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Hydraulic droplet coarsening in open-channel capillaries
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Over a range of liquid-solid contact angles, an open-channel capillary with curved or angled sides can show
a maximum in the Laplace pressure as a function of the filling state. Examples include double-angle wedges,
grooves scored into flat surfaces, steps on surfaces, and the groove between touching parallel cylinders. The liquid
in such a channel exhibits a beading instability if the channel is filled beyond the Laplace pressure maximum.
The subsequent droplet coarsening takes place by hydraulic transport through the connecting liquid columns
that remain in the groove. A mean-field scaling argument predicts the characteristic droplet radius R ∼ t1/7, as a
function of time t . This is confirmed by one-dimensional simulations of the coarsening kinetics. Some remarks
are also made on the spreading kinetics of an isolated drop deposited in such a channel.

DOI: 10.1103/PhysRevE.94.053111

I. INTRODUCTION

Open channel flow problems have attracted much interest
not only because of possible applications in microfluidics
[1–9], but also because of the relevance to liquids spreading
on topographically patterned surfaces such as human skin
[10–12]. The paradigmatic case of spreading in a V-shaped
wedge has been analyzed both when liquid is supplied
by a reservoir [10,13], and in the starved (no reservoir)
situation [14]. Various aspects of these predictions have been
confirmed experimentally [2–4,8], and other shapes (e.g.,
U-shaped microchannels) have been explored for pragmatic
reasons [7,11].

Separately, in the study of phase-ordering kinetics [15],
Ostwald ripening in systems where the minority phase has a
droplet morphology has been of long standing interest since the
seminal work by Lifshitz and Slyozov [16], and Wagner [17]
(LSW). Of note in this LSW theory is that the droplet radius
R ∼ t1/3, as a function of time t . The one-third exponent (with
a possible logarithmic correction in two dimensions [18])
arises because the droplets exchange material by diffusion
through the continuous phase. Additionally, in the scaling
regime, the droplet size distribution shows scale invariance
and is characteristically skewed (‘fat-tailed’) towards smaller
droplets, being truncated above a certain drop size [18,19].

Here, I revisit the problem of droplet coarsening in the
context of liquid contained in an open-channel capillary with
curved or angled sides. Examples include a V-shaped groove
scored into a flat surface Fig. 1(a), a step on a flat surface
Fig. 1(b), and the groove formed between a pair of touching
parallel cylinders Fig. 1(c). The first two are special cases of
two-sided or one-sided double-angle wedges (Fig. 7). The key
feature of all these channels is that there is an easily accessible
range of contact angles where the Laplace pressure shows a
maximum as a function of the filling state. Other geometrically
simpler channel profiles can exhibit the same phenomenon
if there is a gradient in the surface wetting properties. For
example, a V-shaped wedge in which the wettability decreases
with distance from the apex (so that the contact angle increases)
could also display a Laplace pressure maximum.
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As shall become clear, above the Laplace pressure maxi-
mum a uniform liquid column is unstable towards breaking up
into a string of droplets (or ‘beads’), similar to Rayleigh’s
observation of the breakup of a thread of treacle (sugar
solution) on a paper surface [20]. Although this instability
is by now quite well understood [5,6,9,21–23], I shall argue
here that the presence of the Laplace pressure maximum
uniquely differentiates this case from previously considered
scenarios [24,25], since droplets can coarsen by mass transport
through connecting liquid columns. Crucially, this changes
the growth law for the characteristic droplet size to R ∼ t1/7,
although many features of the LSW theory are qualitatively
preserved.

Below, I shall first present a (long wavelength) stability
analysis of the equation governing mass transport in an
open-channel capillary to demonstrate the significance of the
Laplace pressure maximum in these systems. Subsequently, I
shall discuss the consequences for droplet coarsening in the
late stages of the beading instability, presenting the mean-field
scaling argument which yields the above power law. This
result is confirmed by simulations of the one-dimensional
coarsening process. Appendix A supports the main text by
reporting Laplace pressure versus filling state calculations for
a selection of channel cross sections. Appendix B supplies the
technical details of the simulations. Appendix C considers the
related problem of the staged emptying of an isolated droplet
into a channel.

The present work focusses on the situation where there
is one channel, with a single Laplace pressure maximum as
a function of the filling state. More complex situations can
certainly be envisaged and will be discussed briefly at the end.

II. WICKING KINETICS

To start with, consider the general problem of open channel
flow in a channel of arbitrary cross section, and let A(x,t) be the
cross section occupied by liquid where x is the longitudinal
direction along the channel. A local mass conservation law
holds [13,14,26],

∂A

∂t
+ ∂(Av)

∂x
= 0 . (1)
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FIG. 1. Examples of open-channel capillaries with a Laplace
pressure maximum: (a) V-shaped groove cut into a flat surface (special
case of a two-sided double-angle wedge); (b) step on a flat surface
(special case of one-sided double-angle wedge); (c) groove between
touching parallel cylinders. The left hand plots show the Laplace
pressure in reduced units as a function of the filling depth (or a
proxy thereof). The right hand diagrams show typical surface profiles
(blue). These are circular arcs which meet at a specified contact
angle with the surface profile (black lines). The state corresponding
to the maximum Laplace pressure is shown as a heavy blue line, and
filling states beyond this are shown by dashed lines. Calculations are
for a contact angle θ = 30◦, and an inner wedge opening angle of
2φ1 = 60◦ for case (a). Plots are based on the analytic expressions
for the arc radius given in Appendix A. In all cases the area A is
monotonically increasing with the chosen measure of filling depth.

Herein the mean flow rate v satisfies a Hagen-Poiseuille (HP)
law, v = −(k/η) ∂p/∂x, in which k(A) is an area-dependent
hydraulic conductivity, η is viscosity, and p = p(A) is the
area-dependent Laplace pressure (the hydraulic conductivity
is a quantity with units of length squared, cf. Darcy’s law).
Combining the HP law with Eq. (1) gives a self-contained
equation for A(x,t),

∂A

∂t
= ∂

∂x

(
Ak

η

dp

dA

∂A

∂x

)
. (2)

Equation (2) generally has the character of a non-linear
diffusion equation. I have assumed that the occupied cross
section A is weakly varying with x, so the contribution
to the Laplace pressure from the interface curvature in the
longitudinal direction can be neglected. Technically this means
the equation is valid only for long wavelength perturbations
(but see also below).

Insight can be gained by linearising about the uni-
form static solution, viz. A = A0 and v = 0. Let us

FIG. 2. Schematic Laplace pressure curve, p(A), with a maxi-
mum. The abscissa at p = 0 is indicated by the dashed line.

write A/A0 = 1 + ε(x,t). Then ∂ε/∂t = Deff ∂2ε/∂x2 where
Deff = (Ak/η) dp/dA is an effective diffusion coefficient,
evaluated at A = A0. It is clear that the sign of Deff is
governed by the sign of dp/dA (and not p), and this
therefore differentiates between two different behaviors. If
dp/dA > 0 (Deff > 0) an initial height perturbation will die
out. In this situation an overfilled region (A > A0) has a
higher Laplace pressure than an underfilled region, and liquid
will flow to iron out an initial perturbation. On the other
hand if dp/dA < 0 (Deff < 0) an initial height perturbation
will grow exponentially. In this situation liquid flows from
underfilled regions into overfilled regions, amplifying the
initial imbalance. The unusual property of a channel with a
Laplace pressure maximum is that both behaviors can occur
(Fig. 2), depending on the filling state. This has important and
interesting consequences for the kinetics and is the central
message of the present work.

For pragmatic reasons it is often convenient to use a filling
depth h (or a suitable proxy thereof) instead of the area A, as
in Fig. 1. Provided A(h) is a monotonic increasing function
(dA/dh > 0) the above arguments can also be couched in
terms of dp/dh.

III. BEADING INSTABILITY

Suppose one starts with a channel initially uniformly filled
in a filling state beyond the Laplace pressure maximum.
Since dp/dA < 0, this uniform state is unstable by the above
argument, and small perturbations will start to grow, initially
exponentially. As in the Rayleigh problem [27], I expect that
the fastest growing instability mode will have a length scale set
by a characteristic filling depth h0 [20,27,28]. After this initial
exponential growth phase the kinetics becomes non-trivial,
but by analogy to the behavior of liquid jets [25], I expect the
liquid contained in the channel will ultimately take the form
of a string of droplets, in this case connected by stable thin
liquid columns. Assuming the fastest growing instability mode
selects the structure, one might expect the mean droplet size
and spacing to be set also by h0.

The actual droplet size and spacing at this point will
be slightly non-uniform, reflecting slight inhomogeneities in
the initial state. Thus this droplet state itself is susceptible
to further coarsening by hydraulic transport through the
connecting liquid columns. Large droplets will grow at the
expense of the smaller ones, which will shrink and disappear.
Eventually in the final state a single large droplet will exist
somewhere on the channel. This is a necessary condition for
stability since two or more coexisting droplets on the right hand
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side of the Laplace pressure maximum in Fig. 2 are unstable
with respect to an exchange of liquid volume.

In this final state, the large droplet containing the excess
liquid will assume some three-dimensional profile concomi-
tant with the boundary conditions. The Laplace pressure in
the droplet will be slightly positive in comparison to typical
channel Laplace pressure, since the droplet is large compared
to the channel dimensions. Since this is supposed to be the
final static condition, the liquid column in the channel must be
at the same slightly positive Laplace pressure as the droplet,
and will therefore correspond to a filling state just above the
zero-crossing of the p(A) curve (e.g., point R in Fig. 2) [29].

This hydraulic coarsening mechanism stands in contrast to
the behavior of droplets in a V-shaped wedge for example,
where spatially separated droplets are disconnected [4,30,31]
and the droplet population has to coarsen by some other
mechanism, such as a prewetting film [32–34], or transport
through the vapor phase in the case of a volatile liquid (see
below).

I now consider the late-stage coarsening kinetics: how is this
final single-large-droplet state arrived at, starting from a string
of droplets in the channel? After the initial stages of the beading
instability, I envisage an evolving droplet size distribution
with a diminishing number of droplets, very much like the
situation for Ostwald ripening mentioned in the introduction.
The characteristic filling depth h0 of the connecting liquid
columns will be such that p(A) ≈ 0 (in the examples in Fig. 1
one has h0 ∼ l0 for the double-angle wedges, or h0 ∼ a for
touching parallel cylinders). This is because locally the liquid
columns are connected to droplets with a weakly positive
Laplace pressure (cf. Fig. 2), noting that at late stages R � h0.
As already mentioned, unless the channel is grossly overfilled,
h0 is also the relevant length scale for the fastest growing mode
in the initial instability so that the initial droplets will have a
volume of order h3

0, and spacing of order h0.
With this picture, I now argue that aspects of the LSW

theory can be adapted to the late stage coarsening kinetics in
the present problem, where there is an evolving population
of droplets. I make the simplifying assumption that the
Laplace pressure scales inversely with droplet volume, viz.
p ∝ V −1/3, where V ∼ R3. This is likely to be true only
asymptotically [35,36]. Nonetheless, let us suppose that this is
true, then following mean-field scaling argument predicts how
the characteristic droplet size R, and characteristic spacing
between droplets L, evolve with time.

First, the mass flux between adjacent droplets is order

J ∼ h4
0

η

�p

L
. (3)

This just expresses the HP law in scaling form. The fourth
power of h0 arises from the product of the hydraulic conduc-
tivity k ∼ h2

0 and the cross sectional area of the connecting
liquid column A ∼ h2

0.
The mass flux is incorporated into a local mass conservation

law, cf. Eq. (1), according to which

dV

dt
∼ J. (4)

At the same time there is a global mass conservation law which
relates the characteristic droplet volume to the characteristic

droplet spacing,

V

L
∼ ω , (5)

where ω is the mass (volume) per unit length, which is constant
and fixed by the initial conditions. Typically one might expect
ω ∼ h2

0, unless the channel is grossly overfilled.
Combining Eqs. (3)–(5), together with V ∼ R3 and �p ∼

γ /R (where γ is the surface tension), shows that

R2 dR

dt
∼ γ h4

0 ω

ηR4
. (6)

This integrates to

R ∼ h0

(
γωt

ηh3
0

)1/7

or R ∼ h0

(
γ t

ηh0

)1/7

(7)

(the second case assumes ω ∼ h2
0). This yields the claimed

R ∼ t1/7 growth law. The additional prediction is that the
droplet line density (i.e., L−1 ∼ R−3) should diminish as t−3/7.
To make sense of this note that γ /η is a velocity [36], and
for example a 10 cSt oil (η ≈ 10 mPa s, γ ≈ 10 mN m−1) has
γ /η of order 1 ms−1. If h0 ≈ 100 μm the relevant time scale
ηh0/γ is of the order 100 μs. Thus on a time scale of seconds
one expects to be well into the hydraulic droplet coarsening
regime, with a characteristic droplet size several times the
channel dimensions.

One might be concerned that other coarsening mechanisms
might intervene to destroy this result. Indeed, there are two
processes which might lead to droplet coalescence. The first
is that growing droplets could bump into their neighbours
and swallow them up. However such direct contacts become
vanishingly rare since the ratio between the characteristic
droplet size and characteristic droplet spacing, R/L ∼ t−2/7.
This is O(1) initially and diminishes with time. Thus I would
not expect droplet coalescence by this process to be significant.

The second process that could lead to droplet coalescence
is droplet migration. In general there is an imbalance in the
flux in the two liquid columns connected to a droplet. To avoid
becoming ‘misshapen’ (i.e., having a non-constant interface
curvature), the droplet will have to redistribute liquid from
one side to the other. This shape relaxation will be fast on
the time scale of the coarsening process since the hydraulic
conductivity of the droplets (k ∼ R2) is significantly larger
than the connecting liquid columns (k ∼ h2

0). In general it will
lead to a displacement of the center of mass of the droplet, by
a distance O(R), at most. This corresponds to an effective
droplet migration mechanism. But as we have noted R/L

is O(1) initially and diminishing, so the migration distances
involved are small compared to the droplet spacing, and this
process should also be irrelevant for the late stage coarsening
kinetics.

For volatile liquids, transport through the vapor phase is a
third possibility. This is potentially relevant, and would lead
to the return of the LSW scaling law R ∼ t1/3. Moreover,
as long as the vapor-phase diffusion is three-dimensional, it
should not matter whether the droplets are arrayed in a one-
dimensional string or placed at random on a two-dimensional
surface. This is because the mean-field ansatz underpinning
the LSW theory ‘washes out’ such spatial information. The
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FIG. 3. Mean droplet volume as a function of time, from simula-
tion. Droplets coarsen by hydraulic transport along the connecting
liquid columns (lower schematic inset), according to the rules
prescribed in Appendix B. Results from ten independent simulation
runs are shown. Each simulation was initialized with N0 = 5×104

equispaced droplets, with random sizes taken from a uniform
distribution V0 < V < 2V0. Droplets are removed when V < 0.9 V0,
and their liberated contents are added to the liquid column (β = 1 in
the model). The adaptive integration control parameter was ε = 0.02.

diffusive t1/3 law grows faster than the hydraulic t1/7 law. So,
eventually, diffusive transport should dominate and diffusion-
controlled Ostwald ripening should take over. Of course the
point where this happens depends on the material properties
and in particular on the volatility of the liquid. For a nominally
non-volatile liquid one would expect a large regime where
hydraulic droplet coarsening should be observable.

Since mean field arguments are notoriously unreliable
in one-dimensional systems, it seems prudent to verify the
above mean-field theory prediction. To investigate specifically
this aspect therefore, I undertook numerical simulations of
a string of i = 1 . . . N droplets of volumes Vi , using the
model described in Appendix B. As time advances, the larger
droplets grow at the expense of the smaller droplets, and the
smallest droplets shrink and vanish. Eventually the simulation
stops when there is one large final droplet (N = 1). I monitor
the mean droplet volume 〈V 〉 = (1/N )

∑N
i=1 Vi as a function

of time (note that N changes as droplets disappear), and
at selected time points record the drop size distribution. I
also calculate at various elapsed simulation times the equal-
time correlation function, C(|i − j |,t) = 〈�Vi �Vj 〉/〈�V 2〉,
where �Vi = Vi − 〈V 〉 is the deviation from the mean droplet
volume, at time t . Note that |i − j | is the distance between
droplets, measured in terms of the number of connecting liquid
columns.

Typical results, aggregated from multiple simulation runs
from independent starting points, are summarized in Figs. 3
and 4 (Fig. 8 shows that the results are robust to changes
in the simulation parameters). Figure 3 demonstrates that
the mean-field scaling argument does indeed predict how
the mean droplet size grows with time. Alongside this,
Fig. 4 demonstrates scale invariance holds for the droplet size
distribution. The latter shares some characteristic features with
LSW theory [15,18]: there is an obvious skew asymmetry

0.0 1.0 2.0
0.0

0.4

0.8

1.2

FIG. 4. Scale invariance of droplet size distribution, when there
are 10 000, 5000, 1000, 500, 300, and 100 droplets remaining (out of
an initial 5×104 droplets). Data are combined from 100 independent
simulation runs. Simulation parameters as for Fig. 3.

towards smaller droplet sizes, the distribution is apparently
truncated beyond a certain droplet size (in this case for
V � 2 〈V 〉), and there is a ‘fat tail’ of smaller droplets.

The origin of the mean-field behavior is apparent if one
examines the equal-time droplet size correlation function,
C(|i − j |,t), shown in Fig. 5. As can be seen the only signif-
icant correlation that develops is between nearest neighbors,
at |i − j | = 1. This indicates that droplets which are larger
than average tend to be adjacent to droplets which are smaller
than average, but apart from this no significant long-range
correlations develop.

To see the origin of this short-range correlation, consider an
artificial situation in which one large droplet sits in a uniform
one-dimensional array of equisized smaller droplets. Away
from the large droplet, the ambient Laplace pressure is uniform
and no coarsening takes place. However the large droplet has a
sub-ambient Laplace pressure and so starts to draw liquid from
its immediate neighbors. This causes the immediate neighbors
to shrink, and increases their Laplace pressure relative to the
ambient background. The next-nearest neighbors then see this,
and so they in turn start to grow at the expense of the shrinking
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FIG. 5. Equal-time size correlation function, C(|i − j |,t), com-
puted for the same set of simulations used for Fig. 4. The inset shows
the time dependence of the depth of the nearest-neighbour minimum.
Error bars are from block averaging (10 blocks × 10 runs).
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nearest neighbors. It is easy to see that this will drive a negative
nearest-neighbor size correlation.

The nearest-neighbor correlation minimum diminishes
somewhat as time progresses, but eventually appears to settle
down to a value C(1) ≈ −0.15 (Fig. 5 inset). I should point
out that the coarsening dynamics in the model is quite subtle,
for instance, the largest droplet at time t may not necessarily
be the largest droplet at some later time t ′ > t . This is because
the growth rate of a droplet depends not only on its size but
also on the sizes of its neighbors, and how far away they are.

IV. DISCUSSION

The present work examines droplet coarsening in open-
channel capillaries which exhibit a maximum in the Laplace
pressure as a function of filling state (typically, channels with
curved or angled sides). I argue that the kinetics is funda-
mentally modified because droplets can exchange material
by hydraulic transport along connecting liquid columns. The
difference is sufficient to change qualitatively the growth law
compared to diffusion-controlled Ostwald ripening. With a
simplifying assumption about the dependence of the Laplace
pressure on the droplet volume, a mean-field scaling argument
can be used to obtain the growth law. The mean-field theory is
validated by simulations.

Of course, in general I would expect the clean power-
law behavior to be modified by finite-size effects arising
from the precise dependence of the Laplace pressure on the
droplet volume. These may be quite persistent. Some general
predictions should be robust however, such as the relatively
rapid deceleration in the droplet growth rate, and the negative
correlation between nearest neighbor droplet sizes shown in
Fig. 5. These could perhaps be tested in experimentally.

For the present droplet coarsening problem there are a
couple of obvious avenues for future work. First, a more
detailed analysis of the coarsening kinetics could be under-
taken using the methods developed for diffusion-controlled
Ostwald ripening [15,18,19]. The main aim of this would be
to recover the droplet size distribution scaling function seen
in Fig. 4. Second, precise calculations of interface morpholo-
gies in specific channel geometries could be undertaken to
examine the particular dependence of the Laplace pressure
on droplet size. Possible methodologies to do this include
surface evolver [37], coarse-grained molecular dynamics [38],
phase-field simulations [39], and lattice Boltzmann [40].

More generally, outside the range of contact angles where
the Laplace pressure exhibits a single maximum, a complex
‘zoo’ of stable liquid droplet morphologies can ensue. This
is discussed for example in the case of a surface step by
Brinkmann and Blossey [41]. It is perhaps worth noting that
no stable static droplet states exist in the channel within the
range of contact angles considered in the present work. Indeed,
an isolated droplet deposited into the channel would simply
empty into the unfilled regions. This is an interesting problem
in its own right, and is examined in more detail in Appendix C.
Again, this may perhaps be probed experimentally.

Additionally, one can also envisage a situation where the
Laplace pressure p(A) exhibits multiple extrema. A practical
example relevant to the present geometries would arise if
the apex is blunted, perhaps as a manufacturing artefact. In

FIG. 6. Laplace pressure curve with multiple extrema, which
could arise for a blunted V-shaped surface groove (insets). The
divergence at A → 0 corresponds to a filling state with broken
symmetry that lives in one of the corners of the channel. Note that
such a state would be mechanically unstable (dp/dA < 0) [30]. The
hiatus in the curve is meant to signify that multiple branches of p(A)
may be possible in the transition region, where a given cross-sectional
area may correspond to more than one filling state.

such a geometry, the Laplace pressure may show a local
minimum before diverging (p → ∞) as A → 0 (Fig. 6).
In actual fact, this does not obviously destroy the droplet
coarsening physics envisaged in the present work as long
as the droplets and connecting liquid columns remain on the
weakly positive Laplace pressure branch of the curve (i.e.,
to the right of point R in Fig. 6). In particular, note that
the connecting liquid columns live on the branch of the
curve where dp/dA > 0 (Deff > 0), and should therefore be
mechanically stable. Under a large perturbation though, a
connecting liquid column may be severed, at which point I
would expect the severed ends to withdraw into the nearest
macroscopic droplets. These macroscopic terminal droplets
would then exhibit a complex morphology driven by need to
accommodate a constant interface curvature, at fixed contact
angle, in the complex geometry of the groove.

While droplet coarsening in these channels is naturally one-
dimensional (d = 1), one can also envisage a two-dimensional
(d = 2) analog where droplets coarsen on a planar surface
crisscrossed by such channels, such as steps or V-shaped
grooves. Naı̈vely the global mass conservation law in Eq. (5)
generalizes to V/Ld ∼ ω, and this is the only change that
needs to be made. This leads to a more general R ∼ td/(3+4d)

growth law (thus R ∼ t2/11 for d = 2). However, at least
one additional length scale bears on the two dimensional
coarsening problem, namely the mean groove spacing (or the
groove length per unit area). This complicates the analysis of
the two-dimensional case, which is left for future work.

APPENDIX A: STATICS

To support the discussion in the main text, I present
results for the Laplace pressure curves for selected channel
cross sections. In the long-wavelength limit of Eq. (2), the
interface curvature is negligible in the longitudinal direction
and the transverse profile is an arc of a circle with radius R.
Taking R > 0 to indicate the surface is convex outwards, the
Laplace pressure is p = γ /R where γ is surface tension. The
calculation of p(A) is therefore reduced to the calculation of
R, which is essentially a problem in Euclidean plane geometry.
Some example plots of 1/R as a function of filling depth h
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FIG. 7. (a) Two-sided and (b) one-sided double-angle wedges,
with the three filling regimes illustrated.

(or a proxy thereof) are shown in Fig. 1. Note that in all cases
A(h) is obviously monotonic (dA/dh > 0).

Two-sided double-angle wedge—The general shape I have
in mind is shown in Fig. 7(a), where the inner and outer wedge
half-angles are φ1 and φ2, respectively. For a liquid in a V-
shaped wedge it has long been known that the Laplace pressure
is positive (negative) as θ + φ − 1

2π is positive (negative),
where θ is the liquid-solid contact angle [30]. To ensure a
maximum in p(h) I shall therefore consider the range of contact
angles where 1

2π − φ2 < θ < 1
2π − φ1. Then, there are three

regimes as the filling depth increases (Fig. 7(a), right hand
diagrams). In regime I the liquid is contained solely in the
inner wedge and p is a negative increasing function of h.
In the intermediate regime II the contact line is pinned at the
convex corners and p monotonically increases with h, crossing
through zero when the interface is flat. In regime III the contact
line has depinned from the convex corners to enter the outer
wedge, and p is now a positive decreasing function of h.
Taken together therefore, the maximum in p(h) occurs when
the contact line depins at the II-III regime cross over.

To quantify this, I first note that the channel profile is
characterized by a single length scale which can be taken
to be the length l0 of the side of the inner wedge Fig. 7(a).
Let θ ′ = θ + φ2 − φ1 be the apparent contact angle for the
inner wedge, at the point where the contact line depins to
enter the outer wedge. Then the I–II and II–III crossovers are,
respectively, at filling depths

h1 = l0 × [cos θ − sin φ1]/ cos(θ + φ1),

h2 = l0 × [cos θ ′ − sin φ1]/ cos(θ ′ + φ1). (A1)

It is also helpful to introduce the offset between the apex of
the inner wedge and the extrapolated apex of the outer wedge,
xoff = l0 sin(φ2 − φ1)/ sin φ2, and the offset filling depth h′ =
h − xoff . In these terms the interface curvature (i.e., the Laplace
pressure in reduced units) is given by

1

R
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(sin φ1 − cos θ )/(h sin φ1) (I),

2(h − l0 cos φ1)

l2
0 + h2 − 2l0h cos φ1

(II),

(sin φ2 − cos θ )/(h′ sin φ2) (III).

(A2)

One can check that this is a piecewise continuous function (of
h). The zero crossing is obviously at h = l0 cos φ1. Note that
φ2 = 1

2π corresponds to the interesting special case shown in
Fig. 1(a) where a V-shaped groove (the inner wedge) is scored
into a flat surface (the outer wedge).

One-sided double-angle wedge—The one-sided double-
angle wedge has a convex corner only on one side (Fig. 7
b). I shall again assume that 1

2π − φ2 < θ < 1
2π − φ1 so, at

the risk of belaboring the point, the same three filling regimes
obtain as for the previous case. Because of the asymmetry
it is more convenient in this case to use the wetted length
l of the unbroken side as a proxy for the filling depth.
The corresponding I–II and II–III regime crossovers are at,
respectively,

l1 = l0,

l2 = xoff + l0 × sin(2φ1)/ sin(2φ2), (A3)

where the apex offset here is xoff = l0 sin(2φ2 − 2φ1)/
sin(2φ2). Defining l′ = l − xoff , the interface curvature in this
case is

1

R
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− cos(θ + φ1)/(l sin φ1) (I),

2[l sin θ − l0 sin(θ + 2φ1)]

l2
0 + l2 − 2l0l cos(2φ1)

(II),

− cos(θ + φ2)/(l′ sin φ2) (III).

(A4)

Again this is a piecewise continuous function (of l). The
zero crossing is at l = l0 × sin(θ + 2φ1)/ sin θ . The maximum
can occur either when the interface depins from the con-
vex corner (the II–III crossover), or (perhaps unexpectedly)
within regime II at an intermediate filling depth l = l0 ×
sin( 1

2θ + 2φ1)/sin 1
2θ . Geometrically this corresponds to the

point where the inner wedge apparent contact angle θ ′ =
π − 2φ1, so that the tangent to the surface at the pinned contact
line is parallel to the opposite side of the wedge.

The case φ2 = 1
2π generates the step geometry considered

by Brinkmann and Blossey [41] (their α = 2φ1). When further
φ1 = 1

4π one has as a special case a vertical step on a
flat surface Fig. 1(b). Brinkmann and Blossey note that
θ < 1

2π − φ1 corresponds to complete spreading of the liquid
along the bottom edge of the step, in agreement with the
present analysis. Note that in the case φ2 = 1

2π the contact line
can never depin from the convex corner, since a circle cannot
intersect displaced parallel lines at the same angle [42]. Regime
III therefore is not encountered, and the Laplace pressure
maximum (if it occurs) is in regime II.

Touching parallel cylinders—In this problem it is conve-
nient to parametrize the filling depth by the wrapping angle
α [9]. Again, the geometry is characterized by a single length
scale which I shall take to be the cylinder radius a. Elementary
trigonometric arguments, first presented to my knowledge by
Princen [21], show that

a

R
= −cos(θ + α)

1 − cos α
. (A5)

The sign has been inserted in accord with the above convention
that R is positive if the interface is convex. From this one finds
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(after a little rearrangement)

dR

dα
= −R2 cos

(
1
2α + θ

)
2a sin3

(
1
2α

) . (A6)

Taken together, Eqs. (A5) and (A6) show that zero crossing
of p(α) is at α = 1

2π − θ , and there is a weak maximum at
α = π − 2θ .

An interesting observation in this problem is that the
maximum stable filled state will protrude above the cylinders if
θ < 1

3π (=60◦), and the more the contact angle is reduced, the
higher the stable filled state protrudes. The behavior stands in
marked contrast to the influence of contact angle on the height
of a droplet sitting as a spherical cap on a flat surface. This
consideration potentially influences the wicking of liquids in
woven fibrous materials.

APPENDIX B: SIMULATION DETAILS

Figures 3–5 in the main text validate the mean-field
scaling predictions. Here I describe the technical details
of the underpinning simulations. The model describes the
time evolution of a one-dimensional string of i = 1 . . . N

droplets, connected by liquid columns as indicated in the lower
schematic inset in Fig. 3. Big droplets grow, and small droplets
shrink, under the influence of hydraulic transport through the
liquid columns driven by differences in the Laplace pressure
between neighboring droplets. To establish a system of kinetic
equations for the droplet sizes, I suppose that the Laplace
pressure in the ith droplet is proportional to V

−1/3
i , where

Vi is the droplet volume (this is the simplifying assumption
mentioned in the main text). According to the HP law, the
Laplace pressure difference drives a mass flux through the
connecting liquid column as, cf. Eq. (3),

Ji = V
−1/3
i − V

−1/3
i+1

Li

. (B1)

In this Li is the distance between the ith and (i + 1)th droplets,
and all other material properties in the problem have been
subsumed into the definitions of length, volume, and time. Note
that Vi+1 > Vi implies Ji > 0, so that liquid flows from smaller
droplets to larger droplets. Given the fluxes, mass conservation
dictates that, cf. Eq. (4),

dVi

dt
= Ji−1 − Ji . (B2)

Equations (B1) and (B2) are the required set of non-linear
kinetic equations. Since they predict that droplets shrink, as
well as grow, we need a rule which governs how shrinking
droplets can disappear. At this point it is convenient to intro-
duce a fiducial volume V0 ∼ h3

0, where h0 is the characteristic
filling depth described in the main text (in the simulations,
V0 = h0 = 1). A simple rule for shrinking droplets is that
they vanish when Vi < αV0. If this happens, the droplet is
removed and the distance between the remaining droplets is
set equal to Li−1 + Li + βV

1/3
i , where the third term is an

ad hoc correction for the length contributed by the vanished
droplet (taking β as a free parameter).

The droplet volumes are evolved according to Eqs. (B1)
and (B2), alongside the rule for removing droplets which
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FIG. 8. Effect of changing parameters in the simulation on (a) the
evolution of the mean droplet volume with time and (b) the drop size
distribution. The baseline is N0 = 5000, α = 0.9, β = 1, ε = 0.02,
and rm = 2, where N0 is the initial number of droplets. In (a) the
outlier at rm = 1.2 is lassoed. In (b) the size distribution is sampled
when there are 1000, 500, 300, and 100 droplets remaining and, apart
from the main text result where 100 runs were used, data is combined
from ten independent simulation runs for each variant.

become too small. The kinetic equations are integrated using a
simple, adaptive, Euler-type forward finite difference scheme,
with a time step �t chosen such dVi/dt × �t/Vi � ε, in
other words so that the fractional change in any droplet size
does not exceed ε in any time step. As an initial condition
I set Vi = riV0 where ri is a random number chosen from a
uniform distribution, 1 � ri < rm. The droplets are initially
equispaced, with Li = h0. Periodic boundary conditions are
imposed.

The results reported in Figs. 3–5 in the main text used α =
0.9 and β = 1 for the vanishing rule, rm = 2 for the maximum
initial drop size relative to V0, and ε = 0.02 for the adaptive
integration scheme. Figure 8 demonstrates that the results are
insensitive to these choices. Note that if rm is decreased, the
initial droplet size distribution becomes narrower, and it takes
longer for the full scaling behavior to be attained.

APPENDIX C: DROPLET SPREADING KINETICS

As noted in the main text, the fate of a droplet of liquid
deposited onto an initially empty channel is an interesting
problem in its own right. The existence of a Laplace pressure
maximum implies that a large enough droplet should show
staged spreading kinetics as it empties into the unfilled
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channel. This may be relevant to applications such as oily soil
spreading along the fibres in textile yarns in woven fabrics, and
wicking of molten solder in stranded copper wires and braids.

I shall suppose that the droplet is large enough so that the
initial filling state is above the Laplace pressure maximum. In
this case the negative effective diffusion coefficient (Deff < 0)
suppresses the tendency for the droplet to spread out. Therefore
I expect that initially the droplet will assume a quasi-static
shape, but will also immediately start to empty into the channel
driving a Bell-Cameron-Lucas-Washburn (BLCS) type flow
from what is in effect a shrinking droplet reservoir [10,13,26].
In this early stage therefore I expect to find an L ∼ t1/2

spreading law (BLCS). This should persist all the way until
the filling falls below the Laplace pressure maximum. Past this
point, and by analogy to the V-shaped wedge [14], one expects
the spreading rate to slow down since the reservoir has been
exhausted.

In this second stage, power-law spreading may be re-
covered, but with a non-trivial exponent. For the case of
a double-angle wedge, by this point the liquid is entirely
contained within the inner wedge and L ∼ t2/5 should be
observed [14]. However for the case of a groove between
touching parallel cylinders, I would not expect a power law

to appear until the very late stages where everywhere the
wrapping angle α � 1. To analyze this specific situation (i.e.,
late stage spreading in the groove between touching parallel
cylinders), a scaling analog of the HP law can be introduced:
dL/dt ∼ (k/η) × �p/L, where �p ∼ γ /R is the Laplace
pressure. In the limit in which we are interested, the wetted
portion of the groove has shrunk to a narrow fissure with a
width of the order R ∼ α2a [see Eq. (A5) in the limit α → 0]
and a depth of the order αa. One therefore expects k ∼ α4a2

since the hydraulic conductivity is presumably determined
by the width. Substituting these in the HP scaling law gives
dL/dt ∼ γα2a/(ηL). An additional constraint comes from
the analog of the global mass conservation law in Eq. (5),
namely that the total droplet volume  should be conserved.
Again, in this limiting case the cross section area A ∼ α3a2

and therefore  ∼ α3a2L. Eliminating α between the volume
constraint d/dt = 0 and the HP scaling law yields dL/dt ∼
γ2/3/(ηa1/3L5/3). This integrates to the final rather esoteric
result L ∼ (γ t/η)3/8 1/4 a−1/8. In other words, for a droplet
deposited into the groove between touching parallel cylinders,
the initial L ∼ t1/2 spreading law (BLCS) should weaken when
the droplet reservoir vanishes, and eventually cross over to an
L ∼ t3/8 power law in the final starved state.
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and Wetting Phenomena (Springer, New York, 2004).
[37] K. A. Brakke, Exper. Math. 1, 141 (1992); see http://facstaff.

susqu.edu/brakke/evolver/evolver.html.
[38] P. B. Warren, Phys. Rev. Lett. 87, 225702 (2001).

[39] D. Fan, S. P. Chen, L.-Q. Chen, and P. W. Voorhees, Acta Mater.
50, 1895 (2002).

[40] K. Hejranfar and E. Ezzatneshan, Phys. Rev. E 92, 053305
(2015).

[41] M. Brinkmann and R. Blossey, Eur. Phys. J. E 14, 79
(2004).

[42] This is a corollary of Proposition 32 in Book III of Euclid’s
Elements.

053111-9

https://doi.org/10.1103/PhysRevLett.110.166101
https://doi.org/10.1103/PhysRevLett.110.166101
https://doi.org/10.1103/PhysRevLett.110.166101
https://doi.org/10.1103/PhysRevLett.110.166101
https://doi.org/10.1016/0021-9797(76)90227-7
https://doi.org/10.1016/0021-9797(76)90227-7
https://doi.org/10.1016/0021-9797(76)90227-7
https://doi.org/10.1016/0021-9797(76)90227-7
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
http://facstaff.susqu.edu/brakke/evolver/evolver.html
https://doi.org/10.1103/PhysRevLett.87.225702
https://doi.org/10.1103/PhysRevLett.87.225702
https://doi.org/10.1103/PhysRevLett.87.225702
https://doi.org/10.1103/PhysRevLett.87.225702
https://doi.org/10.1016/S1359-6454(01)00393-7
https://doi.org/10.1016/S1359-6454(01)00393-7
https://doi.org/10.1016/S1359-6454(01)00393-7
https://doi.org/10.1016/S1359-6454(01)00393-7
https://doi.org/10.1103/PhysRevE.92.053305
https://doi.org/10.1103/PhysRevE.92.053305
https://doi.org/10.1103/PhysRevE.92.053305
https://doi.org/10.1103/PhysRevE.92.053305
https://doi.org/10.1140/epje/i2004-10008-2
https://doi.org/10.1140/epje/i2004-10008-2
https://doi.org/10.1140/epje/i2004-10008-2
https://doi.org/10.1140/epje/i2004-10008-2



