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Fast algorithm for a three-dimensional synthetic model of intermittent turbulence
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Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, cubo 31 C, 87036 Rende (CS), Italy

Luca Sorriso-Valvo
Nanotec/CNR, U.O.S. di Rende, Ponte P. Bucci, cubo 31 C, 87036 Rende (CS), Italy

(Received 30 August 2016; published 10 November 2016)

Synthetic turbulence models are useful tools that provide realistic representations of turbulence, necessary
to test theoretical results, to serve as background fields in some numerical simulations, and to test analysis
tools. Models of one-dimensional (1D) and 3D synthetic turbulence previously developed still required large
computational resources. A “wavelet-based” model of synthetic turbulence, able to produce a field with tunable
spectral law, intermittency, and anisotropy, is presented here. The rapid algorithm introduced, based on the classic
p-model of intermittent turbulence, allows us to reach a broad spectral range using a modest computational effort.
The model has been tested against the standard diagnostics for intermittent turbulence, i.e., the spectral analysis,
the scale-dependent statistics of the field increments, and the multifractal analysis, all showing an excellent
response.
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I. INTRODUCTION

Turbulence represents a universal phenomenon charac-
terizing the dynamics of different kinds of fluids, such as
gases, liquids, plasmas, etc., both in nature and in laboratory
devices. It is responsible for the efficient transfer of energy
across scales, making the connection between the macroscopic
flow and the microscopic dissipation of its energy. Moreover,
turbulence plays a key role in determining various phenomena.
For instance, the anomalous diffusion of tracers in a flow may
be controlled by the properties of turbulence, and the transport
of charged particles in astrophysical or laboratory plasmas is
determined by the properties of the turbulent magnetic field.

The phenomenological description of hydrodynamic tur-
bulence by Kolmogorov [1] consists of a superposition of
velocity perturbations, whose energy is distributed over a
wide range of spatial scales. Each scale is coupled with the
other scales by nonlinear effects, which allow for energy to
be transferred from a given scale to another. Typically, it is
assumed that energy is injected at large spatial scales (injection
range) and is continuously transferred to smaller scales by
nonlinear effects across the inertial range, finally reaching the
smallest scales (dissipative range) where dissipation becomes
effective. The energy transfer process (cascade) taking place
in the inertial range gives rise to a typical power-law energy
spectrum: E(l) = E0(l/ l0)� , where E(l) is the energy of
fluctuations at the scale l, and l0 is a given reference scale
(typically, the integral scale) with E0 = E(l0). The exponent
� is determined by imposing the conservation of the spectral
energy flux ε through the different scales of the inertial range:
for an ordinary fluid, it is � = 5/3 [1], but different values
of � can be considered in different contexts. For instance,
in magnetohydrodynamics (MHD), assuming that nonlinear
interactions are limited by the propagation of perturbations
along the mean magnetic field, the value � = 3/2 can be
inferred [2,3].
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A peculiar property of turbulence is represented by inter-
mittency [4]. Considering the increments �v(x,X) = v(x +
X) − v(x) of the velocity field v at a given displacement X for
all the possible positions x, their statistical distribution f (�v)
is not self-similar at all the scales l = |X|. In particular, f (�v)
is essentially Gaussian at large scales, while for decreasing
l the tails of the distribution f (�v) become more and more
significant, indicating that fluctuations with amplitude much
larger than the rms value become more and more frequent upon
decreasing the scale l. The lack of self-similarity is refleced in
a nonlinear dependence of the scaling exponents ζq of structure
functions Sq(l) on the order q, Sq(l) ∝ lζq being the q-order
moment of the distribution f (�v) at the scale l.

Large-amplitude fluctuations at small scales appear to
be localized in space. Thus, it has been speculated that
intermittency is a consequence of a spatially nonuniform
spectral energy flux. Fluctuating energy tends to concentrate
at locations where the spectral flux is larger, and the energy
localization becomes more noticeable at smaller scales due to
a cumulative effect. Most of the models for the description of
intermittent turbulence are based on this idea. Examples are
the random-β model [5], the She and Lêveque model [6], and
the p-model introduced by Meneveau and Sreenivasan [7].
In the “p-model,” a one-dimensional (1D) spatial distribution
of the energy flux at different spatial scales is reconstructed
through a multiplicative process. Thus, an eddy at a given
scale l breaks in two eddies at the scale l/2, and the energy
flux ε associated with the parent eddy is unequally distributed
to the two daughter eddies, with fractions given by 2pε and
2(1 − p)ε, respectively, with 0.5 � p � 1. Thus, going from
larger to smaller scales, the energy flux tends to become more
and more spatially localized.

Intermittency is an intrinsic property of turbulence that has
been found both in laboratory experiments [8,9] and in natural
fluids such as atmosphere and astrophysical plasmas [10–13].
Thus, any model aimed at reproducing the main features of
turbulence should include intermittency. A natural way to
obtain a representation of turbulence is by direct simulations
in which a numerical solution of fluid equations within a
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given spatial domain is calculated starting from suitable initial
conditions. This approach has the advantage of being based
on first principles (such as mass, momentum, and energy
conservation); in particular, direct simulations of both fluid
and MHD equations reproduce intermittency self-consistently.
However, it is limited by finite space resolution, which
determines the extension of the range of spatial scales. Such
a limitation can become very severe in 3D configurations:
for high-Reynolds number fluids, as typically happens in
astrophysical contexts, realistic simulations would require
huge computational efforts.

Another possibility to tackle a turbulence description is
represented by “synthetic turbulence.” In this approach, the
main properties of a turbulent field are reproduced starting
from simplified models that mimic the processes taking
place in real turbulence. The main advantage of synthetic
turbulence is its reduced computational requirements with
respect to direct simulations. This allows us to represent,
for instance, spatial scale ranges that are larger than in
direct simulation, but employing smaller computing resources.
Synthetic turbulence can be useful in particular contexts, such
as generating initial conditions for numerical simulations [14];
describing processes that involve very different spatial scales
(e.g., particle transport or acceleration, diffusion, and drop
formation) [15]; understanding fundamental scaling properties
of turbulence [16,17]; and evaluating subgrid stresses [18–20].
Different methods have been proposed to generate synthetic
turbulence with different features, according to the application
for which they have been conceived [21,22]. Juneja et al. [16]
presented a “wavelet-based” model, which produces a function
with the statistical properties of a signal measured along
a line in a turbulent field; in particular, intermittency is
reproduced. A generalization in three dimensions of such a
model has been proposed by Cametti et al. [23]. 3D models
obtained by a superposition of random-phase Fourier modes
with a given spectrum have been used to study transport
processes in turbulent magnetic fields (see Zimbardo et al. [24]
and Ruffolo et al. [25]); such models can include spectral
anisotropy, but phase randomness does not allow the inclusion
of intermittency. Time dependence has been included in a
1D model by Lepreti et al. [26], where time variation is
obtained by means of an associated shell model. A minimal
Lagrangian map method has been proposed by Rosales and
Meneveau [14,27] to reproduce 3D hydrodynamic turbulence,
and a recent generalization to the MHD case has been
presented by Subedi et al. [28]. Finally, a method to reconstruct
a 3D magnetic turbulence with nearly constant magnetic field
intensity and a prescribed spectrum has been proposed by
Roberts [29].

In this paper, we present a model of a synthetic turbulent
field, which belongs to the class of “wavelet-based” mod-
els [16]. Our model has many aspects similar to the model
by Cametti et al. [23], but with important differences. The
model by Cametti et al. suffers from strong limitations due
to large memory requirements when increasing the range of
spatial scales. In our model, we employ a different algorithm
that allows us to reproduce very large ranges of spatial scales
with very low memory requirements and short computational
times. This feature is very important in all the cases in which
a high-Reynolds-number turbulence is to be represented,

as typically happens in astrophysical applications. A more
detailed discussion on this point will be given in the next
section. Our model generates a solenoidal, time-independent,
three-component turbulent vector field within a 3D spatial
domain. The field is obtained as a superposition of “basis
functions” at different spatial scales and positions, whose
amplitude is determined through a multiplicative process
based on the p-model technique [7]. It can reproduce both
isotropic and anisotropic spectra; in the latter case, we can
also obtain the kind of anisotropy that can be inferred from the
so-called critical balance principle that has been formulated for
strong Alfvénic turbulence [30]. The synthetic field reproduces
the high-order statistics of a turbulent field, in particular
intermittency. Finally, the field is analytically calculated at any
spatial position without employing spatial grids; this feature
is particularly useful for test-particle applications because no
interpolation processes are required during the calculation of
particle evolution.

The plan of the paper is the following: in Sec. II the synthetic
turbulence model is described in detail, in Sec. III we validate
the model by analyzing its statistical properties, and in Sec. IV
we present the conclusions.

II. SYNTHETIC TURBULENCE MODEL

Our synthetic turbulence model generates a three-
component solenoidal time-independent turbulent field, which
will be denoted by v = v(x) = (vx,vy,vz). The field is defined
within a 3D spatial domain in the form of a parallelepiped D =
{x = (x,y,z)} = [0,Lx] × [0,Ly] × [0,Lz]. Periodicity is im-
posed on all the boundaries of the domain D. To simulate the
turbulent cascade, the field v is obtained through a suitable
superposition of localized “basis functions,” each of which
represents an eddy characterized by its spatial scale �, position,
amplitude, and spatial profile. The scales � have discrete values
�m that span a range corresponding to the inertial range of the
turbulence. The amplitudes of the eddies are derived taking
into account both their relationship with the average spectral
energy flux and the intermittent character of the local energy
flux. This is simulated through a multiplicative process similar
to that used in the p-model [7]. A detailed description of the
model is given in the following.

A. Spectrum and cell hierarchy

To simulate the process of the eddy breaking within the
turbulent cascade, we build a hierarchy of cells at different
spatial scales. Each scale is identified by the (integer) index
m = 0, . . . ,Ns , where Ns is the number of scales included
in the model. Each cell roughly corresponds to the support
of a localized function representing an eddy (see below). At
the largest scale, identified by the index m = 0, there is only
one cell, which coincides with the whole domain D; thus, the
corresponding typical size is L0 = (LxLyLz)1/3. The cells at
the next scale m = 1 are obtained by dividing all the edges of D

in two equal parts, thus obtaining eight equal parallelepipeds,
each occupying 1/8 of the volume of D. Such a process is
recursively repeated a number Ns of times. Thus, at the mth
scale, the cell size is

�x,m = 2−mLx, �y,m = 2−mLy, �z,m = 2−mLz (1)
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along x, y, and z, respectively, with m = 0, . . . ,Ns . At the mth
scale, the domain is divided into 23m cells, each occupying a
volume Vm = 2−3mL3

0 and with a typical size

�m = (�x,m �y,m �z,m)1/3 = 2−mL0. (2)

Note that every cell at any scale has the same aspect ratio as
the domain D; this feature will be relaxed in the case of an
anisotropic spectrum, as explained in Sec. II E. At any given
scale m, all the cells form a 3D lattice filling the whole domain
D. We indicate the cells by

C(i,j,k;m) = {(x,y,z)}
= [(i − 1)�x,m,i �x,m] × [(j − 1)�y,m,j �y,m]

×[(k − 1)�z,m,k �z,m]. (3)

Hereafter, the indexes i,j,k = 1, . . . ,2m will identify the cell
position within the 3D lattice at the mth scale. The total number
of cells contained in the model is indicated by

Ncell =
Ns∑

m=0

23m. (4)

Note that in the models by Juneja et al. [16] and Cametti
et al. [23], no cell hierarchy is used because each eddy can
occupy any position within the spatial domain.

Cells at the smallest scale have a size of the order of �Ns
=

2−Ns L0. We assume that the eddy amplitudes are nonvanishing
in the range of scales �I � �m � �d , where �I = 2−mI L0 and
�d = �Ns

correspond to the energy injection scale and to the
dissipative scale, respectively. Such a range represents the in-
ertial range of the turbulence. To have statistical homogeneity,
the injection scale �I must be sufficiently smaller than the
largest scale �0; we set mI = 2, corresponding to �I /�0 = 1/4.
An important parameter of the model is the spectral width r

defined as the ratio

r = �I /�d = 2Ns−mI . (5)

Within the inertial range, the mean fluctuation amplitude �vm

at the scale �m follows a power law

�vm = �vI

(
�m

�I

)h

, (6)

where �vI is the fluctuation amplitude at the injection scale
�I . The exponent h is equal to 1/3 in the case of a Kolmogorov
spectrum. As usual, an expression for the dissipative scale can
be found by imposing that at the scale �d the nonlinear time
τnl(�) = �/�v(�) is equal to the dissipative time τd (�) = �2/ν,
where ν is the dissipative coefficient. Using the relation (6),
this gives

�d ∼
(

ν

�vI

) 1
1+h

�
h

1+h

I = �I

Re
1

1+h

, (7)

where Re = �vI �I /ν is the Reynolds number. From Eq. (7),
using the relation (5), the Reynolds number Re can be related
to the ratio r and to the parameters of the model:

Re ∼
(

�I

�d

)1+h

= r1+h = 2(Ns−mI )(1+h). (8)

The tests of the model described in the next section have
been performed using Ns = 16. This corresponds to a spectral
width r = 214 � 1.6 × 104 giving a spectrum more than four
decades wide. Using Eq. (8) with h = 1/3 gives an estimation
for the Reynolds number Re ∼ 256/3 � 4 × 105. This value of
Re is more than two orders of magnitude larger than what can
be typically reached in 3D direct simulation with present-day
standard computational resources.

B. Eddy structure

The turbulent field is modeled as a superposition of spatially
localized eddies. Each eddy is associated with a cell, so that
the total number of eddies coincides with Ncell. We indicate
by �v(i,j,k;m) the field of the eddy associated with the cell
C(i,j,k;m). Since the field is solenoidal, we write it in terms of
a vector potential �(i,j,k;m):

�v(i,j,k;m)(x)=∇ × �(i,j,k;m)(x)=a(i,j,k;m) ∇ × �(i,j,k;m)(x),

(9)

where the vector function �(i,j,k;m) determines the spatial form
of the field �v(i,j,k;m). We choose the order of magnitude of
∇ × �(i,j,k;m) such that

|∇ × �(i,j,k;m)(x)| ∼ 1 (10)

for any scale m. With this choice, the quantity a(i,j,k;m) in
Eq. (9) represents the amplitude of the eddy. Both �v(i,j,k;m)(x)
and �(i,j,k;m)(x) are defined in the subdomain

D(i,j,k;m) = {(x,y,z)}
= [(

i − 3
2

)
�x,m,

(
i + 1

2

)
�x,m

]
×[(

j − 3
2

)
�y,m,

(
j + 1

2

)
�y,m

]
×[(

k − 3
2

)
�z,m,

(
k + 1

2

)
�z,m

]
(11)

and are vanishing outside D(i,j,k;m). Thus, D(i,j,k;m) repre-
sents the support of the functions �v(i,j,k;m) and �(i,j,k;m).
Comparing Eqs. (3) and (11), we see that the subdomain
D(i,j,k;m) is wider than the corresponding cell C(i,j,k;m) by a
factor 2 along each space direction. Thus, the fields of adjacent
cells partially overlap. Indeed, if D(i,j,k;m) and C(i,j,k;m) were
coincident, the fluctuating field at a given scale would vanish
at any surface border of adjacent cells; this would introduce an
artificial periodicity at all the scales that would affect statistical
homogeneity. Eddy overlapping is implemented in order to
avoid this problem.

Within a given subdomain D(i,j,k;m), a set of linearly
rescaled local spatial coordinates is defined by the relations

X(i;m) = X(i;m)(x) = 1

2 �x,m

[
x −

(
i − 1

2

)
�x,m

]
,

Y (j ;m) = Y (j ;m)(y) = 1

2 �y,m

[
y −

(
j − 1

2

)
�y,m

]
, (12)

Z(k;m) = Z(k;m)(z) = 1

2 �z,m

[
z −

(
k − 1

2

)
�z,m

]
.

The origin (X(i;m),Y (j ;m),Z(k;m)) = (0,0,0) of rescaled coordi-
nates corresponds to the center of the subdomain D(i,j,k;m),
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FIG. 1. (a) The profile of the undistorted base function F (t). (b)
An example of superposition of neighboring distorted eddies in a
given interval along the x direction.

while each rescaled coordinate varies in the interval
[−1/2,1/2] when the point (x,y,z) varies inside D(i,j,k;m).
The explicit form of the vector function �(i,j,k;m) is given in
terms of the rescaled coordinates by the following expression:

�(i,j,k;m)(x,y,z) = �m

L0
F (ξ (i,j,k;m)) F (η(i,j,k;m)) F (ζ (i,j,k;m)),

(13)

where the variables ξ (i,j,k;m), η(i,j,k;m), and ζ (i,j,k;m) are defined
below [Eqs. (14)], and F (t) is a polynomial function that
determines the spatial profile of the eddy. We used the form

F (t) = 256t8 − 256t6 + 96t4 − 16t2 + 1 for − 1
2 � t � 1

2 ,

F (t) = 0 elsewhere.

A plot of the function F (t) is given in Fig. 1(a). The
function F (t) has one single maximum at t = 0 [F (0) = 1] and
vanishes with its derivatives up to the fourth order at t = ±1/2.
Then, Eq. (13) corresponds with a localized eddy that matches
with neighboring eddies with continuous derivatives up to the
fourth order. This implies that the turbulent field is continuous
with all its derivatives up to the third order; in particular, the
vorticity (if we interpret v as a velocity field) or the current
density (if we interpret v as a magnetic field) is continuous
with its first derivatives. This feature is different from what is

done in the models by Juneja et al. [16] and Cametti et al. [23],
in which the profile of the eddy is simpler (a piecewise-linear
function), but discontinuities are present in the first derivatives
of the turbulent field. The choice of having a more regular
field has mainly been done in the perspective of employing the
model in test-particle studies; this is useful, for instance, if a
term proportional to the current density (the resistive electric
field) is included in the motion equation of particles. We also
note that F (t) ∼ 1 in the interval −1/2 � t � 1/2.

The variables ξ , η, and ζ are related to the rescaled
coordinates by the nonlinear relations

ξ (i,j,k;m) = X(i;m) + γ (i,j,k;m)
x

(
X(i;m)2 − 1

4

)
,

η(i,j,k;m) = Y (j ;m) + γ (i,j,k;m)
y

(
Y (j ;m)2 − 1

4

)
, (14)

ζ (i,j,k;m) = Z(k;m) + γ (i,j,k;m)
z

(
Z(k;m)2 − 1

4

)
,

where γ
(i,j,k;m)
x , γ

(i,j,k;m)
y , and γ

(i,j,k;m)
z are constants that

are randomly chosen in the interval [−1,1]. The nonlinear
mapping (14) introduces a distortion in the spatial profile of
the eddy along the three spatial directions, whose entity is
determined by the three random numbers γ

(i,j,k;m)
x , γ

(i,j,k;m)
y ,

and γ
(i,j,k;m)
z . This effect has been introduced in order to

improve the statistical homogeneity of the fluctuating field.
Note that the above regularity properties of the vector potential
are preserved by the mapping (14). A plot illustrative of the
profile of a few distorted and overlapped eddies is given in
Fig. 1(b). Finally, using the definitions (1), (2), (12), and (14),
it can be verified that the form (13) of the vector function
�(i,j,k;m) satisfies the assumption (10).

C. Turbulent cascade and intermittency

The amplitudes a(i,j,k;m) of the eddies are determined
considering the phenomenology of the turbulent cascade. In a
stationary situation, the mean energy transfer rate 〈ε〉 at a given
spatial scale � is independent of � [1], where angular brackets
indicate a spatial average. For hydrodynamic turbulence,
〈ε〉 ∼ [�v(�)]3/�, implying that the mean fluctuation at the
scale � is �v(�) ∝ �1/3. This scaling law corresponds to the
Kolmogorov spectrum, where the spectral energy density is
e(k) ∝ k−5/3, with k the wave number. In general, we assume
that in the inertial range �v follows the power law given in
Eq. (6), corresponding to e(k) ∝ k−(2h+1). However, it turns
out from experimental observation that the energy transfer
rate ε is not spatially uniform, but rather it changes from
place to place according to the effectiveness of nonlinear
couplings [8]. Consequently, the amplitude of fluctuations is
not spatially uniform, but fluctuations stronger than the average
value 〈�v(�)〉 form locally, and they are separated by regions
of weaker fluctuations. This feature propagates to smaller
scales through a multiplicative process, becoming more and
more relevant with decreasing �. Thus, at small scales the field
is characterized by very strong and localized fluctuations with
wide “quiet” regions in between: this is the phenomenology
of intermittency.

In our model, such a process is modeled as in the p-model
by Meneveau and Sreenivasan [7], where p is a fixed parameter
chosen in the interval [1/2,1]. Energy flows from large to
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FIG. 2. A graphic representation of the 12 “heritage patterns.” In each pattern, cells that receive more (less) energy are represented in red
(yellow).

smaller eddies with an unequal rate ε: each “parent” eddy at
a scale �m gives energy to its eight “daughter” eddies at the
scale �m+1 with two possible rates, namely εm+1 = 2pεm � εm

for four daughter eddies and εm+1 = 2(1 − p)εm � εm for the
remaining four daughter eddies. For p = 1/2, we have εm+1 =
εm, i.e., the rate ε is equal at all the scales and positions;
this corresponds to a non-intermittent fluctuating field. With
increasing p above the value 1/2, differences between the rates
increase and the level of intermittency increases as well. In our
synthetic turbulence model, p is a free parameter that we use to
investigate the effects of intermittency. More specifically, the
transfer rate is recursively determined for the eddy daughters
of the “(i,j,k; m)” parent eddy by

εm+1,n = 2p εm β(i,j,k;m)
n + 2(1 − p) εm

(
1 − β(i,j,k;m)

n

)
,

m = 0, . . . ,Ns, n = 1, . . . ,8, (15)

where β
(i,j,k;m)
n = 1 for four randomly chosen daughters

(for instance, n = 3,5,7,8) who receive more energy, while
β(i,j,k;m) = 0 for the remaining four daughters (n = 1,2,4,6)
who receive less energy. The choice of the four daughter eddies
that will receive more energy and of those that will receive less
energy is made among 12 possible “heritage patterns,” which
are sketched in Fig. 2.

Finally, the amplitude of any eddy is given by

a(i,j,k;m) = σ (i,j,k;m)a0

[
ε

(i,j,k;m)
m

ε0

�m

�0

]h

, (16)

where a0 = a(1,1,1;0) and ε0 = ε(1,1,1;0) are the amplitude and
the energy transfer rate at the largest scale, respectively, and
the exponent h is related to the spectral slope. The quantity
σ (i,j,k;m) in Eq. (16) represents the sign of the eddy, and
it is randomly chosen as σ (i,j,k;m) = 1 or σ (i,j,k;m) = −1. In
conclusion, the turbulent field is given by

v(x) =
Ns∑

m=mI

2m∑
i,j,k=1

∇ × �(i,j,k;m)(x)

=
Ns∑

m=mI

2m∑
i,j,k=1

a(i,j,k;m) ∇ × �(i,j,k;m)(x), (17)

where the derivatives in the ∇ operator are to be calculated
with respect to the coordinates x, y, and z, and the index mI

identifies the injection scale �I . Using the expressions given
in Eqs. (12)–(14), the analytical form of all the quantities
appearing in Eq. (17) can be explicitly calculated.

D. Eddy superposition algorithm

Equation (17) gives the turbulent field as a superposition of
fluctuating fields, each one associated with a particular eddy.
As mentioned before, in our model the total number of eddies
coincides with the number Ncell of cells, given in Eq. (4). Then,
the number of eddies increases exponentially with the number
of scales Ns included in the model; for instance, using Ns = 16
we have Ncell � 3 × 1014, which is a very large number of
eddies. It would be difficult to store all the information defining
all the eddies in the computer memory for high values of
Ncell because of the large memory requirements. This is the
case, for example, in the 3D model by Cametti et al. [23],
where the position of each eddy is randomly chosen within the
spatial domain; as a result, the memory requirement increases
exponentially with Ns and obliges one to use relatively small
values for Ns , i.e., relatively small spectral widths r . In fact, the
spectral width considered in Ref. [23] is of the order of two
decades. In the present model, we use a different algorithm
that avoids using large memory storage power, even for very
large values of Ncell. This allows us to reach larger spectral
widths r with a modest computational effort. This aspect is
important for having a low-cost synthetic turbulence model,
as is desirable. In the following, we describe how our algorithm
is built.

(a) In our model, eddies are not randomly translated. Thus,
the location of the support D(i,j,k;m) of any eddy is known a
priori [Eq. (11)]. As a consequence, when calculating v at
a given spatial point x, only a small number of terms give
a nonvanishing contribution to the sum of Eq. (17), namely
those terms corresponding to eddies whose support contains
the point x. Taking into account the partial overlapping of
neighboring eddies, it can be verified that, for a given position
x and for a given value of the scale index m, only eight eddies
satisfy the following condition:

x ∈ D(i,j,k;m), (18)

and then they contribute to build the field v at the position
x. The algorithm first selects these eddies on the base of
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the position x, taking into account the partial overlapping of
neighboring eddies, as well as periodicity when eddies are
close to the boundaries of the spatial domain. We indicate
the eight selected eddies satisfying the condition (18) and
belonging to the mth scale by the indexes (μ;x;m), with μ =
1, . . . ,8. Thus, Eq. (17) is replaced by

v(x) =
Ns∑

m=mI

8∑
μ=1

∇ × �(μ;x;m)(x), (19)

where �(μ;x;m) is the vector potential associated with the
eddy whose support is D(μ;x;m), satisfying the condition (18).
Equation (19) indicates that the number of terms that have to
be calculated when evaluating the field at a position x is now
Nterm = 8 Ns , which is much smaller than Ncell. Moreover,
while Ncell increases exponentially with the number Ns of
scales, Nterm is simply proportional to Ns . This fact allows for
an extremely fast evaluation of the turbulent field, even for
large spectral width. For instance, using a number Ns = 16
of scales, corresponding to a spectral width larger than four
decades (r � 1.6 × 104 with mI = 2), only 128 terms are
included in the sum (19). Moreover, increasing the number
of scales Ns by a factor 2 would increase the spectral range
by a factor 2Ns while the computation time would simply be
increased by a factor 2.

(b) As explained above, the vector potential �(i,j,k;m)

associated with each eddy is characterized by a set of random
parameters: (i) γ

(i,j,k;m)
n , which defines the distortion of each

eddy [Eq. (14)]; (ii) the sign σ (i,j,k;m) [Eq. (16)]; and (iii)
β

(i,j,k;m)
l , which defines the energy transfer rate of each eddy

in terms of the rate of its parent eddy [Eq. (15)], which, in
turn, determines the eddy amplitude. To calculate the sum in
Eq. (19), we have to know all these parameters for the Nterm

eddies involved in the sum. In principle, this could be done
by calculating a priori these random quantities for all the
eddies and storing this information in the computer memory.
Then, when a given eddy is involved in the field evaluation,
the corresponding quantities could be recalled and used to
calculate the field. However, the total number of eddies Ncell

can be very large; for instance, using a number of scales
Ns = 16, we have Ncell � 3 × 1014 [Eq. (4)]. In that case,
storing the information defining all the eddies would require a
huge amount of memory. For that reason, we used a different
procedure, which is described in the following. Since the
eddies involved in the sum of Eq. (19) have been selected
only on the base of their location with respect to the position x
[condition (18)], their defining parameters must depend only
on the location of the eddies within the lattice of cells. Such
parameters are determined in the following way: for any given
cell, an integer λ(i,j,k;m) is calculated using the expression

λ(i,j,k;m) = i + (j − 1)2m + (k − 1)22m + νm, (20)

where the integer νm is defined as follows:

νm =
{

0 if m = 0,∑m−1
n=0 23m if m � 1.

(21)

It can be verified that, for m varying between 0 and Ns

and for i, j , and k varying between 1 and 2m, the expres-
sion (20) generates all the integers between 1 and Ncell. This

defines a one-to-one correspondence between the set {1 � λ �
Ncell, λ integer} and the set of cells. In other words, λ(i,j,k;m)

represent an absolute address for any cell. The integer λ(i,j,k;m)

is used as a seed for a random number generating routine
(RNGR), which is called a fixed number isample of times,
with isample an integer. Finally, the resulting number calculated
by the RNGR is used to generate the parameters γ

(i,j,k;m)
n ,

σ (i,j,k;m), and β
(i,j,k;m)
l , which define the eddy associated

with the given cell. In this way, the properties of the Nterm

eddies appearing in the sum (19) are univocally determined as
functions of the given position x. This completely defines all
the quantities in Eq. (19) and allows for an explicit evaluation
of the field v at any spatial position x. Moreover, different
choices of the integer isample lead to to different realizations
of the turbulent field. This allows us to build an ensemble of
configurations for the turbulent field.

Strictly speaking, the parameters γ
(i,j,k;m)
n , σ (i,j,k;m), and

β
(i,j,k;m)
l are not random quantities because they are univocally

determined as soon as the position x has been chosen. On the
other hand, the set of possible values of the seed λ(i,j,k;m) is
formed by Ncell of values, which is an extremely large value
[Eq. (4)]. This fact, in practice, ensures a global randomness
of the parameters that define the structure of single eddies. We
note that in the above-described algorithm, nothing needs to be
kept in memory: each time the field v needs to be calculated
at a position x, it is done by deducing all the properties of
the Nterm involved with the eddies directly from their absolute
location λ(i,j,k;m).

Finally, it should be pointed out that, at variance with other
methods, no spatial grid is used; on the contrary, the field
is directly calculated at the given spatial point without any
interpolation procedure.

E. Anisotropic spectrum

In many examples of real-world flows, the turbulence spec-
trum is not isotropic in the wave-vector space. For instance,
this happens in MHD when a large-scale magnetic field B0 is
present. In this case, B0 introduces a preferential direction,
and the energy cascade tends to develop preferentially in
the directions perpendicular to B0. This generates anisotropic
spectra both for the velocity and for the magnetic-field
perturbations, in which perpendicular wave vectors prevail
over parallel ones. This has been shown in theoretical studies
(e.g., [31–33]). Moreover, observations indicate that in the
solar wind turbulence spectrum, the distribution of wave
vectors of magnetic fluctuations has a significant population
quasiperpendicular to the mean magnetic field [34,35].

Within that context, Goldreich and Sridhar [30] introduced
the principle of “critical balance.” In that formulation, it
is assumed that the nonlinear time for an eddy with sizes
�‖ and �⊥ (parallel and perpendicular to B0, respectively)
depends only on the transverse size �⊥: τnl = �⊥/�a(�⊥),
�a(�⊥) ∝ �

1/3
⊥ being the velocity or magnetic-field fluctuation

amplitude, which is assumed to follow the Kolmogorov scaling
law. Moreover, all along the spectrum a balance is assumed to
hold between τnl and the propagation time tA = �‖/cA, which
is the time a perturbation takes to travel over a distance �‖
along B0 at the Alfvén velocity cA. This gives a relationship
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between parallel and perpendicular lengths of eddies:

�‖ ∝ �
2/3
⊥ . (22)

Equation (22) indicates that, when going from large to small
scales, �‖ decreases slower than �⊥, i.e., structures more and
more elongated in the B0 direction are found at small scales.
This corresponds to a spectrum that is more anisotropic at
small scales than at large scales.

We explored the possibility of reproducing the anisotropy
corresponding to the critical balance principle by our synthetic
turbulence model. This has been done by modifying the
above-described cell hierarchy in the following way. First,
z has been conventionally chosen as the direction parallel to
the background magnetic field B0. Second, we introduce the
possibility of having anisotropic cell divisions; this means
that, when going from the mth scale to the (m + 1)th scale, all
the cells at the mth scale are divided only along the x and y

directions, while no division is performed in the z direction. In
other words, the aspect ratio of cells at the mth scale is different
from that of cells at the (m + 1)th scale, the latter being more
elongated along z than the former. In contrast, in the previously
described isotropic cell division, when going from the mth to
the (m + 1)th scale, the cells are equally divided along all
three spatial directions, keeping the same aspect ratio at all the
scales. These two possibilities are described by the equations

�x,m+1 = �x,m/2, �y,m+1 = �y,m/2, �z,m+1 = �z,m/ρm,

(23)

where ρm = 2 in the case of isotropic division, while ρm = 1
in the case of anisotropic division. The relation (22) between
parallel and perpendicular lengths can be reproduced by a
suitable choice of the coefficients ρm in Eq. (23), given by the
following sequence:

{ρm,m = 0, . . . ,Ns} = {2,2,1,2,2,1,2,2,1, . . . } (24)

corresponding to one anisotropic division every three divi-
sions.

In the anisotropic version of the model, some definitions
used in the previously described isotropic case must be
modified accordingly. The mth scale in the z direction [Eq. (1)]
is now defined as �z,m = Lz/πm, where

πm =
m∏

i=0

ρi. (25)

The index k, which identifies the cell position in the z direction
within the lattice [see, e.g., Eq. (3)], now varies in the interval
k = 1, . . . ,πm. Since the smallest size of an eddy is now
�⊥,m = �x,m = �y,m � �z,m, we adopt the following expression
for the vector function �(i,j,k;m) [compare with Eq. (13)]:

�(i,j,k;m)(x,y,z) = �⊥,m

L0
F (ξ (i,j,k;m)) F (η(i,j,k;m)) F (ζ (i,j,k;m)).

(26)
Finally, since in the critical balance principle the spectrum
is assumed to follow a Kolmogorov law with respect to k⊥,
Eq. (16) defining the eddy amplitude is now replaced by

a(i,j,k;m) = σ (i,j,k;m)a0

[
ε

(i,j,k;m)
m

ε0

�⊥,m

�0

]1/3

. (27)

All the other features of the model and of the algorithm remain
unchanged.

It is worth mentioning that the model can be adapted to
reproduce other anisotropy types, such as the ones generated in
shear, rotating, or wall-bounded flows. Such flexibility makes
the model suitable to describe diverse physical systems.

III. TESTING THE MODEL

To test the model described in the previous section,
the standard diagnostics for the description of intermittent
turbulence have been routinely performed on the synthetic
data. In this section, we present the results of the analysis. A
number of realizations of the synthetic turbulent field v(x) have
been generated both for the isotropic and for the anisotropic
version of the model. For each run, one single sample was
generated with isample = 1. The typical Kolmogorov scaling
exponent h = 1/3 was imposed for all runs, while the strength
of the intermittency was changed by allowing the parameter p

to take the following values: p = 0.5, corresponding to non-
intermittent turbulence; p = 0.7, a realistic value close to the
typical observations in ordinary fluid turbulence; and p = 0.9,
representing a “super-intermittent” case, which will be mostly
used as a benchmark for the parametric description of the
model. The relevant scales were imposed as described in Sec. II
(the integral scale �I = L0/4) or estimated by looking at the
spectra [the dissipation scale �d � L0/(2 × 104); see Fig. 6],
resulting in the effective Reynolds number Re ∼ (�I /�d )4/3 �
8.5 × 104, which is smaller than but close to the estimation
given in Eq. (8). To ensure ergodicity, ten independent
synthetic trajectories of length L = 40�I were extracted from
each run as one-dimensional samples, with spatial resolution
dr � 1.5 × 10−5�I chosen so as to ensure the inclusion of the
whole inertial range in the spectrum. For each trajectory, the
longitudinal field increments �v were computed at different
scales l, 〈v〉 and σv being, respectively, their mean and standard
deviation. Since from now on we will only consider the
component of the field along the virtual trajectory, we will
simplify the notation by defining v(s) ≡ v(x) · ŝ, where ŝ is
the unit versor of the trajectory. Successively, the following
quantities have been obtained for each run: (i) the autocor-
relation function Ac(l) = 〈[v(s) − 〈v〉][v(s + l) − 〈v〉)]〉/σ 2

v ,
which gives useful information about the correlation scale of
the field, lc; (ii) the associated energy power spectrum E(k)
(k = 2π/l being the wave vector associated with the scale
l), whose power-law scaling exponent has to be compared
with the one imposed for the model field fluctuations, h;
(3) the probability distribution functions (PDFs) of the scale-
dependent increments, P (�v), whose deviation from Gaussian
will qualitatively illustrate the presence of intermittency;
(iv) the structure functions Sq(l) = 〈|�v|q〉 ∼ lζq , i.e., the
scale-dependent qth-order moments of the field increment
distribution, and their anomalous scaling exponents ζq ; (v) the
kurtosis K = S4/S

2
2 , an alternative, quantitative measure of

intermittency (fully determined by the scaling of the structure
functions), along with its scaling exponent κ; and (vi) a
box-counting based multifractal analysis, providing some finer
detail on the geometrical properties of the flow.

It should be noticed that the present version of our model
does not include the skewness of the PDFs, a crucial ingredient
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FIG. 3. Examples of the profile of the longitudinal component of the field v, together with the increments �v evaluated at two different
scales (see the legend). (a)–(c) No intermittency (p = 0.5); (d)–(f) standard intermittency (p = 0.7).

of intermittency universally observed in real turbulence [4].
For this reason, it will be necessary to use the absolute value
of the fluctuations to prevent the odd-order structure functions
from vanishing.

A. Isotropic turbulence

Examples of the field longitudinal component v(s), ex-
tracted from one of the realizations of isotropic turbulence,
is shown in the top panels of Fig. 3 for two values of the
intermittency parameter p. Along with the longitudinal field
component, the increments �v at two different scales l are
included in the figure. The presence of intermittency is revealed
by the scale-dependent general properties of the increments,
and in particular by their increasing burstiness toward smaller
scales.

1. Two-dimensional spectrum

For the isotropic runs, a preliminary study of the full
spectral properties of the fields revealed the presence of a
weak residual anisotropy, probably due to the shape of the
generating functions. Indeed, the two-dimensional cut of the
spectrum presented in Fig. 4 displays an excess of power
along the diagonals, which results in roughly squared rather
than circular isocontours. This feature is consistently observed
in all three two-dimensional spectral cuts (not shown). To
mitigate this weak deviation from isotropy, and to increase
the statistical significance of the sample, for each realization
ten different trajectories were selected at varying angles with
the domain axes, so that the solid angle was homogeneously
sampled. Each sample was analyzed separately using the tools
described above. The results were finally averaged over the ten
different samples from all the trajectories. The corresponding

standard deviation was used as an estimate of the uncertainty
in the model parameters.

2. Autocorrelation function

Figure 5 shows examples of the autocorrelation function
versus the separation scale l for different values of the inter-
mittency parameter p. The autocorrelation functions display
the typical behavior for turbulent fields, with a parabolic
decay near the origin (not shown). A faster, quasiexponential
decay follows toward large separation, where eventually the
small-amplitude fluctuations around zero determine the noise
level. As is customary, an estimate of the correlation scale
can be obtained as the scale at which the autocorrelation

log10 [|v(kx ,ky )| 2]

 10  100
kx

 10

 100

k y

-3.5
-3
-2.5
-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5

FIG. 4. Isocontours of the two-dimensional spectrum in the plane
kx,ky for the total power associated with the intermittent field v. The
image refers to the case p = 0.7. Similar results hold for the other
levels of intermittency (not shown).
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FIG. 5. The autocorrelation function for the longitudinal field
component for the three values of the intermittency parameter p.

function reaches the uncorrelated-scale noise level. The values
obtained for the three cases are collected in Table I, and they are
consistent with the imposed integral scale �I = L0/4. There is
no relevant difference between the three runs, as intermittent
corrections to the autocorrelation function are expected to be
small.

3. Omnidirectional spectrum

For all runs, the energy power spectra evaluated along each
trajectory and then averaged provide quick information about
the scaling properties of the fluctuations, and they are given in
Fig. 6 along with power-law fits in the inertial range. At small
scale, a quasiexponential decay indicates the smoothness of
the field, due to the differentiability of the mother functions,
and mimicking the dissipation scale of turbulence. On the
contrary, at very large scales the absence of correlation weakly
flattens the spectrum. The spectral indexes obtained from the
power-law fit within the inertial range are listed in Table I.
For all runs, the exponents are slightly larger than the values
expected using the simple relation � = 2h + 1, with the input
parameter h = 1/3. This is evident for the case p = 0.5, for
which � = 1.69 instead of 5/3. Such a weak discrepancy is
consistently observed for the other two runs with p �= 0.5
when considering the intermittent correction.

TABLE I. For the three isotropic runs with different intermittency
levels p, we show the following: the correlation length lc, as estimated
from the autocorrelation function; the spectral index �, as obtained
fitting the spectrum with a power law; the empirical value of the
parameter pfit, as obtained from a p-model fit of the structure-function
scaling exponents; and the scaling exponent of the kurtosis κ , as
estimated through a power-law fit. For the case p = 0.5, the value
κ = 0 was assumed without fitting the kurtosis.

p lc � pfit κ

0.5 0.21 ± 0.07 1.691 ± 0.005 0.5 ± 0.1 0
0.7 0.21 ± 0.06 1.716 ± 0.001 0.71 ± 0.02 0.101 ± 0.006
0.9 0.20 ± 0.04 1.827 ± 0.001 0.89 ± 0.02 0.42 ± 0.03
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Γfit = −1.691 ± 0.001
Γfit = −1.716 ± 0.001
Γfit = −1.827 ± 0.001

FIG. 6. The one-dimensional power spectra E(k) for the longitu-
dinal component of the synthetic field, for the three runs. Power-law
fits are also superposed. The scaling exponents are collected in
Table I, showing good agreement with the imposed Kolmogorov-like
spectrum.

4. Probability distribution functions of longitudinal increments

To account for inhomogeneities of the energy flux in the cas-
cade process, i.e., of intermittency, examples of the increment
PDFs at different scales are collected in Fig. 7 for three values
of p. The increments have been previously standardized for
each scale in order to allow a proper comparison. It is evident
that in the absence of intermittency (p = 0.5), the distribution
functions are roughly Gaussian, and almost identical at all
scales. This indicates self-similarity of the fluctuations and is
the result of a homogeneous redistribution of the energy along
the cascade. For “realistic” values of the intermittent parameter
(p = 0.7), the typical increase of the distribution tails toward
small scales is observed [4]. This captures the increasing
localization of energy as the scales decrease, spontaneously
arising in turbulent flows and well reproduced by the model.
The “super-intermittent” case (p = 0.9) shows even more
evident high tails of the distributions (not shown in this paper).

5. Structure functions

An alternative description of the intermittency is obtained
by means of the anomalous scaling of the structure functions
Sq(l). Examples are shown in Fig. 8(a) for the realistic
intermittency case p = 0.7 for orders up to q = 6 (conver-
gence of the moments has been tested following Dudok de
Wit [36] and Dudok de Wit et al. [37]). In the intermediate
range of scales, roughly corresponding to the spectral inertial
range, the structure functions have been fitted to power laws.
The resulting scaling exponents are collected in Fig. 8(b)
for the three different values of the parameter p. Their
deviation from the linear prediction ζq ∼ hq identifies the
effects of intermittency. For a more quantitative estimate, the
scaling exponents have been fitted to a p-model [7], whose
prescription gives

ζq = 1 − log2[phq + (1 − p)hq]. (28)
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FIG. 7. Probability distribution functions of the standardized field
increments on different scales (see the legend) for the three runs. (a)
p = 0.5; (b) p = 0.7; (c) p = 0.5.

The fitting curves are indicated in the figure as lines, showing
good agreement with the data. The corresponding empirical
intermittency parameters pfit are collected in Table I, and they
are consistent with the prescribed values. This confirms that
the model is able to effectively generate the desired degree of
intermittency in the data by adjusting the parameter p.
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FIG. 8. (a) The structure functions for the longitudinal component
of the field for the case p = 0.7. Power-law fits used to evaluate the
scaling exponents ζq are superimposed. (b) The anomalous scaling of
the structure functions, highlighted by the nonlinear order dependency
of the scaling exponents ζq , for three values of p. Fits with the
p-model, Eq. (28), are indicated as lines. The agreement of the data
with the model is excellent.

6. Kurtosis

Figure 9 shows the scaling behavior of the kurtosis K(l)
for the three values of p. The non-intermittent run gives the
constant value K = 3 at all scales, as expected for a Gaussian
variable. When intermittency is included, the kurtosis is
Gaussian at large scales, roughly down to the correlation scale,
and it increases toward small scales as a power law K(l) ∼ l−κ .
In Navier-Stokes turbulence, it is often observed that κ � 0.1
(also described by the p-model and by the She-Lévêque
model), which is consistent with the value obtained by fitting
the case p = 0.7. As expected, saturation of the kurtosis is
evident for scales smaller than the dissipative scale �d . Further-
more, note that the largest kurtosis attained by the model in the
realistic intermittency case (kmax � 10) is compatible with the
values normally found in many experimental observations with
a comparable inertial range extension (or Reynolds number).
For the case with p = 0.9, the scaling exponent of the kurtosis
is larger, consistent with a more efficient intermittency. All
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FIG. 9. The scaling dependence of the kurtosis K for the three
values of the intermittency parameter. The Gaussian value K = 3 is
indicated, as well as a power-law fit in the inertial range for the two
intermittent cases.

the diagnostics described above show that the synthetic data
are consistent with the prescribed values of power spectral
decay and intermittency. This demonstrates that the data are
representative of a real-world, tunable turbulence, and they can
therefore be used for numerical studies.

7. Multifractal analysis

A different way of characterizing the intermittent behavior
is the determination of the multifractal properties of the
signal under study, in particular of generalized multifractal
dimensions and the singularity spectrum associated with an
appropriate measure [38]. The multifractal formalism [39,40]
was originally introduced in the context of fully developed
turbulence and chaotic systems [41], but since then it has
become a standard tool to analyze phenomena observed in
disordered systems (see Ref. [38]). Multifractal analysis is able
to capture the spatial inhomogeneities of the turbulent energy
cascade, so that global scale invariance and self-similarity
are usually associated with monofractal measures, while
local scale invariance, or local self-similarity, is associated
with multifractals. For the analysis of our model fields,
a suitable choice of an associated scalar quantity is the
squared derivative along the trajectory ∂s of the velocity
field component v(s), estimated as the longitudinal velocity
increment at the resolution scale, ∂sv(s)2 = �v(s,dr)2. To
investigate the multifractal structure of this signal, we use
the standard box-counting method [40,42]. Given the scalar
signal �v(s)2, the generalized box-counting partition function
of order q is defined as

χq(l) =
N(l)∑
i=1

μi(l)
q, (29)

where N (l) is the minimum number of one-dimensional
segments Qi(l) of length l necessary to cover the trajectory
L, and μi(l) is a suitably defined scale-dependent measure on

the line:

μi(l) =
∑

s∈Qi (l) �v(s)2∑
s∈L �v(s)2

. (30)

High values of q in the partition function χq enhance the
strongest singularities, say the most intense values of the
signal under analysis, while small values of q represent the
regular regions. Conversely, negative values of q emphasize
regions where the measure μi(l) is smaller, i.e., the “voids” in
the signal. The generalized dimensions Dq are then formally
defined by

Dq = 1

q − 1
lim
l→0

log χq(l)

log l
. (31)

The definition given in Eq. (31) implies a scaling behavior of
the partition function χq(l) for small l:

χq(l) ∼ lτq , where τq = (q − 1)Dq (32)

and τq is the q-order “mass” exponent (also called the Rényi
scaling exponent) of the generalized partition function. The
box-counting method consists of calculating the partition
functions χq , then deriving τq from the power-law fit of χq ,
and obtaining the generalized dimensions Dq through Eq. (32)
and then the multifractal spectrum f (α) through a Legendre
transform, given by

f (α) = qα − τq,

α = dτq

dq
.

The latter basically gives the distribution of fractal dimen-
sions of the subsets where the field has a given singularity
strength [38,43]. Multifractal systems display a nonlinear
order dependence of the scaling exponents τq , which implies
non-single-valued dimensions Dq , and which result in a broad
multifractal spectrum f (α) [38,43]. To test the multifractality
of our model as a signature of intermittency, we thus compute
the partition functions χq(l) by varying the value of the
exponent q ∈ [−9,9] with step dq = 0.2 for each of the ten
trajectories considered in the domain of the system, and for
the three isotropic runs with p = 0.5,0.7,0.9. For each run,
we then compute the average partition functions over the
ten trajectories, as was already done for the other statistical
quantities, and we derive τq by fitting the functions χq(l) to
power laws. Partition functions and the relative power-law fits
are shown in Fig. 10 for the run with p = 0.7. The behavior
of τq as a function of q is the result of this procedure, and it
is depicted in Fig. 11(a). The linear dependence observed for
the run with p = 0.5 indicates fractal characteristics, while
the degree of multifractality increases for larger p. This is also
evident by looking at the generalized dimension Dq , shown
in Fig. 11(b), which is constant for p = 0.5 and increasingly
broadens for larger p. The same behavior is observed in the
multifractal spectrum f (α), shown in Fig. 11(c). In the non-
intermittent case, the spectrum is single-valued, indicating that
one single singularity exponent characterizes the whole space.
As the model parameter p is increased to induce intermittency,
the spectrum becomes evidently broader, indicating a greater
variety of the singularity exponents, or inhomogeneity of the
cascade.

053109-11



MALARA, DI MARE, NIGRO, AND SORRISO-VALVO PHYSICAL REVIEW E 94, 053109 (2016)

10−6 10−5 10−4 10−3 10−2 10−1 100
100

1020

1040

1060

1080

10−6 10−5 10−4 10−3 10−2 10−1 100

ln

100

1020

1040

1060

1080

χ q
p = 0.7(a) q = 0.

q = −1.
q = −2.
q = −3.
q = −4.
q = −5.
q = −6.
q = −7.
q = −8.
q = −9.

10−6 10−5 10−4 10−3 10−2 10−1 100
10−30

10−20

10−10

100

10−6 10−5 10−4 10−3 10−2 10−1 100

ln

10−30

10−20

10−10

100

χ q

p = 0.7(b)

q =0.
q =1.
q =2.
q =3.
q =4.
q =5.
q =6.
q =7.
q =8.
q =9.

FIG. 10. The partition functions χq (q < 0 left panel (a), q > 0 right panel (b)) for the case p = 0.7. Power law fits (solid lines) are
performed in a wide range of scales, roughly corresponding to the spectral inertial range.

Finally, in order to have a more quantitative estimate of mul-
tifractal properties of the field, we fit the scaling exponents τq

with the p-model prescription τq = −log2[pq + (1 − p)q] [7].
We then compare the values obtained from the fit, pfit, with the

prescribed intermittency parameter p, as was already done for
the structure-function analysis. The fits and the values of pfit

are indicated in the three panels of Fig. 11. The graphs show
a good qualitative agreement, i.e., multifractality grows as
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FIG. 11. The multifractality highlighted by (a) the shape of the Rényi scaling exponent τq vs q, (b) the generalized dimension Dq , and (c)
the multifractal spectrum f (α). The case with p = 0.5 is a monofractal, while the case with p = 0.7 displays a multifractal degree smaller
than for p = 0.9. In the plots, solid lines represent the p-model fits performed on the scaling exponents τq and then transformed into the other
quantities. The values of the fitting parameter pfit are indicated.
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the imposed intermittency increases. However, the quantitative
comparison between p and pfit shows some discrepancy, the
fitted values being somewhat smaller than the imposed ones
for the two intermittent runs. This could be due to the model
limitations in capturing the finer geometrical properties of the
intermittent structures. The specific choice of the field used
for the analysis in this paper could also have an effect on the
measure. Such different choices have been tested giving similar
results, but a more detailed study is deferred to a separate work.
Nevertheless, the overall response of the model to multifractal
analysis is satisfactory, at least qualitatively.

B. Anisotropic turbulence

When anisotropy is introduced in the model, it is necessary
to test the intermittency as a function of the virtual trajectory
direction. Since the imposed anisotropy is gyrotropic, it is
sufficient to study the angular variation with respect to the
anisotropy axis (in the present case along the z axis), corre-
sponding, for example, to the mean magnetic-field direction
in a MHD turbulence. The imposed symmetry also allows us
to use one quadrant only, so that ten trajectories have been
selected to scan the nongyrotropic angle 0◦ < θ < 90◦. Each
of these trajectories has been divided in ten subsets of size
L � �I , and the results of the different diagnostic tools have
been averaged for each angle. Again, their standard deviation
represents the statistical uncertainty. The analysis has been
performed on the non-intermittent case, i.e., p = 0.5, and on
the intermittent case with p = 0.7.

1. Spectral analysis

The two-dimensional spectrum for the p = 0.7 run is shown
in Fig. 12, where the anisotropic distribution of power is
evident. Figure 13 shows the power spectra for different
angles θ between 15◦ and 75◦ for the intermittent case p = 0.7
[Fig. 13(a)]. The fitted power-law index as a function of the
angle θ is shown in Fig. 13(b), both for the intermittent and
non-intermittent runs. As can be seen, the spectral index is
reasonably constant for intermediate angles 15◦ < θ < 60◦,
and it coincides roughly with the prescribed Kolmogorov value
� � 5/3. For quasiperpendicular trajectories with θ > 80◦,
the spectral index increases and reaches values as large as

log10 [|v(kx ,kz )| 2]
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FIG. 12. Isocontours of the two-dimensional spectrum in the
plane kx,ky for the total power associated with the intermittent field
v in the anisotropic case. The image refers to the case p = 0.7.
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FIG. 13. (a) The one-dimensional power spectrum E(k) of the
virtual trajectories within the synthetic field, shown here for five dif-
ferent directions at an angle θ with respect to the anisotropy direction
for the p = 0.7 case. Power-law fits are also superposed, showing
good agreement with the imposed Kolmogorov-like spectrum for
intermediate angles. (b) The power-law index as a function of the
virtual trajectory angle θ for p = 0.5 and 0.7. The deviation toward
larger values for θ > 80◦ is evident.

� = 2.1. This behavior is qualitatively consistent with the
prediction of critically balanced turbulence [30] and with
some observations in numerical simulation and in solar wind
measurements [44,45].

2. Structure functions

To evaluate the effects of anisotropy on intermittency, in
Fig. 14 we show the structure-function scaling exponents
ζq for five different values of the angle θ for the two runs
with and without intermittency [Figs. 14(a) and 14(b)]. As
for the isotropic case, the fit of the scaling exponents with
the p-model provides a quantitative estimate of intermittency
through the parameter p, which is plotted in Fig. 14(c) as a
function of the angle θ for the intermittent run considered in
this section (the non-intermittent case consistently provides
p = 0.5). It is evident that even in the presence of anisotropy,
the intermittency prescription is recovered in the synthetic
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FIG. 14. The anomalous scaling of the structure functions for five
different angles θ for (a) the non-intermittent case p = 0.5 and (b)
the intermittent case p = 0.7. p-model fits are shown as thick solid
lines. (c) The angle dependence of the fitting parameter pfit for the
two cases, with the horizontal lines indicating the input values p.

data (see Refs. [46–49] for recent results on intermittency in
solar wind anisotropic turbulence). Only the case at θ = 90◦
displays a discrepancy, showing no intermittency even when
p = 0.7. This is probably due to the shape of the synthetic
eddies along the axes, which is also responsible for the weak
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FIG. 15. (a) The scaling dependence of the kurtosis K for the
p = 0.7 case, and for five angles θ . The Gaussian value K = 3 is
indicated. (b) The angular dependence of the scaling exponent κ ,
which shows an increase at large angles, as observed for the spectral
index � (Fig. 13).

anisotropy of the spectral power in the isotropic case. Once
again, this suggests that for an optimal response of the model,
trajectories should be selected with an (even small) angle with
respect to the system axes.

3. Kurtosis

Finally, in Fig. 15(a) we show the variation of the kurtosis
with the angle for the intermittent case; as expected, the non-
intermittent case gives Gaussian values F = 3 and κ = 0 at all
angles (not shown). When intermittency is present, the overall
effect of anisotropy is to modulate the scaling exponent κ of the
kurtosis in response to the variations of the spectral exponent
� increase with the angle (see Fig. 13), and in particular for
large angles θ > 80◦ [Fig. 15(b)]. The anisotropic realization
of the synthetic turbulence presented here is therefore able to
capture the major characteristics of spectral anisotropy, and to
preserve the intermittency properties.

IV. CONCLUSIONS

Synthetic turbulence models represent a useful tool that
can be used in a variety of situations, mainly when it is
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necessary to have a realistic representation of a turbulence
(either hydrodynamic or MHD) with an extended inertial
range. This happens typically in astrophysical contexts, such
as in the solar wind, where in situ measurements have shown
the presence of a turbulence with a spectrum extending over
several decades of spatial scales.

In this paper, we have presented and discussed a model
of synthetic turbulence, belonging to the class of “wavelet-
based” models, in which the synthetic field is obtained by
a superposition of base functions at different spatial scales,
whose amplitude is determined so as to reproduce a given
spectral law for the turbulent field. Moreover, the model
reproduces intermittency in the turbulent field by means of a
p-model technique [7], in which the spectral energy flux from
a given spatial scale to the smaller one is unevenly distributed
in space. The modeled turbulent field is three-dimensional in
space and solenoidal, so it can be used to describe either an
incompressible flow or a turbulent magnetic field. No time
dependence is included in the model.

Our model shares many aspects with models by Juneja
et al. [16] and Cametti et al. [23], but with relevant differences
in the algorithm. In fact, one important limitation in the 3D
model by Cametti et al. [23] is in the memory requirement,
which rapidly increases when considering increasing spectral
width. In the study presented by these authors, the spectral
extension is limited to (about) two decades. The algorithm
employed by our model has been designed so as to avoid both
large memory employments and long computational times in
the evaluation of the turbulent field at a given spatial position.
In particular, the computational time tC scales proportional
to log2(L0/�Ns

), where �Ns
is the smallest scale included in

the model. This is perhaps the most important feature of the
model, because it allows us to describe a turbulence with a very
extended spectral range using a modest computational effort.
All the results presented in this paper have been obtained
running the model on a desktop computer: in a typical run,
which took about 20 min of CPU time, the turbulent field with
a spectral extension between 4 and 5 decades was calculated
in a number of spatial positions of the order of 2.5 × 106.
Moreover, the memory requirement is very low: each time the
field is to be evaluated at a given position, all the parameters
defining the involved eddies are recalculated without keeping
any information in the computer memory.

The model contains few parameters, namely (i) the pa-
rameter h, which contributes to determine the index � of
the power-law spectrum; (ii) the parameter p, which sets
the “level” of intermittency and contributes (to a smaller
extent) to determine �; (iii) the spectral width, fixed by
the ratio L0/�Ns

. Such parameters can be tuned in order to
reproduce different physical situations. Finally, we explored
the possibility of including an anisotropic spectrum, trying
to reproduce the situation described by the so-called “critical
balance” principle, postulated by Goldreich and Sridhar [30]
in the case of a MHD turbulence, often advocated for the
description of solar wind turbulence.

To assess the validity of the model and its reliability
in reproducing realistic flows, we have run the standard
diagnostics for intermittent turbulence, and we verified that the
synthetic field indeed possesses the characteristics that were
chosen as input. Toward that end, we have obtained a series
of isotropic runs by fixing the scaling exponent h and varying
the intermittency parameter, which was given three values:
p = 0.5 (no intermittency), p = 0.7 (standard Navier-Stokes
intermittency), and p = 0.9 (strong intermittency). We then
extracted synthetic one-dimensional cuts within the model
domain, and we applied time-series analysis techniques: auto-
correlation function, power spectrum, probability distribution
functions of the field increments, their structure functions,
the kurtosis, and a standard multifractal analysis. All of the
tests gave satisfactory results, showing that the synthetic data
reproduce well the required conditions of spectral scaling
and intermittency. A small anisotropy originated by the
particular shape of the eddy functions is present along the
three axes of the system. This was easily mediated by choosing
trajectories with an angle with the three axes. We have also
explored the geometry of the system by using two anisotropic
runs, with p = 0.5 and 0.7, and by imposing the critical
balance conditions. Even in the anisotropic case, the output
satisfactorily reproduces the expected values of spectral slope
and intermittency for all the observables. We can conclude that
the model provides a good representation of intermittent turbu-
lence, and it is sensitive to the choice of the input parameters,
which allows us to fine-tune the type of turbulence as desired.

It is important to acknowledge that the present version of
our model is not able to reproduce the skewness of the field
increment PDFs, i.e., their nonvanishing third-order moment,
universally observed in fully developed turbulence. An im-
proved version of the model that accounts for the appropriate
description of the skewness is currently in progress.

Finally, we wish to note that a preliminary version of the
present model was employed recently to study the problem
of energetic particle diffusion in a magnetic turbulence [50].
The highly suprathermal speed of the energetic test particles, as
observed, for example, in the solar wind, allowed the use of the
static turbulent field generated by our model. That investigation
singled out relevant effects on the particle transport related
to both large spectral extensions and intermittency. Thus, a
representation of a 3D turbulence with a wide spectrum, as
well as a tunable level of intermittency, have been crucial
aspects of employing the present synthetic turbulence model
in this study. Furthermore, when using our model to run test-
particle simulations, the integration of particle trajectories is
considerably simplified by the possibility of calculating the
turbulent field directly at any spatial position, thus avoiding
interpolations on a spatial grid [5,7].
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