
PHYSICAL REVIEW E 94, 053110 (2016)

Sound propagation through a rarefied gas in rectangular channels
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Sound propagation through a rarefied gas inside a two-dimensional cavity is investigated on the basis of the
linearized Boltzmann equation, where one of the cavity walls oscillates harmonically in the direction normal
to its own surface and is considered as a sound source. An analytical solution at high oscillation frequencies is
obtained and detailed numerical results for a wide range of gas rarefaction are presented. The influence of both
the aspect ratio of the cavity and the oscillation frequency on the average gas pressure exerted on the oscillating
plate is studied. It is found that, at large values of the aspect ratio, the average pressure oscillates when the
sound frequency varies, due to the sound resonance and antiresonance along the oscillation direction of the plate.
However, at small values of the aspect ratio, the average pressure is a monotonically decreasing function of the
sound frequency, which cannot be observed in the corresponding one-dimensional counterpart. This is explained
by the sound interference in the direction parallel to the oscillating plate. The influence of both the cavity aspect
ratio and oscillation frequency on the sound speed is also investigated: Again it is found that a different aspect
ratio leads to the different behavior of the sound speed as a function of the oscillation frequency.
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I. INTRODUCTION

The study of rarefied gas flows is important for a broad range
of industrial applications and has attracted significant attention
due to the rapid development of microelectromechanical
systems (MEMS) [1]. As the systems approach the microscale
or nanoscale, the Navier-Stokes equations, based on the
continuum-fluid hypothesis, become invalid. The Knudsen
number Kn, defined as the ratio of the mean free path of
gas molecules to the characteristic system length, is usually
adopted to quantify the deviation from the continuum behavior
[2]. The gas flow is in the continuum regime when the Knudsen
number is less than 0.001. When 0.001 � Kn � 0.1, the gas
flow is in the slip regime, where the Navier-Stokes equations
with the velocity slip and temperature jump boundary condi-
tions may still be valid. When 0.1 � Kn � 10 and Kn � 10,
the gas flows are in the transition and free-molecular regimes,
respectively, where counterintuitive phenomena arise due to
the rarefaction effects [3–5], including the nonlinear stress or
strain-rate behavior, the Knudsen paradox where the dimen-
sionless mass flow rate in Poiseuille flow could increase when
the gas pressure decreases [6,7], and the thermal transpiration
where gas molecules move from the cold region to hot [8–10].
At the standard pressure and temperature, air has a molecular
mean free path of about 68 nm, which is comparable to the
length of a MEMS device, and the Boltzmann equation must
be used to capture the rarefaction effects.

The problem becomes even more complicated in oscillatory
gas flows, where the deviation from the continuum behavior
is determined not only by the Knudsen number, but also
by the ratio of the characteristic oscillation frequency to the
mean molecular collision frequency. Even at small Knudsen
numbers, the oscillatory gas flow cannot be properly described
by Navier-Stokes equations when the oscillation frequency is
comparable to or even higher than the mean molecular collision
frequency [11,12].

Oscillatory gas flows are common in MEMS devices and
the investigation of the damping force exerted by the gas

on the oscillatory parts of a MEMS device is important in
a number of applications such as inertial sensing and acoustic
transduction. In the past decade, oscillatory gas flows have
been extensively studied [11–20], most of which, however, are
for one-dimensional flows between two parallel plates. While
the viscous damping is dominant at low oscillation frequencies,
at relatively high oscillation frequencies, inertial force leads
to the interference of sound waves along the oscillating
direction of the plate, so the magnitude of the damping
force on the oscillating plate oscillates when the oscillation
frequency varies [18]. This interference introduces new phe-
nomena in oscillatory rarefied gas flows; for instance, in the
two-dimensional cavity flow, due to the antiresonance, the
damping force on the oscillating lid can even be smaller than
that in the one-dimensional counterpart, when the cavity aspect
ratio is properly chosen [21].

In this paper we study the sound propagation inside a
two-dimensional cavity, where the sound is generated by the
oscillation of one of the cavity walls. We investigate the
influence of both the cavity aspect ratio and the oscillation
frequency on the damping force exerted on the oscillating
plate and phase speed of the sound. Two types of resonances,
both parallel and perpendicular to the oscillating direction of
the plate, is observed and analyzed, through the analytical cal-
culation and numerical simulation of the linearized Boltzmann
equation (LBE). The threshold of the cavity aspect ratio that
leads to different resonance mechanism is also obtained.

II. STATE OF THE PROBLEM

We consider a rarefied flow of a monatomic gas inside a
cuboid, driven by a plate at x = 0 that oscillates harmonically
in the x direction with the frequency ω, while the other walls
are fixed. All the walls of the cuboid are held at the same
constant temperature T0. The length of the cuboid in the z

direction is much larger than the width L and height H in the
x and y directions, respectively, so the flow is effectively two
dimensional (see Fig. 1). The velocity of the oscillating plate
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FIG. 1. Cavity geometry and two types of interference. The left
plate oscillating harmonically in the x direction is considered as the
sound source. Type I and type II interference occur in the directions
parallel and perpendicular to the motion of the oscillating plate,
respectively.

depends on time t through the formula

Uw = Re[U0 exp(iωt)], (1)

where i is the imaginary unit and Re denotes the real part of a
complex expression. The velocity amplitude U0 is assumed to
be very small when compared to the most probable speed vm

of the gas molecules, i.e.,

U0 � vm, vm =
√

2kBT0

m
, (2)

where kB is the Boltzmann constant and m is the molecular
mass of the gas. The induced oscillatory rarefied gas flows are
characterized by the cavity aspect ratio

A = H

L
, (3)

the Strouhal number

S = ωL

vm

, (4)

and the Knudsen number

Kn = λ

L
= μ

n0L

√
π

2mkBT0
, (5)

where λ is the molecular mean free path, n0 is the molecular
number density in equilibrium, and μ is the shear viscosity of
the gas at the reference temperature T0.

We use the Boltzmann equation to describe the rarefied
gas dynamics, which can be linearized due to the fact that
the deviation from the global equilibrium state is small: The
velocity distribution function, normalized by n0/v

3
m, can be

expressed as

f (v,x,y,t) = feq(v) + h′(v,x,y,t), (6)

where v = (vx,vy,vz) is the three-dimensional molecular
velocity and h′ is the perturbed distribution function describing
the derivation of the system state from the global Maxwellian
state feq :

feq(v) = π−3/2exp(−v2). (7)

Note that to linearize the Boltzmann equation and various
kinetic model equations (such as the Shakhov equation [22]),

usually, the distribution function is expressed as f = feq(1 +
h′), which makes the LBE elegant and its calculation simple.
Unfortunately, this kind of linearization does not allow the
LBE to be solved numerically by the fast spectral method
[23]; actually, the fast spectral method only works if we
express the distribution function in the form of Eq. (6). So the
unusual linearization given by Eq. (6) is used. The perturbed
distribution function h′ satisfying |h′/feq | � 1 is governed by
the following LBE:

∂h′

∂t
+ vx

∂h′

∂x
+ vy

∂h′

∂y

=
∫∫

B(θ,|v − v∗|)[feq(v′)h′(v′
∗) + feq(v′

∗)h′(v′)

− feq (v)h′(v∗) − feq(v∗)h′(v)]d�dv∗. (8)

The left-hand side of Eq. (8) describes the free streaming
of gas molecules, while the right-hand side of Eq. (8) is the
linearized Boltzmann collision operator. In addition, v and
v∗ are the precollision velocities of the first and second gas
molecules, respectively, while v′ and v′

∗ are the corresponding
postcollision velocities; they are related to each other as

v′ = v + v∗
2

+ |v − v∗|
2

�,

v′
∗ = v + v∗

2
− |v − v∗|

2
�,

(9)

where � is the unit vector along the direction of the post-
relative velocity v′ − v′

∗. Further, θ is the deflection angle
that satisfies cos θ = � · (v − v∗)/|v − v∗|. Finally, B(θ,|v −
v∗|) is the collision kernel, which is determined by the
intermolecular potential. Detailed forms of B(θ,|v − v∗|) are
complicated for Lennard-Jones potentials [24,25], so here we
use the following special form [23,26]:

B(θ,|v − v∗|) = Cα|v − v∗|α sin(α−1)/2(θ ), (10)

where Cα and α are two constants and the shear viscosity of
the gas is proportional to the temperature raised to the power
of 1 − α/2 (the same relation to that of power-law potentials).
Specifically, the hard-sphere and Maxwellian gas molecules
have α = 1 and 0, respectively. Numerical results below in
Sec. III will show that the detailed form of B(θ,|v − v∗|) has
very limited influence on macroscopic flow quantities such as
the gas pressure.

We are interested in the state when the harmonic oscillation
in the gas has been fully established, so the state of the gas
varies with the same frequency as the oscillating plate. In this
case, the perturbed distribution function h′ can be expressed
as

h′ = Re[exp(iωt)h(v,x,y)]
U0

vm

, (11)

where h is the complex perturbation function, governed by the
following time-independent LBE [21,23]:

iSh + vx

∂h

∂x
+ vy

∂h

∂y
= L(feq,h) − ν(v)h, (12)

where the equilibrium collision frequency is

ν(v) =
∫∫

B(θ,|v − v∗|)feq(v∗)d�dv∗ (13)
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and the gain part of the linearized Boltzmann collision operator
is

L(feq,h) =
∫∫

d�dv∗B(θ,|v − v∗|)

× [2feq(v′)h(v′
∗) − feq(v)h(v∗)]. (14)

Note that in writing Eqs. (12)–(14) the molecular velocity
v and spatial variables x and y have been normalized by vm

and L, respectively. The constant Cα in Eq. (10) is now related
to the Knudsen number as [23,26]

Cα = 5

2α+11/2
2
(

α+7
4

)
Kn

, (15)

where 
 is the Gamma function.
The problem is symmetric about the horizontal line y =

A/2, i.e., h(x,y,vx,vy,vz) = h(x,A − y,vx, − vy,vz). There-
fore, only the bottom half domain (0 � x � 1 and 0 �
y � A/2) is simulated, with the following diffuse boundary
conditions at the left, bottom, and right walls:

h

feq

=

⎧⎪⎨
⎪⎩

√
π + 2vx − 2

√
π

∫
vx<0 vxh dv, x = 0,vx > 0

−2
√

π
∫
vy<0 vyh dv, y = 0,vy > 0

2
√

π
∫
vx>0 vxh dv, x = 1,vx < 0.

(16)

When h is obtained, the perturbed pressure field (normal-
ized by 2n0kBT0U0/vm) in the x direction can be calculated
as Pxx(t,x,y) = Re[exp(iωt)pxx(x,y)], where pxx(x,y) =∫

v2
xh(v,x,y)dv. We are most interested in the average gas

pressure defined by

p̄(x) =
∫ A

0 pxx(x,y)dy

A
. (17)

The amplitude of the average pressure is defined as |p̄(x)|,
while the phase of the average pressure is calculated by the
four-quadrant inverse tangent φ = atan2[Im(p̄),Re(p̄)], where
Im represents the imaginary part of a complex number. The
phase unwrapping algorithm in MATLAB is used to calculate the
phase of the average pressure in the spatial domain 0 � x � 1.

III. ANALYTICAL AND NUMERICAL METHODS

The analytical solution for the average pressure can be
obtained when the oscillation frequency of the plate is much
larger than the mean molecular collision frequency (which is
on the order of n0kBT0/μ), i.e., when KnS � 1. In this case,
the term on the right-hand side of Eq. (12) can be neglected.
Integrating Eq. (12) with respect to y and introducing a
distribution function

g(x,v) =
∫ A

0 h(x,y,v)dy

A
, (18)

we obtain

iSg + vx

∂g

∂x
= vy

h(y = 0) − h(y = A)

A
. (19)

We notice that the last term in Eq. (19) can also be neglected
when S � 1. Therefore, we obtain

iSg + vx

dg

dx
= 0. (20)

From boundary conditions (16) and the definition of g in
Eq. (18), the boundary condition for g at x = 0 and vx > 0 is

g(0,v) =
(√

π + 2vx − 2
√

π

∫
vx<0

vxg dv
)

feq(v), (21)

while that at x = 1 and vx < 0 is

g(1,v) = 2
√

πfeq(v)
∫

vx>0
vxg dv. (22)

Hence the analytical solution for g reads

g(x,v) =
{

(2vx + νL)feq(v) exp
(−i Sx

vx

)
, vx > 0

νRfeq(v) exp
(−i S(x−1)

vx

)
, vx < 0,

(23)

where

νL =
√

π + 8I1(iS)I2(iS)

1 − 4I1(iS)
,

νR =2
√

πI1(iS) + 4I2(iS)

1 − 4I1(iS)
,

(24)

with Im(z) = ∫ ∞
0 cm exp(−c2 − z/c)dc.

The average pressure p̄(x) = ∫
v2

xg(x,v)dv is then calcu-
lated to be

p̄(x) = νR√
π

I2[iS(x − 1)] + 2√
π

I3(iSx) + νL√
π

I2(iSx).

(25)

Note that the above analytical solution is exactly the same
as that for the limiting case of A = ∞, i.e., a one-dimensional
sound wave propagating between two infinite parallel plates
[12]. It shows that when KnS � 1 and S � 1, the average
pressure p̄ has nothing to do with the cavity aspect ratio A.
When S → ∞, the average pressure at x = 0 (related to the
damping force exerted on the oscillating plate) is

p̄(0) → 1√
π

+
√

π

4
, (26)

while the average pressure exerted on the right plate is
p̄(1) → 0.

When the oscillation frequency is not high enough, the LBE
must be solved numerically. We adopt the following iterative
scheme to solve Eq. (12):

(iS + ν)hn+1 + vx

∂hn+1

∂x
+ vy

∂hn+1

∂y
= L(feq,h

n), (27)

where the superscript n denotes the iteration step; spatial
derivatives ∂h/∂x and ∂h/∂y are approximated by the
second-order upwind finite difference; ν(v) and L(feq,h),
defined in Eqs. (13) and (14), are approximated by the
fast spectral method [23]. The iteration is terminated when
the relative error between two consecutive iteration steps∫ |V n+1 − V n|2dx dy/

∫ |V n|2dx dy (where V is the macro-
scopic quantity such as the density, velocity, and pressure) is
less than 10−10.

In numerical simulations, the three-dimensional molecular
velocity space v is represented by discrete velocities: The
velocity component vz is represented by 24 uniform discrete
points in the region of [−6,6], while the velocity components
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FIG. 2. (a) Amplitude of the average pressure at the oscillating
plate when A = ∞: comparison between the results of the LBE
for hard-sphere molecules (lines) and the Shakhov kinetic model
(symbols) (adopted from Fig. 1 in Ref. [12]). Note that here δ =√

π/2 KnS and S are equivalent to the θ and L defined in Ref. [12],
respectively. (b) Absolute value of the relative difference in |p̄(0)|
between the LBE for the hard-sphere and Maxwellian molecules.

vx and vy are represented by Nv nonuniform points in each
direction

vx,y = 4

(Nv − 1)3
(−Nv + 1,−Nv + 3, . . . ,Nv − 1)3, (28)

where most of the discrete velocities are located near vx,y = 0,
to capture the large discontinuities and rapid variations, if any,
in the distribution function. We choose Nv = 48 (or 96) when
Kn = 1 and 0.1 (or Kn = 10).

Similarly, the physical space x and y is divided into Nx ×
Ny nonuniform cells, with most of the points located near the
cavity walls [23]:

x = (
10 − 15sx + 6s2

x

)
s3
x , sx = (0,1, . . . ,Nx)

Nx

y = (
10 − 15sy + 6s2

y

)
s3
yA, sy = (0,1, . . . ,Ny)

2Ny

.

(29)

We choose Nx = 50 and Ny = 50 when the cavity aspect
ratio A � 1 and Ny = 70 when A = 2. The numerical method
has been proven accurate [21,23], in a manner that doubling
the number of discretization points in both physical and
velocity spaces produces relative differences in macroscopic
quantities (such as the amplitude of the average pressure) less
than 0.5%.

To demonstrate the accuracy of our numerical method, we
consider the sound propagation between two parallel plates
(i.e., A = ∞) and compare the numerical results of the LBE

for hard-sphere molecules with those [12] of the Shakhov
kinetic model equation [22], in Fig. 2(a). In the numerical
simulation, the term vy∂h/∂y in Eq. (12) is dropped. When
δ = √

π/2 KnS = 0.1 and 1, the physical space 0 � x � 1
is divided into 50 nonuniform cells according to Eq. (29),
while vx is represented by 96 nonuniform points according
to Eq. (28), because the Knudsen numbers are large. When
δ = 10, the physical space is divided into 150 nonuniform
cells and vx is discretized by 48 nonuniform points. The
comparison in Fig. 2(a) shows that our method has good
accuracy.

We have also solved the LBE for Maxwellian molecules
and found that the difference from that of the hard-sphere
molecules is very small. For instance, the relative difference
in the amplitude of the average gas pressure exerted on the
oscillating plate, over a wide range of S and KnS, is within
4% [see Fig. 2(b)]. This means that the influence of the
intermolecular potential is negligible; hence in the following,
the LBE for the hard-sphere molecules is used.

It is worth mentioning that at large values of Kn and S,
perturbed distribution functions near cavity walls not only
have large discontinuities at vx = 0, but also oscillate rapidly
as vx changes (see the marginal distribution function in Fig. 3,
where the distribution function becomes more and more
complicated when S increases). This poses a great challenge
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FIG. 3. Marginal perturbed distribution function at the oscillating
plate

∫∫
h(x = 0,v)dvydvz when A = ∞, Kn = 5

√
π , and the

Strouhal number is (a) S = 0.1, (b) S = 1, and (c) S = 10. Large
discontinuities and rapid oscillations near vx = 0 can be clearly seen.
Solid lines (or circles) and dashed lines (or triangles) show the real
and imaginary parts of the distribution function, respectively, when
Nv = 192 (or 96). Note that following the rescaling of the perturbed
distribution function in Eq. (11), |h/feq | is not necessary far less than
one.
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to the numerical simulation. To reduce the computational cost,
Kalempa and Sharipov first introduced additional distribution
functions to cast the three-dimensional molecular velocity
space as a one-dimensional molecular velocity space and
then split the solution into two parts: The most oscillatory
part of the solution is obtained analytically [12,27], while
the less oscillatory part is solved numerically, by using a
large number of uniformly discretized velocities. This method,
however, may not work in the two-dimensional cavity flow
due to the huge computational cost. Alternatively, on noticing
that large discontinuities and rapid variations in distribution
functions occur near vx = 0 for the one-dimensional flow
and vx,vy = 0 for the two-dimensional flow, we adopt the
nonuniform discrete velocities, given by Eq. (28), to tackle
this problem. The numerical example in Fig. 3 shows that 96
nonuniform discrete velocities in the vx direction can well
capture the oscillatory behavior in the distribution function;
as a matter of fact, macroscopic flow quantities such as
the average gas pressure do not change (up to the fourth

decimal) when increasing the number of discrete velocities
from Nv = 96 to 192.

IV. NUMERICAL RESULTS

Now we employ the numerical simulation to investigate
the behavior of the average gas pressure and sound speed in
the free-molecular, transition, and slip flow regimes, over the
whole range of the Strouhal number and a wide range of the
cavity aspect ratio.

A. Average gas pressure

We first consider the free-molecular flow with Kn being
infinity, where Eq. (12) is solved by setting the right-hand-side
term to zero. Profiles of the average pressure (both amplitude
and phase) at three typical Strouhal numbers S are shown
in Fig. 4. We choose S = 1.5, 3, and 9 because they are
respectively close to the first antiresonance and resonance
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FIG. 4. Amplitude and phase of the average pressure in the free-molecular flow regime with 1/Kn = 0, when the Strouhal number is (a)
S = 1.5, (b) S = 3, and (c) S = 9. Along the direction of the arrow, the cavity aspect ratios are 0.125, 0.25, 0.5, 1, 2, and infinity, respectively.
In the inset of (c), the phases of the average pressure for different aspect ratios are nearly indistinguishable, so only the phase for A = ∞ is
shown.
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FIG. 5. (a) Amplitude and (b) phase of the average pressure at the
oscillating plate in the free-molecular flow regime with 1/Kn = 0.
Along the direction of the arrow, the cavity aspect ratios are 0.125,
0.25, 0.5, 1, 2, and infinity, respectively.

frequencies and the high oscillation frequency limit (see
Fig. 5). It is clear that the cavity aspect ratio A has a strong
influence on the average gas pressure. When A is small, say,
A = 0.5, 0.25, or 0.125, the amplitude of the average pressure
decreases as the distance to the sound source x increases
(except that it increases slightly near the right plate). This
implies that most of the sound energy is concentrated near
the sound source: The higher the oscillation frequency and the
smaller the aspect ratio, the more the energy is concentrated.
However, when A is large, say, A = 2 and ∞, only at large
oscillation frequencies does the amplitude of the average
pressure decrease with x in general; in contrast, at S = 1.5
the amplitude increases as the distance to the sound source x

decreases and at S = 3 the amplitude first decreases and then
increases as x increases. From Fig. 4(c) we see that at S = 9 the
average pressure at the oscillating plate is already very close to
the asymptotic value in Eq. (26), however, the average pressure
exerted on the right plate is still far away from the asymptotic
value zero, indicating that the high oscillation frequency limit
has not been fully reached. From the three insets in Fig. 4 we
can see that the phase of the average pressure is not a linear
function of x in the whole domain, which means that the phase
speed of the sound wave varies by location.

Figure 5 depicts the average pressure on the oscillating
plates, as a function of the Strouhal number S, at six different

cavity aspect ratios. At large values of A, as the Strouhal
number increases, the amplitude of the average pressure first
decreases, then oscillates several times, and finally approaches
a constant value given by Eq. (26) when the oscillation
frequency is high. As the aspect ratio decreases, the oscillatory
behavior of the average pressure, as a function of S, becomes
weaker and weaker. When the aspect ratio is small enough, say,
A = 0.25 and 0.125, the oscillatory behavior is completely
eliminated. In this case, the increase of the Strouhal number
leads to the decrease of the amplitude of the average pressure
and the smaller the value of the aspect ratio A, the slower the
decrease. The behavior of the phase of the average pressure as
a function of the Strouhal number is, however, in the reverse
direction to the amplitude of the average pressure. That is,
while the amplitude decreases (or increases) with increasing
S, the phase increases (or decreases), which approaches zero
when the oscillation frequency is high.

In the one-dimensional geometry (corresponding to A being
infinity), the oscillatory behavior of the average pressure as
a function of S can be explained by the sound interference
[18,21]. In the free-molecular flow regime, the binary collision
is negligible. Using the method of characteristics, Eq. (12) is
rewritten as

iSh + ξ
∂h

∂s
= 0, ξ =

√
v2

x + v2
y, (30)

where ξ is the molecular speed and s is the coordinate along
the characteristic line [28]. Choosing ξ to be the most probable
speed, Eq. (30) becomes iSh + ∂h/∂s = 0, which shows that
the phase of the distribution function remains unchanged after
gas molecules have traveled a distance of 2π/S. Let us consider
molecules leaving the left plate at x = 0, hitting the right plate
at x = 1, then being reflected, and finally returning to the point
from which they left (see type I interference in Fig. 1). The
distance gas molecules have traveled is about 2. Therefore, at
the resonance frequency

Sr,1 	 m1π, m1 = 0,1,2, . . . , (31)

the two distribution functions corresponding to molecules
moving leftward and rightward have the same phase, so the gas
pressure exerted on the oscillating plate is maximum; similarly,
at the antiresonance frequency

Sa,1 	 2n1 + 1

2
π, n1 = 0,1,2, . . . , (32)

the gas pressure on the oscillating plate is minimum.
Equations (31) and (32) can roughly explain the first

antiresonance (S = 1.5 	 π/2) and resonance (S = 3.2 	 π )
frequencies in Fig. 5, when the cavity aspect ratio A is infinity.
It can be even applied to the cases of A = 2 and 1. However,
Eqs. (31) and (32) being derived from the type I interference
has nothing to do with the cavity aspect ratio and cannot
explain the behavior of the average pressure when A is small,
say, A = 0.25 and 0.125. This is because when A is small, gas
molecules reflected by the left plate have a very small chance
of hitting the right plate but are more likely to hit the top
and bottom plates, a scenario where the type II interference
becomes dominant (see Fig. 1). Consider molecules leaving the
left plate with velocities nearly parallel to the left plate, hitting
the top (or bottom) plate, then being reflected and hitting the
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bottom (or top) plate, and finally returning to the point from
which they left. The distance they have traveled is about 2A.
Therefore, the pressure on the oscillating plate is maximum
(minimum) at the resonance (antiresonance) frequency:

Sr,2 	 m2

A
π, Sa,2 	 2n2 + 1

2A
π, (33)

where m2 and n2 are non-negative constants.
The type II antiresonance can be used to qualitatively

explain the monotonic decrease of the amplitude of the average
pressure when S increases. For example, when A = 0.25, the
first type II antiresonance frequency is around 2π , which
means that the amplitude of the average pressure decreases
with S when S � 2π . In addition, since S = 2π is very
close to the high oscillation frequency limit, the amplitude of
the average pressure continues to decrease to the asymptotic
limit given by Eq. (26) when S further increases. Type II
antiresonance can also be used to explain why the amplitude of
the average pressure decreases more slowly at smaller cavity
aspect ratios: The smaller the aspect ratio A, the larger the
first antiresonance frequency Sa,2 and therefore the slower
the decay of the amplitude of the average pressure with
respect to S.

We then investigate the average pressure on the oscillating
plate in the transition and slip flow regimes. To this end, we
choose two representative Knudsen numbers Kn = 1 and 0.1.
The results for Kn = 0.1 are presented in Fig. 6, while those
for Kn = 1 are not shown as they are very close to those in
Fig. 5 in the free-molecular flow regime. Comparisons between
Figs. 5 and 6 illustrate that, as Kn decreases, the amplitude of
the average pressure oscillates more strongly with S when A

is large. This is comprehensible because smaller Kn leads to
smaller dissipation and hence a larger oscillation amplitude. In
fact, the oscillation is so large than the second antiresonance
can be easily observed in Fig. 6. Interestingly, we found that
the second antiresonance frequency can be predicted perfectly
by Sa,1 in Eq. (32) with n1 = 1, when the aspect ratio A is
large. We also found that the first antiresonance and resonance
frequency decreases slightly with Kn.

B. Sound speed near the source

We now investigate how the cavity aspect ratio affects the
sound speed. Although from the insets in Fig. 4 we see that the
phases of the average pressure are not linear functions of x in
the whole domain, they vary almost linearly with x close to the
sound source, which implies a constant sound speed. Hence we
calculate the phase speed of the sound near the sound source
as

vph = − S

(∂φ/∂x)|x=0
, (34)

where φ is the phase of the average gas pressure p̄. Note that
the sound speed has been normalized by the most probable
speed vm.

It will be interesting to note that, for rarefied gas flows, the
differential phase speed defined by Eq. (34) could be negative
at some location; for instance, see the variation of the phase
near x = 1, at small values of the cavity aspect ratio, in the
inset of Fig. 4(a). In this case, the integral phase speed, defined

S
0 1 2 3 4 5 6 7 8 9 10

|p̄
|

0

0.5

1

1.5

2

2.5
(a)

S
0 1 2 3 4 5 6 7 8 9 10

P
ha

se

-1

-0.5

0

0.5

1 (b)

FIG. 6. (a) Amplitude and (b) phase of the average pressure at the
oscillating plate when Kn = 0.1. Along the direction of the arrow, the
cavity aspect ratios are 0.125, 0.25, 0.5, 1, 2, and infinity, respectively.

by Eqs. (19) and (21) in Ref. [12], is introduced to calculate
the sound speed at the receptor. In the present paper, however,
we find that the differential phase speed is always positive near
the sound source (see the insets in Fig. 4 near x = 0), so only
Eq. (34) is considered.

The analytical solution for the phase speed can also be
obtained when KnS � 1 and S � 1. From Eq. (25) we find
that the average pressure near the sound source (when Sx → 0)
is

p̄(x) = 1√
π

+
√

π

4
− iSx 	 1 − iSx. (35)

Thus, the phase of the average pressure near the oscillating
plate is −Sx and the phase speed near the sound source equals
the most probable speed.

Typical profiles of the sound speed are depicted in Fig. 7
when Kn = ∞ and 0.1. It can be clearly seen that, when
S is large, the phase speed approaches the most probable
speed. From Fig. 7(a) we see that, when the cavity aspect
ratio A is large, the sound speed exhibits the same oscillatory
behavior (in phase) as the amplitude of the average pressure
in Figs. 5 and 6. From this it may be concluded that the more
(less) sound energy is concentrated near the oscillating plate,
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FIG. 7. Variation of the sound phase speed near the sound source
with the Strouhal number, at (a) large and (b) small values of the
cavity aspect ratio.

the larger (smaller) the sound speed is. However, when A

is small, the sound speed increases monotonically with S

[Fig. 7(b)], whereas the amplitude of the average pressure
decreases monotonically; that is, the phase speed and the
amplitude of the average pressure near the sound source are
out of phase. We also find that, when the values of Kn and S

are fixed, a smaller value of the cavity aspect ratio leads to a
smaller value of the sound speed, which is consistent with the
discovery in narrow channels [13].

V. CONCLUSION

The linearized Boltzmann equation has been solved ana-
lytical and numerically to study the sound propagation inside
rectangular cavities, where one of the cavity walls oscillates
and acts as the sound source. It has been found that the damping
force (average gas pressure) exerted on the oscillating plate and
the sound speed are significantly affected by the aspect ratio
of the cavity. When the aspect ratio is larger than the threshold
value of 0.5, the damping force and sound speed oscillate in
phase, as the oscillation frequency increases. However, when
the aspect ratio is less than 0.5, the changes of damping force
and sound speed are out of phase: As the oscillation frequency
increases, the damping force decreases, but the sound speed
increases. We attributed this exotic behavior of the damping
force in oscillatory rarefied gas flow to a type of sound
interference occurring in the direction perpendicular to the
motion of the oscillating plate. Our proposed simple analytical
expressions well predicted the resonance and antiresonance
frequencies which help to control the damping force by
choosing appropriate cavity aspect ratios.
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