenta as discussed in detail in Refs. [9,10]. Frequently,
these troublesome integration regions are avoided by directly
prescribing all relevant microscopic and macroscopic proper-
ties of the flow. Here, however, we use the universality of fully
developed turbulent flows to avoid unnecessary specifications.
Thus, we only demand real IR energy injection of energy via
Eq. (4) and neglect the exact macroscopic structure of the flow
by introducing a sharp IR cutoff k � m for integrations over
k with L assumed to be much bigger than 1/m. Using sharp
cutoff, IR divergences like those in Eq. (4) are avoided. As
already done for Eq. (4), the IR cutoff is understood implicitly
in the whole paper and we shall stress its presence only
at the most crucial stages of the calculation. Contrary, UV
divergences and their renormalization play the central role in
calculations presented here.

Finally, let us now turn our attention to the projector Rij

in Eq. (4) which controls all of the properties of the spatial
parity violation in the present model. In the case of fully
symmetric isotropic incompressible turbulent environments,
the projector Rij (k) assumes the usual form of the ordinary

transverse projector

Pij (k) = δij − kikj /k2, (5)

as explained in Ref. [9] in more details. In the case of helical
flows with spatial parity violation, Eq. (4) is specified in the
form of a mixture of a tensor and a pseudotensor as Rij (k) =
Pij (k) + Hij (k) where Hij (k) respects the transversality of the
present fields. The ordinary nonhelical transverse projector Pij

is thus shifted by a helical contribution

Hij (k) = iρ εij lkl/k. (6)

Here, εij l is the Levi-Civita tensor of rank 3, and the real valued
helicity parameter ρ satisfies |ρ| < 1 due to the requirement
of positive definiteness of the correlation function. Obviously,
ρ = 0 corresponds to the fully symmetric (nonhelical) case
whereas ρ = 1 means that spatial parity is fully broken.

We finally conclude the section by discussing the structure
of interactions in Eqs. (1) and (2). Obviously, according to
Eq. (2), the admixture field b does not disturb evolution of
the velocity field v. In other words, the velocity field v is
completely detached from the influence of admixtures, as
required by demanding passive advection. Of course, real
problems usually involve at least some small amount of mutual
interaction between the flow and its admixtures. However, even
in the case of active admixtures there exist regimes which
correspond to the passive advection problem, as seen, for
example, in the case of the MHD problem with an active
magnetic admixture which has the so-called kinetic regime
controlled by the kinematic fixed point of the RG equations
(see, e.g., Ref. [36]). Such a situation corresponds to the
passive advection obtained within the present model when
A = 1 in Eqs. (1) and (2). Therefore,the present picture of
passive advection within the A model represents a highly
interesting physical scenario.

III. FIELD THEORETIC FORMULATION OF THE MODEL

According to the Martin-Sigia-Rose theorem [45], the
system of stochastic differential equations (1) and (2) is
equivalent to a field theoretic model of the double set of
fields � = {v,b,v′,b′} where primed fields are the auxiliary
response fields [9]. The field theoretic model is then defined
via the Dominicis-Janssen action functional

S(�) = 1

2

∫
dt1 ddx1 dt2 ddx2

× [
v′

i(x1)Dv
ij (x1; x2)v′

j (x2)+b′
i(x1)Db

ij (x1; x2)b′
j (x2)

]

+
∫

dt ddx{v′[−∂t + ν0� − (v · ∂)]v

+ b′[−∂tb + ν0u0�b − (v · ∂)b + A(b · ∂)v]}, (7)

where xl = (tl,xl) with l = 1,2, Db
ij and Dv

ij are given in
Eqs. (3) and (4), respectively, and the required summations
over dummy indices i,j ∈ 1,2,3 are implicitly assumed. The
auxiliary fields and their original counterparts v, b share the
same tensor properties, which means that all fields appearing
in the present model are transverse. The pressure terms ∂Q

and ∂P from Eqs. (1) and (2), respectively, do not appear in
action (7) because transversality of the auxiliary fields v′(x)
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FIG. 1. Propagators of the general A model. Dashed lines
correspond to fields v and v′ while full lines denote fields b and
b′. Slash denotes auxiliary fields v′ and b′.

and b′(x) allows one to integrate these out of the action (7) by
using the method of partial integration.

The field theoretic model of Eq. (7) has a form analogous to
the corresponding expression of Ref. [14] but includes via Dv

ij

the more general helical situation which was not considered
by the authors of Ref. [14]. In the frequency-momentum rep-
resentation, the following set of bare propagators is obtained:

〈b′
ibj 〉0 = 〈bib

′
j 〉∗0 = Pij (k)

iω + ν0u0k2
, (8)

〈v′
ivj 〉0 = 〈viv

′
j 〉∗0 = Pij (k)

iω + ν0k2
, (9)

〈bibj 〉0 = Cij (k)

|−iω + ν0u0k2|2 , (10)

〈vivj 〉0 = g0ν
3
0k4−d−2εRij (k)

|−iω + ν0k2|2 , (11)

with helical effects already appearing in the propagator (11)
via Rij (k). The function Cij (k) is the Fourier transform of
Cij (r/L) from Eq. (3), but remains arbitrary in the calculations
that follow. The propagators are represented as usual by the
dashed and full lines, where the dashed lines involve the
velocity type of fields and full lines represent the vector
admixture type fields. The auxiliary fields are denoted using a
slash in the corresponding propagators as shown in Fig. 1.

The field theoretic formulation of the A model con-
tains also two different triple interaction vertices (see
Fig. 2), namely, b′

i(−vj∂jbi + Abj∂jvi) = b′
ivjVijlbl and

−v′
ivj ∂j vi = v′

ivjWijlvl/2. In the momentum-frequency rep-
resentation, Vijl = i(kj δil − Aklδij ) while Wijl = i(klδij +
kj δil). In both cases, momentum k is flowing into the vertices
via the auxiliary fields b′ and v′, respectively. In the end, let
us also briefly remind that the formulation of the stochastic

FIG. 2. The interaction vertices of the A model. The vertex
Wijk = i(kkδij + kj δik) involves the fields v and v′ while Vijk is
the only diagrammatic object of the present Feynman rules which
contains A dependent contribution in the form of Vijk = i(kj δik −
Akkδij ).

problem given by Eqs. (1) and (2) through the field theoretic
model with the action functional (7) allows one to use the
well-defined field theoretic means, e.g., the RG technique, to
analyze the problem [9,46].

IV. RENORMALIZATION GROUP ANALYSIS

To determine all relevant UV divergences in the present
model, we employ the analysis of canonical dimensions and
identify all objects (graphs) containing the so-called superficial
UV divergences which turn out to be the only relevant
divergences left for the subsequent RG analysis performed
here (for details, see Refs. [9,10,22]). Since the present A

model belongs to the class of the so-called two scale models
[9,10,27], an arbitrary quantity Q has a canonical dimension
dQ = dk

Q + dω
Q, where dk

Q corresponds to the canonical di-
mension in the momentum scale while dω

Q corresponds to the
frequency scale. A straightforward calculation shows that for
the helical parameter ρ one obtains dk

ρ = dω
ρ = 0 while all

the other quantities possess canonical dimensions according
to Ref. [14]. Consequently, the helical A model possesses
dimensionless coupling constant g0 at ε = 0.

The present model is thus logarithmic at ε = 0 which in the
framework of the minimal subtraction (MS) scheme, as used
here, means that all possible UV divergences are of the form
of poles in ε [22,46]. Using now the general expression for the
total canonical dimension of an arbitrary 1-irreducible Green’s
function 〈� . . . �〉1−ir and the symmetry properties of the
model, one finds that for d = 3 the superficial UV divergences
are present only in the 1-irreducible Green functions 〈v′

ivj 〉1−ir

and 〈b′
ibj 〉1−ir . Thus, all divergences can be removed by the

counterterms of the form v′�v or b′�b which leads to the
multiplicative renormalization of g0, u0, and ν0 via

ν0 = νZν, g0 = gμ2εZg, u0 = uZu, (12)

where the dimensionless parameters g, u, and ν are the
renormalized counterparts of the corresponding bare ones and
μ is the renormalization mass required for the dimensional
regularization, as used in this paper. The quantities Zi =
Zi(g,u; d,ρ; ε) contain poles in ε.

Furthermore, we stress that A is a free parameter in the
model and is not renormalized as opposed to the charges listed
in Eq. (12). This feature was already observed in Ref. [14]
where a nonhelical equivalent of our model is investigated. On
the other hand, when the correlations of the velocity field v are
prescribed synthetically, as done for example in Refs. [16,17],
parameter A cannot be freely adjusted. In such models, A

becomes a charge of the model which for incompressible flows
leads to only three allowed renormalized values of 1,0,−1
[17]. Moreover, when compressibility is present, the parameter
A is renormalized only to a nonzero values of 1,−1,α where
α is a parameter describing compressibility [for details see
Eq. (2.5) in Ref. [17]]. However, such consequences are
attributed to v being prescribed synthetically by its two point
correlator. We avoided such synthetic definitions by using
stochastic Navier-Stokes equation to describe the evolution of
v. This scenario is not only more physical but, additionally, it
has the benefit of A being a free parameter of the present model.

However, there exists an additional problem when passing
from the nonhelical to the general parity broken A model.
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Strictly speaking, the above conclusions are completely true
only in the nonhelical case. In the general helical case, linear
divergences in the form of b′ · curl b (also referred to as the
curl term in this paper) appear in the 1-irreducible Green’s
function 〈b′

ibj 〉1−ir ; see Ref. [37] for more details. As it is
very well known, the presence of the curl term for the A = 1
case leads to an exponential increase of magnetic fluctuations
at large scales with subsequent instabilities emerging in the
model [47,48]. In the steady state, these instabilities are
generally attributed to the generation of large-scale magnetic
field via the mechanism known as the turbulent dynamo (see,
e.g. [49,50]). Successful incorporation of such a mechanism
into the field theoretical description was performed by authors
of Ref. [37] by introducing spontaneous symmetry breaking
into the model. Technically, the original field b, which
describes magnetic fluctuations around zero mean magnetic
field 〈b〉 ≡ B = 0, was substituted by b + B with B allowed
to be nonzero.

The field B provides then all necessary means for the elim-
ination of the curl term in the model; for details see Ref. [37].
It should be emphasized once again that in Ref. [37] the
mechanism of spontaneous symmetry breaking is introduced
only for the MHD model (A = 1) with Lorentz force term
explicitly considered. In the field theoretical formulation, the
added Lorentz term gives then subsequently rise to a new
interaction term b′(b∂)b in the action functional. Its presence
is crucial for the elimination of curl divergences by employing
the mechanism of spontaneous generation of the homogeneous
magnetic field as described above.

Before proceeding further with the kinematic approxima-
tion, let us explain how one extends the mechanism of Ref. [37]
from its special case A = 1 to the arbitrary values of A as
considered in our paper. For such a purpose, one temporarily
introduces a Lorentz-type term bi∂ibj into the Navier-Stokes
equation (2). The magnitude |B| of the spontaneously gener-
ated field (with an arbitrary direction) follows then from the
condition of cancellation of the curl term as discussed above.
Thus, the field B depends explicitly on the parameter A in the
general case. Moreover, some values of the parameter A may
violate the condition of |B| being positive which restricts the
interval of admissible values of A. All of these facts are easily
demonstrated by considering the special case of A = −1. Here,
no curl terms emerge due to the appearance of symmetrical
vertex in the action functional via a mechanism that resembles
the vanishing of curl terms in the response function 〈v′v〉
(for details, see Ref. [37]). Taking together, calculation of the
field B together with the possible restrictions on A are clearly
feasible in the full problem. However, the corresponding
calculations are demanding even in the one-loop order [37]
and are in the scope of an ongoing research.

Returning now to the simplified kinematic model of this
paper, we note that neglecting the Lorentz-type force term
represents actually a useful framework for calculation of beta
functions and their corresponding fixed points (including the
nature of their stability). The reason lies in the fact that the
analysis of above quantities in the present model and in the full
model with incorporated b′(b∂)b term in the action functional
remains actually the same as shown in detail in Ref. [36].
Moreover, in the limiting case of A = 1 beta functions, fixed
points and their stability do not differ at all. The difference,

however lies in that fact that in the full model additional
divergences are generated by b′(b∂)b term of the action
functional. Removal of such divergences requires the fields b
and b′ to be renormalized. This means that new anomalous
exponents associated to the fields emerge. Subsequently,
one requires these for the correct calculation of large-scale
asymptotic behavior of the response and correlation functions.
However, according to Ref. [36], they actually have no impact
on the form of beta functions nor do they change the fixed
points and their stability in the present kinematic model. This
feature is clearly maintained even for arbitrary values of A.

We further stress that in this paper we are interested in
the values of the effective inverse turbulent Prandtl number
ueff given according to the definitions of Ref. [15] where it
is given as the ratio of the response functions 〈v′v〉 and 〈b′b〉
(for details, see also Sec. V of this paper). Since the fields b′
and b in the full model do get renormalized it may appear that
the behavior of the response function b′ may be significantly
altered within the full model. However, the sum of anomalous
exponents corresponding to fields b′ and b vanishes which
means that asymptotic behavior of the response function 〈b′b〉
is not altered and remains the same even after inclusion of the
Lorentz-type terms within the full model. Thus, the effective
turbulent Prandtl number calculated here remains unaffected.

Thereby, we shall leave the problem of the linear di-
vergences untouched in this paper and concentrate only on
the problem of the existence and stability of the IR scaling
regime, which can be studied without considering the linear
divergences discussed above. Bearing the problem of linear
ρ divergences in mind, we write the renormalized action
functional as

S(�) = 1

2

∫
dt1 ddx1 dt2 ddx2

×[
v′

i(x1)Dv
ij (x1; x2)v′

j (x2) + b′
i(x1)Db

ij (x1; x2)b′
j (x2)

]

+
∫

dt ddx{v′[−∂t + νZ1� − (v · ∂)]v

+ b′[−∂tb + νuZ2�b − (v · ∂)b + A(b · ∂)v]}, (13)

with Z1 and Z2 being the renormalization constants connected
with the previously defined renormalization constants Zi =
Zi(g,u; d,ρ; ε) with i ∈ ν,g,μ via the equations

Zν = Z1, Zg = Z−3
1 , Zu = Z2Z

−1
1 . (14)

Each of the renormalization constants Z1 and Z2 corresponds
to a different class of Feynman diagrams (as discussed below)
but they share an analogous structure within the MS scheme:
the nth order of perturbation theory corresponds to the nth
power of g with the corresponding expansion coefficient
containing a pole in ε of multiplicity n and less, i.e.,

Z1(g; d,ρ; ε) = 1 +
∞∑

n=1

gn

n∑
j=1

z
(1)
nj (d,ρ)

εj
, (15)

Z2(g,u; d,ρ; ε) = 1 +
∞∑

n=1

gn

n∑
j=1

z
(2)
nj (u,d,ρ)

εj
, (16)

where z
(1)
nj (d,ρ) and z

(2)
nj (u,d,ρ) are free of the parameter ε.

Using the last expressions with renormalized variables inserted
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FIG. 3. One-loop and two-loop diagrams that contribute to the
self-energy operator �b′b(ω,p) in Eq. (18).

leads to divergence free 1-irreducible Green’s functions
〈v′

ivj 〉1−ir and 〈b′
ibj 〉1−ir . Moreover, 1-irreducible Green’s

functions 〈v′
ivj 〉1−ir and 〈b′

ibj 〉1−ir are associated with the cor-
responding self-energy operators �v′v and �b′b by the Dyson
equations which in the frequency-momentum representation
read as

〈v′
ivj 〉1−ir = [iω − ν0p

2 + �v′v(ω,p)]Pij (p), (17)

〈b′
ibj 〉1−ir = [iω − ν0u0p

2 + �b′b(ω,p)]Pij (p). (18)

Thus, substitution of e0 = eμdeZe for e = {g,u,ν} is required
to lead to UV convergent equations (17) and (18) which in turn
determine the renormalization constants Z1 and Z2 up to an
UV finite contribution. The employed MS scheme fixes then
the renormalization constants in the form of 1 + poles in ε

and the coefficients z
(i)
nj , i = 1,2 are then fully prescribed in

the corresponding order of perturbation theory (see Fig. 3).
The aim of this paper consists of deriving the two-loop

perturbative results for the A model with helical effects
included via proper definition of Eq. (4). Since in the limit ρ →
0 the less general nonhelical model of Ref. [14] is recovered,
all nonhelical results of Ref. [14] have to be reproduced here.
Moreover, all quantities depending exclusively on velocity
field v follow only from stochastic Navier-Stokes equation
(2) and the correlator (4). In Refs. [11,26], exactly the
same conditions were imposed on the velocity type of the
fields v and v′ in the two-loop calculations of the given
model. Consequently, the corresponding quantities depending
exclusively on the velocity type of fields in the present model
have to equal those obtained in Refs. [11,26]. Taking together,
Z1 in the present model must be the same as in Ref. [26] while
nonhelical values of Z2 in the generalized helical A model must
reproduce results of Ref. [14]. Thus, before generalizing the
approach of Refs. [14,15] to the more general A model with
helical contributions, we review results of Refs. [11,14,15]
which are relevant for this paper.

Let us start with the coefficients related to v and v′ which
comprise the renormalization coefficient Z1. As stated above,
the present model and the model under study in Refs. [11,26]
have the same renormalization constant Z1 and the expansion
coefficient z

(1)
11 is therefore given as

z
(1)
11 = − Sd

(2π )d
(d − 1)

8(d + 2)
, (19)

where Sd is the surface area of the d-dimensional unit sphere
defined as Sd ≡ 2πd/2/�(d/2) with �(x) being the standard
Euler gamma function. Thus, no helical contributions at
the one-loop level emerge for quantities involving only the
velocity type of the fields v and v′. In Ref. [26], the two-loop
order coefficient z

(1)
22 is shown to satisfy

z
(1)
22 = −(

z
(1)
11

)2
. (20)

Consequently, z
(1)
22 is also ρ independent and only the remain-

ing coefficient z
(1)
21 contains helical contributions to Z1. Since

the corresponding expression from Ref. [11] is rather huge,
we shall not reprint it here.

Let us now turn our attention to Z2 which requires to analyze
the structure of the self-energy operator �b′b in the Dyson
equation (18). In the two-loop order, �b′b equals the sum
of singular parts of nine 1-irreducible Feynman diagrams as
shown in Fig. 3. Using the notation of Ref. [14] for the sake
of easier comparison, we write the two-loop approximation of
�b′b as

�b′b = �(1) + �(2) = �(1) +
8∑

l=1

sl�
(2)
l , (21)

where �(1) represents the single one-loop diagram shown in
Fig. 3 and �(2) represents the sum of the eight two-loop
diagrams shown in Fig. 3. The terms sl, l = 1, . . . ,8, denote
the corresponding symmetry factors which equal 1 for all
diagrams except for the fourth with s4 = 1

2 .
The single one-loop diagram of Fig. 3 apparently does not

include the propagator 〈vivj 〉0 which is the only diagrammatic
object that contains helical contributions. The corresponding
coefficient z

(2)
11 that follows from the �(1) contribution is thus

actually also ρ independent. Since all nonhelical quantities in
the present helical A model must reproduce the corresponding
values of Ref. [14], the following z

(2)
11 expansion coefficient

must be obtained (as verified also by direct calculation):

z
(2)
11 = − Sd

(2π )d

× (d2 − 3)(u + 1) + A[d + u(d − 2)] + A2(1 + 3u)

4d(d + 2)u(u + 1)2
.

(22)

The contributions to �(2) which determine z
(2)
22 (d,ρ) and

z
(2)
21 (d,ρ) are given by the eight two-loop diagrams of Fig. 3.

After a quick inspection we notice that each of the diagrams
contains two 〈vivj 〉0 propagators which are linearly dependent
on the helicity parameter ρ. Thus, all two-loop diagrams
can depend only quadratically on ρ (linear dependencies are
not relevant for the present calculations and are dropped
systematically). Thus, using the notation equivalent to that
of Ref. [14] we can write the divergent part of �(2) in the
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following form:

�(2) = g2ν p2 Sd

16(2π )2d

(
μ

m

)4ε 1

ε

{
Sd

ε
Cρ + B(0) + ρ2δ3dB

(ρ)

}
,

(23)

where Cρ, B(0), and B(ρ) are for now undetermined. The
d,g,p,μ,u,m dependent factors in Eq. (23) could principally
by absorbed into Cρ, B(0), and B(ρ), but are kept in order to
comply with notation of Ref. [14]. By definition, B(0) encodes
nonhelical contributions of the corresponding diagrams and for
ρ → 0 must yield the same expressions as shown in Ref. [14].
Since B(0) was not explicitly introduced in Ref. [14] we define
it via

B(0) = Sd−1

∫ 1

0
dx (1 − x2)(d−1)/2 B, (24)

where the variable x denotes the cosine of the angle between
two independent loop momenta k and q of the two-loop
diagrams, i.e., x = k · q/|k|/|q|. The function B is obtained
in the same form as in Ref. [14] but is rather huge and shall
not be reproduced here. We merely notice that within the
scope of the present calculations we have determined B(0)

directly by the methods discussed later in connection with
the helical contributions in the present model. Furthermore,
the expression Cρ is directly related to the second order
pole coefficient of Z2, namely, to z

(2)
11 (d,ρ). Although we

denoted this contribution by superscript ρ, in reality it must be
independent of helical contributions because of the one-loop
order of the present generalized A model which is completely
free of any helical effects. Consequently, second order ε pole
contributions to �(2) have to remain also ρ independent and
the superscript ρ in Cρ may be dropped, i.e., Cρ ≡ C. Due
to helical independence of C it assumes the same form as in
Ref. [14] yielding thus the corresponding z

(2)
22 (d,ρ) as

z
(2)
22 (d,ρ) = z

(2)
22 (d) = − S2

d

(2π )2d

C

16u
. (25)

At this place, we only briefly note that C is a polynomial
of fourth order in A and postpone the details to later on.
Equations (19)–(25) thus briefly summarize the results com-
mon to the present model and the models of Refs. [11,14,15].
Passing to our generalized helical A model requires now an
explicit calculation of helical contributions to �(2). We once
again stress that although B(ρ) is calculated with the explicit
d dependence, the helical contributions make sense only for
d = 3 as indicated by the insertion of the Kronecker delta δd3

into Eq. (23).
Before going further, let us now explain the general char-

acter of the A dependencies in the expressions Cρ ≡ C, B(0),
and B(ρ) without considering the details of the corresponding
calculations. According to Fig. 3 and Eqs. (21) and (23), all of
the discussed expressions are given by the diagrams �(1) or �

(2)
l

with l = 1, . . . ,8. Noting now that the parameter A appears
only in the Vijl type vertex as a linear function, we may gain
direct insights into the structure of the A dependencies of the
given diagrams. To this end, imagine a diagram with only two
vertices of the Vijl type. Since each of the vertices contains
only a linear function of A when necessary summations

on dummy field indices are performed, we get an overall
dependence which may include the most a quadratical term
in A as a result of two linear terms in A being multiplied
together. In other words, the resulting diagram may therefore
be only a polynomial in A of order 2 the most. The same
reasoning extends also to the case when four Vijl type vertices
appear simultaneously in given diagram. Here, the resulting
polynomial must be of an order of 4 in A. Of course, since
Vijl type vertices are of tensorial nature, summation over field
indices in a given diagram may lower the actual order of the
polynomials in A while some polynomial coefficients may also
vanish completely. However, under any circumstances higher
powers of A may not emerge in the graphs. The diagrams �l

with l = 1, . . . ,8 contain two or four Vijl type vertices and
their sum �(2) must consequently be a polynomial in A of an
order of 4 the most. Additionally, Cρ ≡ C is proportional to
the second order pole in ε of �(2) and must therefore also be a
polynomial of an order of 4 the most. The parameters B(0) and
B(ρ) are proportional to the corresponding parts of �(2) and are
therefore polynomials in A with order of 4 the most.

Although the previous discussions determine the structure
of the diagrams, only a direct calculation may give us the
needed coefficients of the resulting polynomials in A. Thus, we
have to perform the calculation of the coefficients z

(2)
21 (u,d,ρ)

and z
(2)
22 (d,ρ) directly. On the other hand, since all helical

properties of the generalized helical A model are encoded
by the term B(ρ) and linear ρ divergences are left out in the
present model, we note that z

(2)
21 (u,d,ρ) contains a quadratic

term in ρ as the only ρ dependent part. However, to correctly
determine the exact term proportional to ρ2, we are required
to calculate B(ρ). For this purpose, we use the Dyson equation
(18), the relation (21), and the structure of �(2), as given by
Eq. (23). Finally, z

(2)
21 (u,d,ρ) is found as (once again notation

of Ref. [14] is used)

z
(2)
21 (u,d,ρ) = Sd

16u(2π )2d

(
B(0) + ρ2δd3B

(ρ)
)
, (26)

where B(0) and B(ρ) are defined via Eqs. (23) and (24),
respectively. According to Eq. (26), B (ρ) is given by the
two-loop diagrams of Fig. 3 and is written in close analogy
with Eq. (24) in the following form:

B(ρ) = Sd−1

∫ 1

0
dx (1 − x2)(d−1)/2

8∑
l=1

slB
(ρ)
l (27)

and thus define B
(ρ)
l as the corresponding helical parts of

the �
(2)
l diagrams. Thus, as already discussed, when the

limit ρ → 0 is imposed on Eq. (26), the resulting value
gives the B(0) coefficient which in turn complies with its
corresponding counterpart of Ref. [14]. On the other hand,
for ρ 
= 0 the eight two-loop graphs contain nonzero terms
which via B(ρ) encode all of the helical effects investigated
here. In other words, the result of Ref. [14] is only a special
case of the present calculations when appropriate limits are
taken while for 0 < |ρ| � 1 the corresponding expressions are
completely unknown and require to be calculated here. For this
purpose, for the diagrams �

(2)
l , with l = 2, . . . ,8, we utilize the

derivative technique outlined in Ref. [15] whose prerequisites
are fulfilled for selected diagrams with l = 2, . . . ,8. However,
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in the case of diagram �
(2)
1 , only its nonhelical value, a

special case of the model considered here, can by evaluated
using the derivative technique of Ref. [15]. Therefore, the
well established techniques outlined, for example, in Ref. [9]
are used for the graph �

(2)
1 . Nevertheless, calculations for

all graphs are quite straightforward; however, they result in
complicated lengthy expressions and we present them in the
Appendix of this paper.

In the end, we have to reexamine the influence of helicity
on the properties of the IR scaling regime and its stability.
First, since the fields v, v′, b, and b′ are not renormalized, the
following simple relation holds:

WR(g,u,ν,μ, . . . ) = W (g0,u0,ν0, . . . ). (28)

It states that the renormalized connected correlation func-
tions WR = 〈� . . . �〉R differ from their unrenormalized
counterparts W = 〈� . . . �〉 only by the choice of variables
(renormalized or unrenormalized) and in the corresponding
perturbation expansion (in g or g0), where the dots stand
for arguments untouched by the renormalization [9,10,46].
This means that unrenormalized correlation functions are
independent of the scale-setting parameter μ of dimensional
regularization. Thus, applying the differential operator μ∂μ

at fixed unrenormalized parameters on both sides of Eq. (28)
gives the basic differential RG equation of the following form
[9,10]:

[μ∂μ + βg∂g + βu∂u − γνν∂ν]WR(g,u,ν,μ, . . . ) = 0, (29)

where the so-called RG functions (the β and γ functions) are
given as follows:

βg ≡ μ∂μg = g(−2ε + 3γ1), (30)

βu ≡ μ∂μu = u(γ1 − γ2), (31)

γi ≡ μ∂μ ln Zi, i = 1,2 (32)

and are based on relations among the renormalization constants
(14) together with the explicit expressions of Z1 and Z2 given
by (15) and (16), respectively. To obtain the IR asymptotic
behavior of the correlation functions deep inside of the inertial
interval, we need to identify the coordinates (g∗, u∗) of the
corresponding IR stable fixed point where βg and βu vanish,
i.e.,

βg(g∗) = 0, βu(g∗,u∗) = 0, (33)

where g∗ 
= 0 and u∗ 
= 0 in the two-loop approximation are
required to have the form

g∗ = g(1)
∗ ε + g(2)

∗ ε2 + O(ε3), (34)

u∗ = u(1)
∗ + u(2)

∗ ε + O(ε2). (35)

It may be verified by a direct calculation that at nontrivial fixed
points, the following expressions hold:

g(1)
∗ = (2π )d

Sd

8(d + 2)

3(d − 1)
, (36)

g(2)
∗ = (2π )d

Sd

8(d + 2)

3(d − 1)
λ, (37)

u(1)
∗ = 1

3a2

(
− 2a2 −

3
√

2b1
3
√

b2 + b3
+

3
√

b2 + b3
3
√

2

)
, (38)

u(2)
∗ = 2(d + 2)

d[1 + 2u
(1)
∗ ]

[
λ − 128(d + 2)2

3(d − 1)2
B(u(1)

∗ )

]
, (39)

where λ is related to the coefficient z
(1)
21 in Eq. (15) as

λ = 2

3

(2π )2d

S2
d

[
8(d + 2)

d − 1

]2

z
(1)
21 . (40)

The coefficient B(u(1)
∗ ) will be discussed in the text below. Let

us now give the explicit expressions for ai with i ∈ 0,1,2 and
bi with i ∈ 1,2,3. They read as

b1 = a2(3a1 − 4a2), (41)

b2 = a2
2(−27a0 + 18a1 − 16a2), (42)

b3 =
√

4b3
1 + b2

2, (43)

a0 = −2[d2 − 3 + A(A + d)], (44)

a1 = 6(1 − A2) − 2A(d − 2) − d(d + 1), (45)

a2 = d(d − 1). (46)

The value of the coefficient a1 differs from that presented in
Ref. [14] where most probably a typesetting error occurred
since for ρ → 0 our present result reproduces the less general
nonhelical model of Ref. [14]. Moreover, a1 from Ref. [14]
takes the same form as the current one when the (probably
misplaced) brackets are corrected.

As already mentioned, one-loop results given by Eqs. (36)
and (38) are free of helical contributions (see Fig. 4).
Furthermore, g

(2)
∗ depends exclusively on the properties of

the underlying velocity field which means that it is common
within a class of models with passively advected admixtures,
as discussed, for example, in Ref. [11]. In more detail, g

(2)
∗ is

completely determined by λ from Eq. (40). However, u
(2)
∗ is

model specific and known only for special choices of A ∈ 0,1
[11]. Here, it is expected to contain helical contributions via
the quantity B(u(1)

∗ ) which in turn is completely given by the
coefficient z

(2)
21 in Eq. (26) and it obtains the following value at

FIG. 4. Dependence of the one-loop inverse turbulent Prandtl
number u(1)

∗ on the parameter A in the region −2 � A � 2. Note
that for A = −1 one obtains u(1)

∗ = 1. Apparently, one-loop values
of u(1)

∗ are always positive (u(1)
∗ → ∞ for A → ±∞) and therefore

physical for all arbitrary real A.

053113-8



HELICAL TURBULENT PRANDTL NUMBER IN THE A . . . PHYSICAL REVIEW E 94, 053113 (2016)

u = u
(1)
∗ :

B(u(1)
∗ ,ρ) = (2π )2d

S2
d

z
(2)
21 (u(1)

∗ ,ρ). (47)

We retained the d dependencies for notation purpose. However,
only spatial dimension d = 3 is physically meaningful when
helical effects are considered. The IR behavior of the fixed
point is determined by the matrix of the first derivatives which
is given as

�ij =
(

∂βg/∂g ∂βg/∂u

∂βu/∂g ∂βu/∂u

)
(48)

and is evaluated for given (g∗, u∗). The present matrix is trian-
gular since βg is independent of u. Consequently, ∂βg/∂u = 0
and diagonal elements ∂βg/∂g and ∂βu/∂u correspond directly
to the eigenvalues of the present matrix. Using numerical
analysis one can show that the real parts of the diagonal
elements are positive for all values of A in the vicinity of ε = 0.
Furthermore, we have also shown that including spatial parity
violation shifts the values of the present matrix even further to
positive values. In the end, we stress the well-known fact that
β functions of the present model are exactly given even at the
one-loop order since all higher order terms cancel mutually,
which means that the anomalous dimensions γ ∗

1 = γ ∗
2 equal

exactly 2ε/3 at the IR stable fixed point.

V. HELICITY AND THE TURBULENT PRANDTL NUMBER

As discussed in the text above, all one-loop contributions
to the renormalization constants Z1 and Z2 are free of
helical contributions even when turbulent environments with
broken spatial parity are considered explicitly [14,15]. In the
previous section, we have therefore determined the two-loop
values of the renormalization constants Z1 and Z2 which
in fact do manifest helical effects for both renormalization
constants. Additionally, a stable nontrivial IR fixed point is
shown to exist for the given g∗ and u∗ in the two-loop
order of calculation. Therefore, one may expect that the
two-loop order is sufficient to capture the leading order helical
contributions to the required turbulent Prandtl number which
then of course correspond to the two-loop order of the given
perturbative theory. We prove this assertion in the subsequent
text by explicit determination of the corresponding values of
the turbulent Prandtl number for a range of values of the
continuous parameter A. However, we show explicitly that
some regions of A have to be omitted when spatial parity
violation is weak enough.

The two-loop calculation presented here is analogous to
that of Ref. [15]. In this respect, we would therefore like to
stress that the turbulent Prandtl number here is the so-called
effective turbulent Prandtl number and its calculation is based
on the singularities of the corresponding response functions
[for the details, see Eq. (11) of Ref. [15]]. Moreover, due

to the passive nature of the admixtures considered here
and in Refs. [11,14,15], we note that all present quantities
independent of the admixture field b have to be identical to
those of Refs. [11,14,15]. Therefore, the helical properties
specific for the given admixture type described by Eq. (1) are in
the two-loop order of perturbation theory of the corresponding
field theoretic model completely encoded by the two-loop
Feynman graphs of Fig. 3.

Taking together, although the present calculations are
analogous to those of Refs. [11,15], all quantities connected
with the given admixtures and their interactions have to be
reexamined here. We also stress that formula (33) of Ref. [15]
holds inside of the inertial interval and does not depend on
the renormalization scheme. The details of the calculations
are outlined in Ref. [15] and we omit them here. The resulting
two-loop expression for the inverse turbulent Prandtl number
is obtained as

ueff = u(1)
∗

(
1 + ε

{
1 + u

(1)
∗

1 + 2u
(1)
∗

[
λ − 128(d + 2)2

3(d − 1)2
B(u(1)

∗ )

]

+ (2π )d

Sd

8(d + 2)

3(d − 1)
[av − ab(u(1)

∗ )]

})
, (49)

where ε and the dimension d are taken to their physical values
of ε = 2 and d = 3, the one-loop value of the inverse turbulent
Prandtl number u

(1)
∗ is given in Eq. (38), B(u(1)

∗ ) is defined in
Eq. (47), and λ is shown in Eq. (40). The following numerical
value corresponds to λ in d = 3 as considered here for helical
environments:

λ = −1.0994 (50)

which is the same as in Ref. [11] because λ is independent of
the admixture type for the passive advection. The remaining
parameters av and ab which enter into Eq. (49) are discussed
in the text below. Let us first notice that av and ab represent
the finite parts of one-loop diagrams with two external
velocity type fields v, v′ and two admixture type fields b, b′,
respectively. Since turbulent velocity environments here and
in Ref. [15] are the same, the coefficient av must also be the
same and we shall not reproduce its analytic form here. In
d = 3, it can however be easily evaluated numerically as

av = −0.047718/(2π2). (51)

Contrary, ab is model specific and is given by the finite
part of one-loop 1-irreducible diagram �(1) making it also
ρ independent. As already discussed, the present generalized
helical A model and the less general model introduced in
Ref. [14] have all one-loop quantities, including ab, identical
due to helical effects being pronounced first in the two-loop
order. Since ab plays a crucial role in the two-loop calculation
of the inverse turbulent Prandtl number, we show it explicitly
in this paper. After straightforward calculation discussed, for
example, in Ref. [15], one obtains ab in the same form as the
authors of Ref. [14]. It reads as

ab(u) = − Sd−1

2u(d − 1)(2π )d

∫ ∞

0
dk

∫ 1

−1
dx (1 − x2)

d−1
2

(
k{k3xA(1 − A) + k2[x2(1 − A2) + A + d − 2] + 2kx(d − 1) + d − 1}

(k2 + 2kx + 1)[(1 + u)k2 + 2ukx + u]

− �(k − 1){kA(1 − A)(1 + u)x + A2(1 + 3u)x2 + A[1 + u − 2(1 + 2u)x2] + (1 + u)(x2 + d − 2)}
k(1 + u)2

)
(52)
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TABLE I. Numerical values of u(0)(A) and u(ρ)(A) for selected values of A which are required to obtain the turbulent Prandtl number
defined as PrA = 1/[u(0)(A) + ρ2 u(ρ)(A)]. Values at A = −2, 2.5, and 3 demonstrate physical constraints −1.723 < A < 2.800 required for
present calculations to be meaningful for all values of ρ.

A −2 −1.5 −1.0 −0.5 0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0

u(0)(A) −0.4663 +0.3726 +1.000 +1.2705 +1.3685 +1.4436 +1.4205 +1.2145 +0.8343 +0.3339 −0.2355
u(ρ)(A) +1.0503 −0.0163 −0.000 +0.3587 +0.2376 −0.0854 +0.0623 +0.9444 +2.4408 +4.3269 +6.4228

with � being the usual Heaviside step function. One further
difference to Ref. [15] is manifested even at the one-loop order
in the already calculated value of u

(1)
∗ . Due to the tensorial

interaction structures in the present model, it obtains the form
of Eq. (38) which is of course different from the corresponding
value obtained in Ref. [15]. Using expression (49) with all
necessary coefficients now known due to Eqs. (38), (40), (47),
(51), and (52), we may proceed to the actual calculation of the
Prandtl number. As already discussed, using the RG techniques
in theory of critical behavior requires to substitute ε = 2 in
the final expressions as thoroughly discussed, for example, in
Refs. [4,9]. The spatial dimension is set to d = 3, as required
by the nature of the helical problem. Inserting all necessary
quantities into Eq. (49) we obtain its values for arbitrary A and
get the inverse turbulent Prandtl number ueff as a function of
A as indicated explicitly by denoting the corresponding values
as ueff(A).

The corresponding Eqs. (49), (38), (40), (47), (51), and
(52) are all known in analytic form. Nevertheless, due to
the complicated analytic structure of the coefficient z

(2)
12 , the

expression in Eq. (47) is a complicated analytic function
of model variables. Thus, the resulting analytic expression
for the inverse turbulent Prandtl number is complicated too
and we shall present it in the Appendix of this paper.
However, for further discussion it is convenient to split ueff(A)
into its nonhelical part u(0)(A) and its corresponding helical
contribution ρ2u(ρ)(A) via

ueff(A) = u(0)(A) + ρ2u(ρ)(A). (53)

Note that both u(0)(A) and u(ρ)(A) are defined to be inde-
pendent of ρ. Nevertheless, u(ρ)(A) stands in front of the
helical contribution in Eq. (53) and thus encodes all helical
effects of the present model. Both u(0)(A) and u(ρ)(A) are
complicated analytic functions of model parameters and we
shall present them here only via their graphical representation
given in Fig. 5, which is sufficient for the interpretation of
the obtained results. Moreover, for a few selected values of
parameter A the corresponding numerical values are given in
Table I. In Fig. 5, we plot u(0)(A) in the region of −2 � A � 3
as it contains all zero points of the present function. Due to
the same reasoning, u(ρ)(A) is plotted in a smaller region of
−2 � A � 2. The actual turbulent Prandtl number PrA is then
given as the inverse of ueff(A). Explicitly,

PrA = 1

u(0)(A) + ρ2 u(ρ)(A)
. (54)

However, in the immediately following text we shall rather
use the corresponding values of the inverse turbulent Prandtl
number as they better suit our next discussion. Afterwards, we

discuss the turbulent Prandtl numbers in the helical A model
for selected values of A.

Considering first the nonhelical part u(0)(A) of the inverse
turbulent Prandtl, we note that contrary to Ref. [14] our
analysis was not limited to the interval −1 � A � 1 and
included the more general helical case. Nevertheless, our result
on u(0)(A) is in complete agreement with the nonhelical model
of Ref. [14] for −1 � A � 1 but shows also additionally the
important zero points of the function u(0)(A). This clearly
demonstrates that the effective value of the corresponding
diffusion coefficient should be infinitesimally small when
approaching values of A at the zero points of u(0)(A) located
at A = −1.723 and 2.800 (numerical values rounded to 3
decimal places). Consequently, by approaching the zero points
of u(0), the turbulent Prandtl numbers would obtain infinitely
large values. Additionally, according to Fig. 5, the inverse
turbulent Prantdl number would obtain unphysical negative
values for A < −1.723 and A > 2.800.

Thus, for nonhelical turbulent environments constraints
−1.723 � A � 2.800 must be imposed on values of A in the
the two-loop order of perturbation theory which is a result
not obtained by the authors of Ref. [14] due to constraining
their analysis to −1 � A � 1. Additionally, values of A close
to zero points of u(0)(A) should also be considered only with
extreme caution as the resulting turbulent Prandtl numbers tend
to +∞ at the border of the allowed interval. On the other hand,
such a problem did not occur for the corresponding one-loop
values as clearly demonstrated in Fig. 4 in this paper. It is,
therefore, clear that constraints for nonhelical environments
arise only in connection with the two-loop order calculation
used here and are therefore inherently given by the structure
of perturbation theory of the A model. In other words, such
constraints are not inherent in values of A outside of the usually

FIG. 5. Dependence of u(0) and u(ρ) on parameter A shown in
regions −2 � A � 3 and −2 � A � 2, respectively. Quantity u(0)

corresponds to nonhelical value of inverse turbulent Prandtl number,
while u(ρ) represents helical contribution to the inverse turbulent
Prandtl number. Points represent numerical values obtained from
Eq. (53).

053113-10



HELICAL TURBULENT PRANDTL NUMBER IN THE A . . . PHYSICAL REVIEW E 94, 053113 (2016)

studied region −1 � A � 1 and represent only an artifact of
the perturbative approach. Such a conclusion is supported also
by the special case of A = −1 discussed later in more detail.
It is also important to state that restrictions on the values of
A have already been observed in Ref. [16] where the interval
of −0.581 < A < 0.613 is identified. Although our interval
is larger, there is no contradiction as authors of Ref. [16]
investigated the A model of passive advection in the simplified
model with the velocity field v being specified by a Kraichnan
ensemble. Moreover, different stability criteria are imposed
here as already discussed in Sec. V.

For now on, we stress that all previous conclusions are
completely true only in nonhelical environments. Bearing in
mind the constraints on A in the nonhelical case, we also
notice that u(0)(A) has a maximum at A = 0.7128 (rounded
on last presented number) and is quite well stable in the range
of approximately −0.5 < A < 1.5 which in connection with
the results on one-loop order values presented, for example,
in Fig. 4 also explains the remarkable stability of models with
A = 0 and 1 against the order of perturbation theory, as already
noticed in Ref. [14]. A qualitatively similar picture holds
also when helical contributions are considered, as discussed
below.

Let us now turn our attention to u(ρ) which encodes the
much needed helical contributions of our generalized helical
A model. Its graphical representation is given in Fig. 5 and
its sign determines the character of helical dependence of
ueff(A). Explicitly, for positive (negative) values of u(ρ)(A)
the corresponding inverse turbulent Prandtl number will be a
monotonically growing (descending) function of the helicity
parameter ρ. The zero points of u(ρ)(A) therefore turn out
to represent cases where helical effects have no impact on
diffusion-advection processes. Their location is determined
numerically based on the previous analysis with the resulting
values being −1.516, −1.000, 0.325, and 0.912 (numbers
rounded to 3 decimal places).

Furthermore, inserting values of the functions u(0)(A) and
u(ρ)(A) into Eq. (49) one may easily calculate the inverse
turbulent Prandtl number ueff(A) as a function of A for selected
values of ρ. The resulting values are presented in Fig. 6 and
show a highly interesting behavior. In the nonhelical case, the
resulting turbulent Prandtl numbers clearly obtain unphysical
values in restricted intervals A < −1.723 and A > 2.800.
However, u(ρ)(A) is according to Fig. 5 in both restricted
intervals not only positive, but it also evidently satisfies
u(ρ)(A) > |u(0)(A)|. Therefore, there exists some critical value
of the helicity parameter ρ for which the corresponding inverse
turbulent Prandtl number ueff = u(0) + ρ2u(ρ) gets positive for
all values of A. In other words, when spatial parity violation
is strong enough, the resulting inverse turbulent Prandtl
number obtains always positive values. Thus, introducing
parity violation into the turbulent system improves perturbative
series for the present model, as explicitly demonstrated in
Fig. 6. In this respect, we notice that increasing ρ from 0
up to ρ ≈ 0.749 (rounded to 3 decimal places) enlarges the
region of physically allowed values of A without any bounds.
This is evident from ueff starting to grow (fall) for A → +∞
(A → −∞) when the critical value of ρ ≈ 0.749 is exceeded.
Strikingly, it is not required to reach the maximum possible
violation of parity (|ρ| = 1) to remove the constraints on A.

FIG. 6. Inverse turbulent Prandtl number ueff as a function of
A shown for fixed values of ρ in the range of −2 � A � 3. On
the right side of the graph, in the region of approximately A > 1,
the dependencies for selected values of ρ are stacked one above
the other with ρ = 1 (orange) being on the top while the remaining
dependencies follow in the successive order of ρ = 0.7 (red), ρ = 0.5
(magenta), ρ = 0.4 (blue), and ρ = 0 (black). Note that for ρ = 1 the
function is apparently bound from below but unbound from above
which is a behavior observed for all ρ > 0.749 which represents a
threshold value of helicity above which the stationary regimes of the
system are fully stabilized.

Contrary, by exceeding the critical value of ρ = 0.749 we
remove any constraints on A completely. In other words,
beyond the critical value of ρ = 0.749 all inverse turbulent
Prandtl numbers are positive and thus physical. Consequently,
exceeding the threshold of ρ = 0.749 stabilizes the diffusion-
advection processes in the general A model to a large extent.
This clearly means that helicity has an extensive stabilizing
effect on stationary regimes in the present model, which
resembles the results obtained previously in Refs. [51–53],
where specific models of fully developed turbulence were
analyzed based on the principle of maximal randomness.
Here, the authors showed that stabilization occurs near to the
maximal possible value of the helicity parameter. Calculations
within the two-loop order of the corresponding perturbative
theory are therefore well defined which further supports our
hypothesis regarding the artificiality of constraints imposed on
values of A in nonhelical environments. The interplay between
the interaction parameter A and the parameter ρ describing the
amount of spatial parity violation shows thus highly nontrivial
behavior.

Additionally, in Fig. 6 we may identify values of A for
which the helical dependence of the inverse turbulent Prandtl
number is relatively small. Such regions are all connected with
the regions of negative values of u(ρ) as seen from Fig. 5 and
correspond therefore to the union of interval −1.516 � A �
−1.000 with 0.325 � A � 0.912. Interestingly, we notice that
two special cases A = −1 and 1 either lie directly in such
regions (A = −1 case) or are located in a close vicinity of these
(A = 1 case). First, let us discuss the case of linearized helical
NS equations with A = −1 which up to date have not been
investigated for helical environments in any way. According to
the performed numerical analysis of Eq. (50), u(ρ) is less than
10−8 at A = −1 which in the limits of accuracy means that
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u(ρ) is actually equivalent to zero and consequently A = −1
corresponds directly to the zero point of u(ρ)(A). We point out
that this is not just a trivial influence of vanishing of all helical
terms in the two-loop diagrams �

(2)
l with l = 1, . . . ,8. In fact,

separately each diagram contains the corresponding helical
terms which, however, mutually cancel each other when all
diagrams are summed up together, as required in deriving of
�b′b. As a consequence, at A = −1 the properties of the flow
are completely independent of spatial parity violation of the
underlying fully developed turbulent velocity flow. Moreover,
this result is most probably independent of perturbation order
as suggested by u(0) being exactly one (within the accuracy of
the present numerical analysis) at both the first and the second
orders of the corresponding perturbation order. A similar
hypothesis has already been stated by the authors of Refs. [14]
for nonhelical values. Here, we however demonstrate that such
a behavior persists even in helical environments.

In this respect, it is also worth mentioning that for A =
1.038 (rounded to 3 decimal places), one- and two-loop values
of the nonhelical inverse turbulent Prandtl number do also
coincide, a result which was not observed in Ref. [14] due
to constraining the analysis only at −1 � A � 1. However,
unlike in the A = −1 case, helical effects are present quite
significantly for the A = 1.038 case (as later discussed more
closely, the difference between the nonzero value of the
turbulent Prandtl number and its minimal value at |ρ| = 1
is around 7%) which means that the model of the linearized
Navier-Stokes equations corresponding to the A = −1 case in
the present model has unique features. The remaining three
zero points of u(ρ)(A), i.e., A ∈ {−1.516,0.325,0.912}, do not
show the same behavior. Instead, their one- and the two-loop
values differ significantly. Thus, although the remaining three
zero points of u(ρ)(A) also lead to models stable against
helical effects in the two-loop order, there is no indication
that higher order of perturbation theory preserves location of
the zero points for the analog of u(ρ)(A) obtained in higher
orders.

On the other hand, the equality of the one- and the two-loop
results for A = 1.038 explains another up to date not well
understood result of Ref. [11]. Here, it is observed that the
kinematic MHD model corresponding to A = 1 of the present
model is remarkably stable against one- and two-loop order
corrections. Using, however, the previous result, we easily
explain this as a consequence of the A = 1 case lying in the
proximity of A = 1.038 where one- and two-loop order values
are identical. Such a situation is of course true only in the
present two-loop order of the calculation. In higher orders
of perturbation theory, the corresponding polynomials over A

which occur in the diagrams of Fig. 3 are of higher orders and,
consequently, the intersection between higher order analog of
u(0)(A) and one-loop order result u(1)

∗ may dramatically shift to
new values. Additionally, contrary to the A = −1 case, there
is no evidence from helical values that the location of the
intersection would be fixed in higher order loop calculations
and the relatively small contribution of the two-loop order
corrections to the inverse turbulent Prandtl number of the
kinematic MHD model should be clearly attributed to the
present order of calculations. Additionally, the A = 1 case lies
close to the value of A = 0.912 where the inverse turbulent

FIG. 7. Helical dependence of the turbulent Prandtl numbers Prt,A
for three physically important models with A ∈ {−1,0,1} shown in
the range of ρ � 1. On the top, the dependence for A = −1 is shown
(blue line). The dependence for A = 0 (magenta) is for smaller values
of ρ located above the dependence for A = 1 (red) which changes
around ρ ≈ 0.6 and pertains up to ρ = 1.

Prandtl number is independent of any helical effects. Since
the function u(ρ)(A) is continuous, it causes the helical effects
for all models in the vicinity of the A = 0.912 case to be
relatively stable against helical effects. The effect manifests
itself clearly in the helical values of the corresponding inverse
turbulent magnetic Prandtl number of the kinematic MHD
model, where the maximum change is less than 5% of its
nonhelical value, as already observed but not well explained
in Ref. [11].

Contrary to the special cases discussed above, another
physically important model corresponding to the A = 0 case
lies deep in the interval of positive values of u(ρ)(A) and is
thus located far away from the points A = 0.325 and 0.912
where u(ρ)(A) has its nearest zero points located. On the
other hand, the A = 0 model lies relatively closely to the
local maximum of the function u(ρ)(A) on the interval of
0.325 � A � 0.912. Consequently, helical effects in the A =
0 model are pronounced far greater [almost by a maximum
possible amount in the interval of positive values of u(ρ)(A)],
as seen, for example, by almost 20% change of the inverse
turbulent Prandtl number in the helical environments. In other
words, function u(ρ)(A) represents an easy tool to assess the
importance of helical effects for given values of A in the
present model and explains the previously unidentified context
between the A = 0 and 1 models.

Finally, let us discuss the obtained values of the helical
turbulent Prandtl numbers which follow from Eq. (49) and
the functions u(0) and u(ρ) which appear therein. For selected
parameters A, we show their corresponding numerical values
in Table I while their graphical representation is given in Fig. 7
for the three physically important models of A ∈ {−1,0,1}.
As before, the function u(ρ)(A) encodes the behavior of the
turbulent Prandtl numbers with respect to ρ for all physically
admissible values of A which, as shown before, clearly depend
also on the helicity parameter ρ. For the case of the turbulent
Prandtl numbers it has, according to Eq. (54), the following
meaning: for u(ρ)(A) > 0 the turbulent Prandtl number is a
decreasing function of ρ, for u(ρ)(A) < 0 the turbulent Prandtl
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number is an increasing function of ρ and finally for u(ρ)(A) =
0 the turbulent Prandtl number is independent of ρ. This means
that the turbulent Prandtl numbers do increase with helicity
parameter ρ only for values of A satisfying −1.516 < A < −1
and 0.325 < A < 0.912. Excluding the zero points of u(ρ)(A),
the remaining values of A lead to monotonically decreasing
helical turbulent Prandtl numbers, as already seen in Ref. [11]
for the special cases A = 0 and 1. While for the A = 0 model
the helical effects are pronounced more effectively due to the
reasons discussed above, the turbulent Prandtl number for the
A = 1 model corresponding to the kinematic MHD model
is less sensitive to helical effects due to its above discussed
proximity to the A = 0.912 case. We also stress that there
are no restrictions on A when the threshold of ρ ≈ 0.749
is exceeded. Thus, corresponding helical dependencies of
the turbulent Prandtl numbers may also be considered for
ρ > 0.749. Consequently, we see that not the internal vectorial
nature of the admixture itself but their interactions with the
underlying turbulent field v, as described by the parameter A,
are crucial for developing different patterns in regard to helical
effects and their influence on diffusion-advection processes.
This observation was made even earlier [54,55] but here
we established it up to the second order of the perturbation
theory.

Summing up, we have shown that the impact of the
interactions as given via the parameter value of A has a highly
nontrivial impact on diffusion-advection processes when heli-
cal environments are considered. The resulting dependencies
are truly complicated functions of A and lead to nontrivial
effects in connection with the helicity parameter ρ. Therefore,
instead of the tensorial nature of the admixture itself we have
clearly identified the tensorial structure of interactions to be a
more dominant factor which effectively alters the advection-
diffusion process in fully developed turbulent environments.
Thus, assertions made by the authors of Ref. [11] must
partially be revised at least for the case of vector admixtures
advected passively in turbulent environments, and a greater
than expected impact of interactions on the actual advection-
diffusion processes must be recognized. Additionally, we once
again stress that present calculations clearly demonstrate that
helical effects exert a stabilizing effect on diffusion-advection
processes.

VI. CONCLUSION

Using the field theoretic renormalization group technique
in the two-loop approximation, we have obtained analytic
expressions for the turbulent Prandtl number within the general
A model of passively advected vector impurity. Compared to
Ref. [14], a more realistic scenario with effects of broken
spatial parity has been considered by defining appropriate
correlators of stochastic driving forces. Technically, the pres-
ence of broken spatial parity is described by the helicity
parameter ρ ranging from |ρ| = 0 (no parity breaking) to
|ρ| = 1 (highest possible violation of spatial parity). Since
our general helical A model encompasses the less general
nonhelical model of Ref. [14] we were able to recover
the results of Ref. [14] within the present calculations.
However, the parameter a1, in Eq. (46), was shown to
differ from the corresponding nonhelical value of Ref. [14].

However, since all nonhelical results have been confirmed
within the scope of our general helical model and only
the parameter a1 is clearly not reproduced, we attribute the
difference merely to a typographic error made by the authors
of Ref. [14].

Additionally to the helical effects we extended our study
of the A model to arbitrary real values of A, as suggested in
Ref. [21], whereas in Ref. [14] only the interval −1 � A �
1 is considered. Nevertheless, although one-loop values of
physical quantities have all been shown to obtain meaningful
values when passing to the two-loop order we noticed negative
values of the turbulent Prandtl numbers for A < −1.723 and
A > 2.800 (numbers rounded to 3 decimal places) in the
nonhelical case. Furthermore, we show that the helical effects
effectively enhance the stability in the present model and lift
the restrictions imposed on A when a critical threshold of
ρ ≈ 0.749 (rounded to 3 decimal places) is exceeded. This
points towards the conclusion that restricting A to the interval
−1.723 � A � 2.800 is most probably only an artifact of
the two-loop order perturbative calculations. Since in Sec. V
we showed that the Feynman diagrams corresponding to the
nth order of perturbation theory generally have a form of
polynomials in A with the highest possible power of A being
2n, one may expect that higher orders of loop calculations
shift or let all the zero points of the inverse turbulent Prandtl
number vanish completely. Such a behavior has already been
observed in the one-loop order for the analogous quantity
u

(1)
∗ . Thus, it would be highly interesting to go beyond the

limits of the two-loop order; however, such an analysis is
technically demanding and beyond the scope of this paper.
Nevertheless, the two-loop order values obtained deep in the
interval of −1.723 � A � 2.800 are well defined which means
that the physically most interesting cases of A ∈ {−1,0,1}
can be safely considered at least in the two-loop order of
perturbation theory. Additionally, the stability of stationary
regimes when a critical threshold of ρ ≈ 0.749 is exceeded
resembles helicity effects already observed in the framework
of the specific models of developed turbulence [51–53].

For the model of linearized Navier-Stokes equations
(A = −1) we have obtained helical values of the turbulent
Prandtl number equal to 1 regardless of the presence of
helical effects. It is therefore natural to expect that also
higher orders of perturbation theory preserve the same, a
hypothesis already stated by the authors of Ref. [14]. This adds
another argument in favor of the hypothesis that problems with
range of physically admissible values of A could be resolved
completely in higher orders. Physically, the resulting values
demonstrate remarkable stability of the A = −1 case against
helical effects.

Effectively, the A = 1 case corresponding to the kinematic
MHD model possesses similarities to the A = −1 model with
regard to its helical properties due to its proximity to the A =
0.912 case, where helical effects are not present in the two-
loop order. Varying A continuously allowed us to show that
high stability of the A = 1 model is not due the vectorial
nature of the admixture but due to its interactions prescribed
by the values of A. Contrary, the A = 0 model is shown to
lie far from the values of A where the helical effects are not
present. Consequently, its turbulent Prandtl number depends
significantly on ρ.
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Adding together the case of A = 1 corresponding to the
kinematic MHD turbulence, the case of A = 0 model, and
the model of linearized Navier-Stokes equations have been
brought into the context of a more general A model. The
interactions encoded by values of A result in various patterns of
behavior of the turbulent Prandtl numbers. Thus, in the regions
of 1.516 � A � 1.000 and 0.325 � A � 0.912 (all numbers
rounded to 3 decimal places) the corresponding two-loop
turbulent Prandtl numbers are monotonically growing with
ρ. Moreover, for values of A ∈ {−1.516; −1; 0.325; 0.912}
the turbulent Prandtl numbers are independent of ρ but as
previously discussed, only the A = −1 case is believed to
retain this property in higher order loop calculations. Finally,
the remaining values of A, which belong to the physically
admissible region, possess monotonically decreasing turbulent
Prandtl numbers when ρ is increased. We thus conclude that
varying the interactions by changing the values of A has a
more profound effect on advection-diffusion processes than the
tensorial character of the admixture itself, which significantly
refines the conclusions made by the authors of Ref. [14].
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APPENDIX

Let us now present the results on coefficients B
(ρ)
l from

Eq. (27) which correspond to helical contributions of graphs
�

(2)
l with l ∈ 1, . . . ,8 shown in Fig. 3. The graphs �

(2)
l with

l ∈ 2, . . . ,8 were calculated using the technique presented in
Ref. [15] while the remaining graph �

(2)
1 was calculated using

the approach described in [9]. In this Appendix, we show
explicitly analytic expressions corresponding to the graphs
�

(2)
1 and �

(2)
3 and present the remaining six contributions

only graphically as the corresponding analytic expressions are
extensive in their length. Let us start now with B

(ρ)
1 . Since it was

calculated using a method different to the remaining diagrams,
it is more suitable to show not the coefficient B

ρ

1 but directly
its contribution to Bρ with already performed integration over
x. Explicitly,

∫ 1

0
dx(1 − x2)

d−1
2 B

(ρ)
1 = 16u(A2f̃ (2) + A3f̃ (3) + A4f̃ (4)),

(A1)

where Ai with i ∈ 2,3,4 are the corresponding powers of the
parameter A while f̃ (i) with i ∈ 2,3,4 are yet unspecified
functions labeled by superscripts (i). The terms proportional
to A0 and A1 vanish, as the corresponding terms cancel each

other effectively. They read as

f̃ (i) = G
(i)
0 (d,u) +

11∑
j=1

g
(i)
j Gj (d,u). (A2)

Here, j ∈ 1, . . . ,11 runs over 11 elements of the sum on the
right hand side of Eq. (A2). The functions Gj (d,u) carry
no index i and are consequently the same for all i ∈ 2,3,4.
Contrary, the functions G

(i)
0 (d,u) and g

(i)
j depend on i and

shall be discussed later. The functions Gj (d,u) read as

G1(d,u) = 2F1

[
+1

2
, + 1

2
;

d

2
;

u2

(u + 1)2

]
, (A3)

G2(d,u) = 2F1

[
−1

2
, + 1

2
;

d

2
;

u2

(u + 1)2

]
, (A4)

G3(d,u) = 2F1

[
−1

2
, − 1

2
;

d

2
;

u2

(u + 1)2

]
, (A5)

G4(d,u) = 2F1

[
−3

2
, − 1

2
;

d

2
;

u2

(u + 1)2

]
, (A6)

G5(d,u) = 2F1

[
−1

2
, + 1

2
;
d + 2

2
;

u2

(u + 1)2

]
, (A7)

G6(d,u) = 2F1

[
−1

2
, + 3

2
;
d + 2

2
;

u2

(u + 1)2

]
, (A8)

G7(d,u) = 2F1

[
+1

2
, + 1

2
;
d + 2

2
;

u2

(u + 1)2

]
, (A9)

G8(d,u) = 2F1

[
+1

2
, + 3

2
;
d + 2

2
;

u2

(u + 1)2

]
(A10)

G9(d,u) = 2F1

[
+1

2
, + 5

2
;
d + 4

2
;

u2

(u + 1)2

]
, (A11)

G10(d,u) = 2F̃1

[
+1

2
, + 1

2
;

d

2
;

u2

(u + 1)2

]
, (A12)

G11(d,u) = 2F̃1

[
−1

2
, + 3

2
;
d + 2

2
;

u2

(u + 1)2

]
, (A13)

where 2F1 denotes an ordinary hypergeometric function and
2F̃1 for a regularized hypergeometric function. Furthermore,
the G

(i)
0 (d,u) functions from (A2) are given as

G
(2)
0 = π3/2(d − 2)[3d(u + 1) + u + 9] �

(
d
2

)
128(d2 + d − 2)(u + 1)3�

(
d+3

2

) , (A14)

G
(3)
0 = −π3/2(d − 2)[(d − 3)u + d + 5] �

(
d
2

)
64(d − 1)(d + 2)(u + 2)3�

(
d+3

2

) , (A15)

G
(4)
0 = −π3/2(d − 2)[(d + 7)u + d − 1] �

(
d
2

)
128(d2 + d − 2)(u + 1)3�

(
d+3

2

) . (A16)
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The remaining functions g
(i)
j with i ∈ 2,3,4 and j ∈ 1, . . . ,11

are defined for i = 2 as

g
(2)
1 = π2 2−d−7 P2,1 �(d − 1)

(u + 1)3�
(

d
2 + 2

)
�

(
d
2

) , (A17)

g
(2)
2 = − π2 2−d−9P2,2 �(d + 3)

(d − 1)(d + 1)2u(u + 1)4(2u + 1)�
(

d
2 + 2

)2 ,

(A18)

g
(2)
3 = − π2 2−d−10 P2,3 �(d + 3)

(d − 1)(d + 1)2u(u + 1)2(2u + 1)2�
(

d
2 + 2

)2 ,

(A19)

g
(2)
4 = π2 2−d−8 P2,4 �(d − 1)

u(u + 1)2(2u + 1)2�
(

d
2 + 2

)
�

(
d
2

) , (A20)

g
(2)
5 = π2 2−d−7 P2,5 �(d − 1)

(u + 1)2(2u + 1)�
(

d
2 + 1

)
�

(
d
2 + 2

) , (A21)

g
(2)
6 = 3π2 2−d−7 P2,6 �(d − 1)

(u + 1)2�
(

d
2 + 2

)2 , (A22)

g
(2)
7 = − π2 2−d−7 P2,7 �(d − 1)

(u + 1)3(2u + 1)�
(

d
2 + 1

)
�

(
d
2 + 2

) , (A23)

g
(2)
8 = − π3/2 P2,8 �

(
d−1

2

)
1024d(u + 1)5�

(
d
2 + 2

) , (A24)

g
(2)
9 = 9π3/2 P2,9 �

(
d−1

2

)
64d2(d + 2)2(u + 1)4�

(
d
2

) , (A25)

g
(2)
10 = π2 2−d−7 P2,10 �(d + 1)

(d − 1)(u + 1)3�
(

d
2 + 2

) , (A26)

g
(2)
11 = 3π3/2 P2,11 �

(
d−1

2

)
64d(d + 2)(u + 1)

, (A27)

where the polynomials P2,j with j ∈ 1, . . . ,11 over u and
d have been singled out and are given in the text below.
Analogously to the i = 2 case we get for i = 3 the following
expressions:

g
(3)
1 = π3/2 P3,11 �

(
d−1

2

)
512(u + 1)3�

(
d
2 + 2

) , (A28)

g
(3)
2 = − π22−d−8 P3,10 �(d + 3)

(d − 1)(d + 1)2u(u + 1)4(2u + 1)�
(

d
2 + 2

)2 ,

(A29)

g
(3)
3 = − π22−d−9 P3,9 �(d + 3)

(d − 1)(d + 1)2u(u + 1)2(2u + 1)2�
(

d
2 + 2

)2 ,

g
(3)
4 = π22−d−7 P3,8 �(d − 1)

u(u + 1)2(2u + 1)2�
(

d
2 + 2

)
�

(
d
2

) , (A30)

g
(3)
5 = π22−d−8 P3,7 �(d − 1)

(u + 1)2(2u + 1)�
(

d
2 + 2

)2 , (A31)

g
(3)
6 = π22−d−7 P3,6 �(d − 1)

(u + 1)2�
(

d
2 + 2

)2 , (A32)

g
(3)
7 = − π22−d−8 P3,5 �(d − 1)

(u + 1)3(2u + 1)�
(

d
2 + 2

)2 , (A33)

g
(3)
8 = − π3/2 P3,4 �

(
d−1

2

)
512d(u + 1)5�

(
d
2 + 2

) , (A34)

g
(3)
9 = − 3π3/2u2 P3,3 �

(
d−1

2

)
32d2(d + 2)2(u + 1)4�

(
d
2

) , (A35)

g
(3)
10 = π22−d−7 P3,2 �(d + 1)

(d − 1)(u + 1)3�
(

d
2 + 2

) , (A36)

g
(3)
11 = π3/2 P3,1 �

(
d−1

2

)
32(d + 2)(u + 1)

, (A37)

where the polynomials P3,j with j ∈ 1, . . . ,11 over u and
d have been singled out and are given in the text below.
Analogously to the i = 2,3 cases we get for i = 4 the following
expressions:

g
(4)
1 = π22−d−7 P4,1 �(d − 1)

(u + 1)3�
(

d
2 + 2

)
�

(
d
2

) , (A38)

g
(4)
2 = − π22−d−5 P4,2 �(d − 1)

d(d + 1)(d + 2)u(u + 1)4(2u + 1)�
(

d
2

)2 , (A39)

g
(4)
3 = − π22−d−6 P4,3 �(d − 1)

d(d + 1)(d + 2)u(u + 1)2(2u + 1)2�
(

d
2

)2 , (A40)

g
(4)
4 = π3/2 P4,4 �

(
d−1

2

)
1024u(u + 1)2(2u + 1)2�

(
d
2 + 2

) , (A41)

g
(4)
5 = π3/2 P4,5 �

(
d−1

2

)
128d(u + 1)2(2u + 1)�

(
d
2 + 2

) , (A42)

g
(4)
6 = −π22−d−7 P4,6 �(d − 1)

(u + 1)2�
(

d
2 + 2

)2 , (A43)

g
(4)
7 = − π3/2 P4,7 �

(
d−1

2

)
128d(u + 1)3(2u + 1)�

(
d
2 + 2

) , (A44)

g
(4)
8 = π3/2uP4,8 �

(
d−1

2

)
1024d(u + 1)5�

(
d
2 + 2

) , (A45)

g
(4)
9 = − 3π3/2u2 P4,9 �

(
d−1

2

)
32d2(d + 2)2(u + 1)4�

(
d
2 − 1

) , (A46)

g
(4)
10 = 0, (A47)

g
(4)
11 = π3/2 P4,11 �

(
d−1

2

)
64(d + 2)(u + 1)

, (A48)

where the polynomials P4,j with j ∈ 1, . . . ,11 over u and d

have been singled out and are given together with P2,j and P3,j

for j ∈ 1, . . . ,11 now in the text below. Let us start with the
polynomials for i = 2. We obtain the following expressions:
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P2,1 = d2(7u2 + 4u) − 3d(6u2 + 5u) + 8u2 − 22u − 30,

(A49)

P2,2 = 2d4(7u + 6)(u + 1)5 − d3(u + 1)2(119u4 + 347u3

+ 384u2 + 191u + 33) + d2(117u6 + 751u5

+ 1733u4 + 1694u3 + 720u2 + 74u − 19)

+ d(190u6 + 82u5 + 210u4 + 1004u3 + 1389u2

+ 765u + 146) − 8(2u + 1)(u + 1)2(5u3 − 19u2

+ 48u + 18), (A50)

P2,3 = 2d5(6u + 5)(u + 1)5 + d4(u + 1)2(19u4 − 140u3

− 408u2 − 318u − 73) − d3(41u6 + 16u5 − 251u4

− 750u3 − 545u2 − 54u + 31) − d2(76u6 + 3291u4

+ 2656u3 − 370u2 − 1006u − 253) + d(−28u6

+ 1954u5 + 3757u4 + 2548u3 + 76u2 − 410u − 81)

+ 2(2u + 1)(45u4 + 636u3 + 1236u2 + 656u + 123),

(A51)

P2,4 = 2d4(6u + 5)(u + 1)5 − d3(1 + u)2(5u4 + 152u3

+ 352u2 + 260u + 59) − d2(31u6 + 258u5 + 606u4

+ 358u3 + 101u2 + 96u + 38) − d(14u6 − 714u5

− 1419u4 − 1934u3 − 2166u2 − 1240u − 253)

− 2(2u + 1)(7u4 − 150u3 − 252u2 − 10u + 21),

(A52)

P2,5 = d2(d − 2)(8u3 + 19u2 + 14u + 3)

− d(d − 2)(122u3 + 209u2 + 102u + 15)

+ (d − 2)(30u3 − 196u2 − 188u − 42), (A53)

P2,6 = d2(d + 2)(1 + 3u + 2u2)

− d(d + 2)(3 + 4u+ 5u2) − 8(d + 2)u, (A54)

P2,7 = d2(d − 2)(8u + 3)(u + 1)3

− 2d(d − 2)(u + 1)(37u3 + 56u2 + 24u + 3)

+ 8(d − 2)(2u + 1)(2u3 − 6u2 − 10u − 3), (A55)

P2,8 = 2d2(u + 1)2(3u2 + 5u + 6) + d(43u4 + 155u3

+ 155u2 + 49u) − 14u4 − 6u3 + 110u2

+ 150u + 48, (A56)

P2,9 = u2[d(5u + 1) − 2u + 6], (A57)

P2,10 = d(10u + 7), (A58)

P2,11 = (3d + 2u), (A59)

P3,1 = u[(d − 2)(d + 16)u + 4(3d − 8)], (A60)

P3,2 = 2d4(u + 1)6 − d3(u + 1)2(6u4 + 22u3 + 35u2

+ 28u + 8) − d2(2u + 1)(54u5 + 129u4 + 78u3

+ 4u2 − 27u − 12) + d(u + 1)(108u5 + 466u4

+ 700u3 + 474u2 + 149u + 18) + 4(2u + 1)

×(u + 1)2(26u3 − 24u2 − 41u − 13), (A61)

P3,3 = d5(4u + 3)(u + 1)5 + d4(u + 1)2(19u4 + u3

− 76u2 − 76u − 20) + d3(7u6 − 268u5 − 938u4

− 1002u3 − 449u2 − 82u − 4) − d2(52u6 + 170u5

+ 139u4 − 453u3 − 613u2 − 253u − 34) − d(44u6

+ 210u5 + 129u4 − 134u3 − 176u2 − 76u − 13)

+ 2(2u + 1)(175u4 + 572u3 + 610u2 + 276u + 47),

(A62)

P3,4 = d4(4u + 3)(u + 1)5 + d3(u + 1)2(11u4 − 13u3

− 80u2 − 73u − 19) − d2(15u6 + 304u5 + 905u4

+ 904u3 + 379u2 + 60u + 1) − d(22u6 − 106u5

− 771u4 − 1396u3 − 1104u2 − 410u − 59)

+ 2(2u + 1)(u + 1)2(67u2 + 22u − 5), (A63)

P3,5 = (d2 − 4)[d(u + 1) − 15u − 7] [4(d + 4)u2

+ (5d + 14)u + d + 2], (A64)

P3,6 = d2(d + 2)(u + 1)(2u + 1) − 2d(d + 2)(5u + 1)

− 4(d + 2)u(7u + 3), (A65)

P3,7 = d2(d − 2)(d + 2)
[

(4u + 1)(u + 1)3

− 2d(u + 1)(4u3 + 11u2 + 6u + 1)

− 8(2u + 1)(10u3 + 15u2 + 8u + 1)
]
, (A66)

P3,8 = d2(u + 2)(u + 1)3 − du(13u3 + 51u2 + 53u + 17)

+ 2(u + 1)(19u3 + 54u2 + 31u + 4), (A67)

P3,9 = d(5u + 1) − 14u − 6, (A68)

P3,10 = d(2u + 1), (A69)

P3,11 = 5u + 1, (A70)

P4,1 = (d − 2)(4u2 + 5u) − 2, (A71)

P4,2 = d3(u + 1)4(13u2 + 15u + 1) − d2(u + 1)(109u5

+ 366u4 + 505u3 + 335u2 + 91u + 5) + d(54u6

+ 970u5 + 2150u4 + 2110u3+1007u2 + 205u + 10)

+ 8(2u+ 1)(u+ 1)2(11u3 − 39u2 − 19u− 1), (A72)

P4,3 = d4(u + 1)4(19u2 + 16u + 1) + d3(35u4 − 254u3

− 422u2 − 160u − 9)(u + 1)2 − d2(28u6 + 454u5

− 265u4 − 1534u3 − 1164u2 − 288u − 15) − d(44u6
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FIG. 8. Functions f
(i)
l for l ∈ 2,4,5,6,7,8 and i ∈ 1,2,3,4 shown for u corresponding to a value typical of the A = −1 model. Values of

f (0) have already been determined within the scope of the A = 0 model in Ref. [11]. (a) depicts coefficients f
(1)
l , (b) shows f

(2)
l , (c) shows f

(i)
l ,

and (d) shows f
(4)
l . Note that only the fifth graph actually contributes terms of order A4 to the final expression for z

(2)
21 since all the other graphs

contribute zero coefficients f
(4)
l , as shown by flat planes in the corresponding figures. All dependencies are plotted in the region of x ∈ 〈0,1〉

and z ∈ 〈0,2〉.
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+ 1630u5 + 2699u4 + 2272u3 + 1004u2 + 190u + 9)

+ 2(2u + 1)(485u4 + 1084u3 + 664u2 + 152u + 7),

(A73)
P4,4 = d3[u(19u + 16) + 1](u + 1)4 − d2(u + 1)2(3u4

+ 272u3 + 389u2 + 144u + 8) − d(22u6 + 430u5

− 175u4 − 1290u3 − 1018u2 − 260u − 13)

+ 2(2u + 1)(113u4 + 226u3 + 32u2 − 18u − 1),

(A74)

P4,5 = (d − 2)u(5u + 2)[ (d − 15)u + d − 7 ], (A75)

P4,6 = (d + 2)(5u + 1)(d + 2u), (A76)

P4,7 = (d − 2)u
[
d(u + 1)2(5u + 2) − 4(2u + 1)(4u2

+ 7u + 2)], (A77)

P4,8 = d(17u3 + 49u2 + 49u + 15) − 2(u + 1)2(17u + 15),

(A78)

P4,9 = 5u + 1, (A79)

P4,10 = 0, (A80)

P4,11 = 5u + 1. (A81)

Let us turn our attention to the remaining seven diagrams of
Fig. 3. Instead of calculating the graphs using the previously
discussed technique of Ref. [9], we have employed the
derivative technique outlined by the authors of Ref. [15],
as it allows an easy algorithmic approach. By analogy with
Eq. (A1), for each diagram l ∈ 2, . . . ,8 we may explicitly
determine every coefficient of the resulting polynomial over A

separately for each graph. The corresponding decomposition
reads as now

B
(ρ)
l = 16u(1 − x2)

1−d
2

∫ ∞

1

dz

z

4∑
i=0

Ai f
(i)
l (x,z) (A82)

with l ∈ 2, . . . ,8. Notice that contrary to expression (A1), inte-
grations over variables x ∈ 〈−1,1〉 with x = k · q/|k|/|q| and

z � 1 are singled out. Each of the functions f
(i)
l (x,z,u,d) is a

rational function over x, z, u, and d. Since for l ∈ 2,4,5,6,7,8
the corresponding expressions are lengthy and require a huge
amount of space, we do not show the explicit form of their
corresponding f

(i)
l functions. Instead, as an example, we give

now the corresponding expressions only for the third two-loop
diagram �

(2)
3 of Fig. 3 and present the remaining functions

f
(i)
l for l ∈ 2,4,5,6,7,8 graphically in Fig. 7. Since the A =

0 case was completely solved in Ref. [11], we now present
only f

(1)
3 (x,z,u,d) and f

(2)
3 (x,z,u,d). As discussed in the main

body of the article, for the present diagram f
(3)
3 (x,z,u,d) =

f
(4)
3 (x,z,u,d) = 0 because of the structure of A polynomials.

Thus, we get

f
(1)
3 = (−2 + d)(d − 2u + du)z(1 + z2)

16(−1 + d)d(2 + d)(1 + u)2(−1 + xz − z2)

× −(1 + z2)2 + x2(3 − 2z2 + 3z4)

(−1 + 2xz − z2)(1 + xz + z2)(1 + 2xz + z2)
,

(A83)

f
(2)
3 = (−2 + d)(1 + 3u)z(1 + z2)

16(−1 + d)d(2 + d)(1 + u)2(−1 + xz − z2)

× −(1 + z2)2 + x2(3 − 2z2 + 3z4)

(−1 + 2xz − z2)(1 + xz + z2)(1 + 2xz + z2)
.

(A84)

As already discussed, the graph �
(2)
3 contains only two Vijl

type vertices and its corresponding functions f
(3)

3 (x,z,u,d) and
f

(4)
3 (x,z,u,d), which correspond to polynomial coefficients

in front of A3 and A4, respectively, are both zero. For the
remaining graphs �

(2)
l with l ∈ 2,4,5,6,7,8 the f

(i)
l (x,z,u,d)

functions with i ∈ 0,. . . . ,4 are lengthy and require a huge
amount of space and we shall only present them graphically
via Fig. 8 for u = 1 which presents the usual order of this
parameter value, as used in calculations of the turbulent Prandtl
number via Eq. (49).
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033106 (2016).

[15] L. T. Adzhemyan, J. Honkonen, T. L. Kim, and L. Sladkoff,
Phys. Rev. E 71, 056311 (2005).

[16] L. T. Adzhemyan, N. V. Antonov, A. Mazzino, P. Muratore-
Ginanneschi, and A. V. Runov, Europhys. Lett. 55, 801
(2001).

[17] N. V. Antonov, M. Hnatich, J. Honkonen, and M. Jurčišin,
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