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Viscoacoustic model for near-field ultrasonic levitation
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Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating
surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levi-
tating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating
in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations
from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow
at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good
accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function
of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and
acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure
in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile
is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.
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I. INTRODUCTION

The acoustic levitation is a phenomenon when an object is
suspended in acoustic field. There are two different types of
such levitation. The first one is usually associated with sus-
pension of small particles placed between an acoustic actuator
and reflector. The second type is denoted to the case when
a levitating object has larger size and the distance between
the object and an actuator is much smaller than the acoustic
wavelength. Since high-frequency sound is usually used, the
last type is often called ultrasonic near-field levitation.

The last type is used in manufacturing of highly precise
products, such as silicon wafers of semiconductors, when
contactless transportation system or suspension is needed. The
phenomenon of ultrasonic near-filed levitation was first re-
ported by Salbu [1]. A number of experimental and theoretical
works have been published in recent years. Transportation
system based on the flexural traveling waves of a vibrating
substrate were examined by Hashimoto et al. [2,3]. Different
system configuration was considered, including two-rails
systems [4] and V-shaped rails [5]. Another approach is offered
by Yoshimoto et al. [6,7], who suggest a slider with vibration
source floating over a linear guideway. In addition, motor with
levitated rotor [8], ultrasonic clutch [9], and journal bearing
systems [10,11] were investigated.

The theory of acoustic radiation pressure in inviscid fluid
was first described by Lord Rayleigh [12,13]. After that, there
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were many confusions until the work of Chu and Apfel [14],
who accurately posed the question on the acoustic pressure
and carried out one-dimensional analysis from the very basics.
Later, Lee and Wang [15] extended their approach to higher
dimensions. Their results were used for estimation of the
levitation force in Refs. [2–4,8,9]. Although this approach
allows fast computation of the force, it is inaccurate for small
levitation distances.

When a system involves length scale comparable to the
acoustic boundary layer thickness, viscous effects should be
taken into account. In the case of particle levitation, the
theory was extended to viscous fluids (see, for example,
Ref. [16]), thermoviscous effects were incorporated [17],
particle movement [18], and its elastic behavior [19] were
studied. Regarding near-field levitation, it is common to
suggest a very small gap thickness and purely viscous flow.
To solve such problems different methods can be applied. For
example, the approach described in Ref. [20] can be adopted
in order to compute the pressure propagation into a long thin
layer of gas. On the other hand, many researches employ
well-known nonlinear Reynolds equation for a lubrication
layer. It assumes that due to small gap thickness the inertia
effects are negligibly small comparing to the viscous ones
(for more details on lubrication theory, see, for example,
Ref. [21]). This approach is used in Refs. [6,7,11]. Minikes
and Bucher [22] utilized Reynolds equation coupled with
elastic analysis of the ultrasonic actuator. In Ref. [23] the
Reynolds equation was simplified with the help of perturbation
theory. Later, Ilssar and Bucher [24] used it to examine motion
of a levitating object. However, in spite of simplicity, the
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lubrication approach is limited to the cases of extremely small
levitation distances of the order of boundary layer thickness.

In practice, the weight of a suspended object is known
in advance, the levitation distance is not. Therefore, there is
no criteria if acoustic or viscous model should be used. In
addition, at moderate distances an intermediate viscoacoustic
regime appears, which is not resolved by these approaches.
Thus, more general model is highly appreciated.

There are a number of numerical studies of transient
Navier-Stokes system. In the work of Nomura et al. [25] a
numerical solution shows excellent agreement with experi-
mental data, while the simplest acoustic model gives inaccurate
results. A similar numerical study was made by Minikes and
Bucher [26] and compared to the lubrication model, which
predicts larger levitation force. Both numerical studies use
nontrivial computation schemes with nonreflective boundary
conditions on the outer boundaries. Although a full numerical
study is the most accurate one, it lacks speed of computation
and hardly can be used in real-time control systems.

The mentioned above problem of well-posed boundary
conditions at the end of the gap is important for the acoustic
pressure computation. Turns [27] offered a semiempirical
approach to compute the pressure drop at the edge of bearing
film. Later, Li et al. [28] suggested an approximated boundary
condition on the pressure drop. However, their approach is
applied for incompressible fluids, which is not accurate for the
case of acoustics.

In this paper we propose a semianalytical approach that
allows us to cover viscous, acoustic, and intermediate viscoa-
coustic levitation regimes in a natural way. The developed
mathematical model can be applied for a wide range of
levitation heights, which is confirmed by experiment.

In the first section we describe the model’s assumptions and
theoretical background, starting from very general gas flow
equations. We show the derivation of nonreflective boundary
conditions on pressure as well. Next we overview numerical
implementation and briefly describe the experiment, which
was conducted to validate the theory. Finally, we provide the
comparison of our model to the model and experimental data
published in Ref. [25] and our experiment, then give qualitative
results on the pressure distribution in the gap.

II. THEORY OF THE AIR FLOW

In this section we derive the governing equations of the air
flow in the gap between actuator and levitating object. First
of all, the basic equations are written out. Its formulation is
based on the textbook of Landau and Lifshitz [29]. Then we
make scaling analysis, which helps to determine the significant
terms. After that we introduce a small parameter, the ratio
between the vibration amplitude and the levitation height, and
focus on the periodic solutions only. In the end of this section
we describe nonreflective boundary conditions.

A. Governing equation

Although we focus on the levitation of a disk, the equations
will be obtained in Cartesian coordinates, so the model can be
applied to nonaxisymmetric geometry.

R

H0
r

z

Levitating object

Vibration source

Hs(t)=a cos(ωt)

H(r)

FIG. 1. Ultrasonic levitation of a disk.

Consider a planar ultrasonic source with the vibration
amplitude a and the circular frequency ω. In the sake of
simplicity, we assume its displacement depends only on time:

Hs(t) = a cos(ωt). (1)

Nevertheless, treating the spatial dependence for modeling
flexural vibrating surfaces requires only minor changes in the
further theory.

The axes x1 and x2 are chosen to lie along the vibrating
plane and the axis z = x3 is perpendicular to the plane. We use
Latin indices (such as in xi or xj ) to span the numbers 1,2,3.
Einstein’s summation convention for repeated indices is used
as well.

The levitation object is assumed to be motionless and
its bottom surface can be slightly nonplanar (due to small
deformations, for example). Its shape is described by a smooth
function H (x1,x2). The average levitation height is denoted
by H0. We do not consider here surface roughness and
corresponding effects, such as scattering of acoustic waves.

The total gap thickness can be calculated by

h(t,x1,x2) = H (x1,x2) − Hs(t). (2)

Figure 1 illustrates the levitation of a disk in the axysimmetric
case (here r =

√
x2

1 + x2
2 ).

We start with the Navier-Stokes equations for compressible
gas:

ρ(∂tv + (v · ∇)v) = ∇ · σ , (3a)

∂tρ + ∇ · (ρv) = 0, (3b)

where ρ is the gas density, v = (vx1 ,vx2 ,vz) is the velocity
vector, and σ is the stress tensor given by

σ = −p I + τ , (4)

where I is the unit tensor, p is the pressure, and viscous stress
tensor τ is defined as

τ = μ[∇v + (∇v)T ] + (
μb − 2

3μ
)
(∇ · v)I, (5)

where μ is the dynamic viscosity, and μb is the bulk viscosity.
The dynamics equations are accompanied by the energy

equation

ρT (∂t s + v · ∇s) = ∇ · (κ∇T ) + �, (6)
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where T is the air temperature, s is the entropy, κ is the thermal
conductivity of the gas, � is the viscous dissipation term, in
Cartesian coordinates given by

� = τik

∂vi

∂xk

.

We take into account the viscosity-temperature dependence
in the same way as in Ref. [25], by assuming semiempirical
Sutherland’s law [30],

μ = μ0

(
T

T0

)3/2
T0 + C

T + C
, (7)

where μ0, T0, and C are empirical constants.
We assume that the gas pressure, density, and temperature

are coupled by the ideal gas law,

p = ρ
R
MT , (8)

where R is the universal gas constant and M is the molar mass
of gas.

The levitation force can be found by integrating the vertical
component of the stress tensor σzz over the object’s surface:

F = −
∫∫

(σzz|z=H ) dx1 dx2, (9)

where

σzz = −p + μ

[
2
∂vz

∂z
+

(
μb − 2

3
μ

)
∇ · v

]
. (10)

B. Scaling analysis

In this section we carry out scaling analysis in order
to neglect small terms. Let’s introduce the longitudinal and
transversal length scales, disk radius R, and average gap
thickness H0, respectively, and the timescale ω−1. Although it
is natural to choose the transversal velocity scale equal to the
vibrating wall speed aω, it is more convenient to take it as ωH0,
as a common choice in the lubrication theory. The longitudinal
velocity scale U is chosen to keep the continuity equation
terms of the same scale, then U = ωR. The nondimensional
variables are

x̃α = xα

R
, z̃ = z

H0
, t̃ = ωt, ṽz = vz

ωH0
, ṽα = vα

ωR
,

p̃ = p

p0
, ρ̃ = ρ

ρ0
, μ̃ = μ

μ0
, s̃ = s

cv

, T̃ = T

T0
,

where cv is the heat capacity at constant volume and p0, ρ0,
μ0, T0 are the pressure, density, viscosity, and temperature of
air at normal conditions; index α spans the numbers 1–2.

The scaling analysis is based on the following assumptions:
(1) the gap thickness is much smaller than the acoustic

wavelength λ, H0 � λ;
(2) the gap thickness is much smaller than its length, H0 �

R;
(3) the vibration amplitude is much smaller than the gap

thickness, a � H0.
In the case of the near-field levitation, the first two

assumptions are always held. The last assumption will be used
to introduce a small parameter to the model. The details of
scaling analysis can be found in the Appendix.

First, we treat the energy Eq. (6). As shown in the Appendix,
this equation can be reduced to

∂t̃ s̃ + ṽ · ∇̃s̃ = 0, (11)

where ∇̃ is a nondimensional nabla operator. We assume
that at the initial time the entropy is constant. Together with
Eq. (11) it implies that the entropy remains constant during
the process. Using the expression for the entropy of ideal gas
(nondimensional),

s̃ = ln

(
p̃

ρ̃γ

)
, (12)

we conclude that the process is adiabatic, which is common in
acoustics, and obtain the relation between the nondimensional
density and pressure,

ρ̃ = p̃1/γ , (13)

where γ is the adiabatic index. Then, using Eqs. (7), (8),
and (13), we can express the nondimensional viscosity in terms
of pressure:

μ̃ = T0 + C

T0

p̃(3−3/γ )/2

p̃1−1/γ + C/T0
. (14)

For further analysis, it is vital to split the velocities in
the longitudinal and transversal directions: ũ = (ṽx1 ,ṽx2 ) and
ṽz. Considering the different components of the governing
Eqs. (3a) and (3b) and taking into account the assumptions 1–3
above, we can neglect small terms and simplify the equations
(see Appendix for details):

∂z̃p̃ = 0, (15a)

γK2ρ̃(∂t̃ ũ + (ṽ · ∇̃ũ)) = −∇̃sp̃ + �∂z̃(μ̃∂z̃ũ), (15b)

∂t̃ ρ̃ + ∇̃ · (ρ̃ṽ) = 0, (15c)

where K2 = ω2R2γ −1ρ0/p0 is the squared nondimensional
acoustic wave number, and � = μ0ωR2/(p0H

2
0 ) is so-called

“squeeze number” (in the lubrication theory, see Ref. [21],
squeeze number is refereed to 12�); ∇̃s acts on the coordinates
x̃1, x̃2 only.

During the derivation of the Reynolds equation for viscous
flow K is assumed to be negligible (for derivation of the
equation see Ref. [21]), while linear acoustic does not account
the term multiplied by � (see Refs. [14,15]). In our study we
keep both terms, thus taking into account viscous and inertial
(acoustic) effects.

Equation (15a) means that the pressure does not vary
through the gap thickness. It implies that the density [see
Eq. (13)] and the viscosity [see Eq. (14)] are constant through
thickness as well. Further, we consider the pressure, density,
and viscosity to be independent on z coordinate.

As shown in the Appendix, scaling analysis allows simpli-
fying the normal stress to the form

σ̃z̃z̃ = −p̃. (16)

Thus, the levitation force can be calculated as an integral of
pressure:

F̃ = −
∫∫

σ̃z̃z̃|z̃=H̃ dx̃1 dx̃2 =
∫∫

p̃ dx̃1 dx̃2. (17)
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The equations must be equipped with the no-slip boundary
conditions:

ũ|z̃=H̃s
= ũ|z̃=H̃ = 0, (18a)

ṽz|z̃=H̃s
= −∂t̃ h̃ = −a/H0 sin(t̃), ṽz|z̃=H̃ = 0. (18b)

C. Averaging over the gap thickness

Starting from here we denote the nondimensional variables
without a tilde for clarity.

Before going further, we average the continuity Eq. (15c)
by integrating it with respect to z coordinate from Hs(t) to
H (x1,x2) and dividing by h(t,x1,x2). Note that according to
Eq. (15a) the averaged pressure, density, and viscosity are
equal to the nonaveraged ones:

p̄ = p, ρ̄ = ρ, μ̄ = μ. (19)

Integrating Eq. (15c), applying the rule of integral differen-
tiation and taking into account boundary conditions Eq. (18),
one gets

∂t (ρh) + ∇s · (ρhū) = 0, (20)

where the gap-averaged velocity is given by

ū = 1

h

∫ H

Hs

u dz. (21)

Equation (20) with the equations of dynamics Eq. (15b),
the density-pressure dependence Eq. (13), and the viscosity-
pressure dependence Eq. (14) may be used to compute
the pressure profile. However, despite neglecting pressure
dependence on z coordinate, these equations are still nonlinear
and time-dependent. Further simplification may be obtained by
asymptotic analysis described in the next section.

D. Asymptotic analysis

Here we introduce the parameter ε = a/H0, the ratio
between the vibration amplitude and the gap thickness, which
is small for the most experimental cases. We are going to find
the series solution in the form

ρ = 1 + ερ(1) + ε2ρ(2) + O(ε3),

p = 1 + εp(1) + ε2p(2) + O(ε3),

μ = 1 + εμ(1) + ε2μ(2) + O(ε3),

u = 0 + εu(1) + ε2u(2) + O(ε3),

vz = 0 + εv(1)
z + ε2v(2)

z + O(ε3),

h = h(0)(x1,x2) + εh(1)(t), h(1)(t) = − cos(t),

where h(0)(x1,x2) = H (x1,x2)/H0.
Using the relationship Eqs. (13) and (14) we write out the

density terms,

ρ(1) = 1

γ
p(1), ρ(2) = 1

γ
p(2) − γ − 1

2γ 2
(p(1))2, (22)

and the viscosity term,

μ(1) = (γ − 1)

2γ

T0 + 3C

T0 + C
p(1) = Mp(1). (23)

Substituting the series into the continuity Eq. (20) and
collecting the terms of the same order, we get

∂t

(
h(0)p(1)

γ

)
+ ∇s · (h(0)ū(1)) = −∂th

(1) (24)

for the first order, and

∂t

(
h(0)p(2)

γ

)
+ ∇s · (h(0)ū(2))

= −∂t

[
h(1)p(1)

γ
− γ − 1

2γ 2
h(0)(p(1))2

]

− ∇s ·
[(

h(0)p(1)

γ
+ h(1)

)
ū(1)

]
(25)

for the second order.
To find the averaged velocity we need to solve Eqs. (15b).

For the first order it takes the form

γK2∂t u(1) = −∇sp
(1) + �∂2

zzu(1), (26a)

u(1)|z=0 = 0, u(1)|z=h(0) = 0, (26b)

ū(1) = 1

h(0)

∫ h(0)

0
u(1) dz, (26c)

and for the second order the equations are

γK2[∂t u(2) + γ −1p(1)∂t u(1) + (v(1) · ∇)u(1)]

= −∇sp
(2) + �

(
∂2
zzu(2) + Mp(1)∂2

zzu(1)
)
, (27a)

u(2)|z=0 = h(1)∂zu(1), u(2)|z=h(0) = 0, (27b)

ū(2) = 1

h(0)

∫ h(0)

0
u(2) dz − h(1)

h(0)
ū(1). (27c)

The transversal velocity v(1)
z , which is included in the

inertial term, can be obtained from the continuity Eq. (15c):

v(1)
z = −

∫ z

0
(γ −1∂tp

(1) + ∇s · u(1)) dz′ − ∂th
(1). (28)

E. Periodic solution

We focus on the steady state, when a suspended object
is motionless, and we may be interested only in stationary
solution. However, the only driving cause of the flow is
periodic vibration and stationary pressure may be generated
by nonlinear effects exclusively. It is natural to look for the
solution in form of Fourier series with the base frequency of the
transducer’s vibration (which is equal to 1 in nondimensional
form):

p(m) =
∞∑

n=1

p(m)
n eint , u(m) =

∞∑
n=1

u(m)
n eint ,

h(1) =
∞∑

n=1

h(1)
n eint = − cos(t) = −1

2
(eit + e−it ).

Substituting the series into the first-order Eqs. (24), (26),
and (28) implies the equation on pressure,

in

γ
h(0)p(1)

n + ∇s · (
h(0)ū(1)

n

) = −inh(1)
n , (29)
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the equation on longitudinal velocity,

inγK2u(1)
n = −∇sp

(1)
n + �∂2

zzu(1)
n , (30a)

u(1)
n

∣∣
z=0 = 0, u(1)

n

∣∣
z=h(0) = 0, (30b)

ū(1)
n = 1

h(0)

∫ h(0)

0
u(1)

n dz, (30c)

and the expression for the transversal velocity,

v(1)
zn = −

∫ z

0

(
in

γ
p(1)

n + ∇s · u(1)
n

)
dz′ − inh(1)

n . (31)

To find the steady levitation force we need a time-
independent solution for pressure, i.e., for n = 0. However,
nontrivial solutions of Eqs. (29) and (30) exist only for n = ±1.
It implies zero time-averaged pressure. Thus, we have to study
the second-order equations.

Substituting the series into Eqs. (25) and (27) we get the
equation on zero-harmonic quantities:

∇s · (
h(0)ū(2)

0

) = −∇s ·
[(

h(0)p(1)

γ
+ h(1)

)
ū(1)

]
0

, (32)

and

iK2
[
np(1)

n u(1)
−n

]
0 + γK2[(v(1) · ∇)u(1)]0

= −∇sp
(2)
0 + �

(
∂2
zzu(2)

0 + M
[
p(1)∂2

zzu(1)
]

0

)
, (33a)

u(2)
0

∣∣
z=0 = [h(1)∂zu(1)]0, u(2)

0

∣∣
z=h(0) = 0, (33b)

ū(2)
0 = 1

h(0)

∫ h(0)

0
u(2)

0 dz −
[
h(1)

h(0)
ū(1)

]
0

, (33c)

where [·]0 corresponds to the zero harmonic of the expression
(e.g., [(p(1))

2
]0 = p

(1)
1 p

(1)
−1 + p

(−1)
1 p

(1)
1 ).

The set of the first-order Eqs. (29), (30), and (31) and the
set of the second-order Eqs. (32) and (33) together with the
proper boundary conditions on p(1) and p(2) constitute the tool
for computing the levitation force. The time-averaged force
may be calculated by integrating the normal stress:

F0 = −
∫∫

σzz|z=h(0) dx1 dx2 =
∫∫

p
(2)
0 dx1 dx2. (34)

F. Boundary conditions

The air flow inside the gap generates the flow outside. In
order to keep the computational domain finite we have to
replace the calculation of the outer flow by proper boundary
conditions. The simplest way is to set pressure equal to its
ambient value. However, such condition causes reflection of
a longitudinal acoustic wave back into the gap and decreases
the model accuracy. To avoid it we need special nonreflective
boundary conditions. One of the first systematic studies
of building such conditions was reported by Engquist and
Majda [31]. For more details on the topic we refer the reader
to Ref. [32].

In this section we derive a nonreflective boundary condition,
which is transparent for acoustic wave. The idea is to find the
relation between the pressure value and its gradient at the end
of the gap. In order to do it, we need to consider the flow

outside the gap. For simplicity, we assume that the vibrating
surface and the levitating object are of the same size (e.g.,
having same radius in axisymmetric case).

1. First-order conditions

We employ the method suggested by Engquist and
Majda [31]. In terms of their study, we use first approximation
of the boundary conditions. It allows propagation of a nearly
horizontal outgoing acoustic wave. The derivation of the
conditions is described below.

Considering the infinite domain outside the gap, we start
with the Navier-Stokes Eqs. (3a) and (3b). In contrast to the
previous section, which described the flow in the gap, we
cannot take advantage of the length scales ratio outside the
gap. However, since the flow outside the gap is generated by
the same vibration plane, we are still able to use the same series
expansion on the small parameter ε and Fourier series in time.
We continue to use the notation, introduced in the previous
sections.

For the first order there is the system of equation in the
nondimensional form:

inγK2v(1)
n = −∇p(1)

n + �R∇ · τ (1)
n , (35a)

inγ −1p(1)
n + ∇ · v(1)

n = 0, (35b)

where �R = μ0ω/p0 is the squeeze number in the longitudinal
direction and τ (1)

n is the nth harmonic of the first-order
nondimensional viscous stress tensor:

τ (1)
n = [∇v(1)

n + (∇v(1)
n

)T ] + (
η − 2

3

)(∇ · v(1)
n

)
I, (36)

where η = μb/μ0 is the nondimensional bulk viscosity. The
squeeze number �R is small outside the gap (see Appendix),
thus we can neglect the viscous terms in Eqs. (35a).

Taking the divergence of the Eqs. (35a) and utilizing the
continuity Eq. (35b), one obtains that the pressure satisfies the
following equation:

∇2p(1)
n + K2n2p(1)

n = 0, (37)

where K is, as before, the nondimensional wave number.
As before, in the first-order, a nontrivial solution exists only

for the harmonics with the number n = ±1.
After applying Fourier transform on z coordinate to Eq. (37)

it takes the form

∇2
s p̂

(1)
n + (K2n2 − k2)p̂(1)

n = 0, (38)

where k is the Fourier space coordinate and p̂ denotes the
Fourier image of the pressure. The term in the brackets is
denoted by Bn:

Bn =
√

K2n2 − k2. (39)

Further, we examine two special cases of the geometry: the
simplest 2D case and an axisymmetric case.

a. Nonaxisymmetric case. Here we investigate the simplest
2D nonaxisymmetric case. Equation (38) is read as

∂2p̂(1)
n

∂x2
+ B2

np̂
(1)
n = 0. (40)
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The solution of Eq. (40) for the outgoing acoustic wave is
given by

p̂(1)
n = p̂(1)

n

∣∣
x=1e

iBn(x−1), (41)

where x = 1 is the nondimensional coordinate of the levitating
object’s end. Note that if we do not neglect the viscous terms
in Eq. (35), they will bring a small imaginary addition to Bn,
which leads to attenuating of the acoustic wave as x → ∞.

Although we do not know the exact pressure value at the
end of the gap, we can find the relation between the pressure
and its gradient:

∂p̂(1)
n

∂x

∣∣∣∣
x=1

= iBn p̂(1)
n

∣∣
x=1, (42)

where x = 1 is denoted to the end of the gap.
The boundary condition Eq. (42) is given in the Fourier

space. If we apply the inverse Fourier transform, the condition
will be nonlocal in space. It is difficult to implement, so
we need an approximation of the exact boundary condition
Eq. (42). The most straightforward solution is to compute
the coefficient on the right-hand side with k = 0. Physically,
it means that we apply nonreflective boundary conditions to
the horizontal waves only. In terms of Ref. [31] this is the
first-order approximation of the boundary conditions. Since
we do not have a pressure gradient in z direction inside the gap,
such approximation is reasonable. Finally, we get the condition

∂p(1)
n

∂x

∣∣∣∣
x=1

= iK|n|p(1)
n

∣∣
x=1. (43)

b. Axisymmetric case. The idea described above can be
applied to the axisymmetric case. The equation on the pressure
outside the gap Eq. (38) takes the form

1

r

∂

∂r

(
r
∂p̂(1)

n

∂r

)
+ B2

np̂
(1)
n = 0. (44)

The outgoing wave for the case of the axisymmetric
Helmholtz-type Eq. (44) is described by the Hankel function
of the first kind H

(1)
0 :

p̂(1)
n = p̂(1)

n

∣∣
r=1

H
(1)
0 (Bnr)

H
(1)
0 (Bn)

, (45)

where r = 1 is the nondimensional radius of the levitating
disk.

Using the same approach as in the 2D case we get the
expression for the boundary condition:

∂p(1)
n

∂r

∣∣∣∣
r=1

= −p(1)
n

∣∣
r=1K|n|H

(1)
1 (K|n|)

H
(1)
0 (K|n|)

. (46)

2. Second-order pressure condition

Moving to the second-order boundary conditions, for zero
harmonic there is no wave propagation at all (since it is time-
independent originally), so speaking about a “nonreflective”
condition is irrelevant. However, it is possible to write out the
second-order equation for the pressure in the domain outside
the gap and try to follow the same procedure as for the first
order. Nonetheless, the resulting equation includes products of

the first-order velocities, which must be found before, and it
makes analysis impossible in practice. Therefore, we stay with
the trivial boundary conditions for the second order:

p
(2)
0

∣∣
r=1 = 0. (47)

III. RESULTS AND DISCUSSION

We solved the equations derived in the previous section for
the case of axisymmetric levitating disk. If the disk is planar
the problem can be solved analytically. However, the analytical
solution for the second-order quantities is too complex to
be analyzed. Thus, we solve the problem numerically with
COMSOL Multiphysics software.

In contrast to direct numerical simulation (see, for example,
Ref. [25]), our approach helps to reduce the initial nonlinear
transient problem Eqs. (3)–(8) to five linear PDEs with no
time-dependence. Thus, it is more beneficial in terms of
computational costs.

We use 2D axisymmetric formulation. In this case the air
gap is represented by a rectangle. The computation consists
of two successive steps. We start with solving the first-order
Eqs. (29), (30a), and (31) with boundary condition Eqs. (30b)
and (46). As we argued earlier, nontrivial first-order solution
exists only for the wave numbers n = ±1. Since the n = −1
solution is complex conjugated to the n = +1 one, it is
enough to solve equations for n = +1 only. The pressure
p

(1)
1 does not depend on z coordinate, thus the gap-averaged

continuity Eq. (29) can be solved on the surface of vibration
source. Equations (29) and (30a) are coupled through averaged
velocity Eq. (30c).

Next, the first-order solution is substituted into the second-
order Eqs. (32) and (33a) with boundary condition Eqs. (33b)
and (47). Again, the continuity Eq. (32) is solved on the
boundary only.

Due to the form of the governing equations, the mesh size
can be chosen independently in the longitudinal and transversal
directions. This simplifies the mesh generation significantly in
comparison with the full transient Navier-Stokes model, where
one has to be very careful about the mesh size and the time
step. We use a regular rectangular mesh with highly stretched
elements.

Calculations were made for the air at normal conditions:
ambient density ρ0 = 1.14 kg/m3, ambient pressure p0 =
1 atm, ambient viscosity μ0 = 1.81 × 10−5 Pa s, ambient tem-
perature T0 = 291.15 K, Sutherland’s constant C = 120 K,
and adiabatic index γ = 1.4.

From the form of governing equations, it is clear that
there are two mechanisms of near-field levitation: inertial (or
acoustic) and viscous. Their importance is expressed by the
acoustic wave number K and the squeeze number �. The ratio
of the nondimensional quantities γK2 and �, which occur in
the Eqs. (26) and (27), is proportional to the squared ratio of
the gap thickness to the acoustic boundary layer thickness,

� = γK2

�
= H 2

0 ωρ0

μ0
= 2

(
H0

δ

)2

, (48)

where δ = √
2μ0/(ωρ0) is acoustic boundary layer thick-

ness [29]. In the case of air and vibrating frequency 20 kHz, its
value is δ ≈ 15 μm. Therefore, when the gap thickness is large
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enough, � � 1, inertial terms dominate and acoustic models
can be used; in the opposite case, when the gap is smaller than
the boundary layer, � � 1, only viscous effects are import-
ant and Reynolds equation may be applied. However, for the
intermediate regimes, � ≈ 1, more involved model is needed.

Further, in this section we discuss the levitation force
and provide comparison to the experimental measurements
from previously published paper and our experiments. After
demonstration of the model validation we introduce qualitative
results on the pressure profile.

A. Levitation force

As was shown in the previous section, the levitation force
can be computed as an integral of pressure. In general, the
pressure distribution depends on many factors such as levi-
tation height, disk radius, vibration amplitude and frequency,
and gas properties. However, modeling shows that the result is
highly sensitive to the vibration amplitude and the levitation
height, and less affected by other parameters.

The theory includes vibration amplitude in the small
parameter ε = a/H0. This parameter is not involved in the
governing equations and appears as a scaling factor only.
It implies that for fixed gap thickness the pressure value is
proportional to the squared amplitude. The levitation height, in
contrast, enters into all the equations and thus deeply influences
on the final pressure distribution.

1. Comparison to published data

In Ref. [25] the levitation distance is predicted by numeri-
cally solving full transient Navier-Stokes system. In addition,
experiments are carried out using a 19.5-kHz acoustic source
and various aluminum disks of different sizes. We use this
paper to validate our model and compare our results to the full
numerical model and published experimental data.

Figures 2 and 3 represent the dependence of the levitation
height on the amplitude of vibration velocity for disk radii
R = 10 mm and R = 20 mm, respectively. Each plot in a series
corresponds to levitation height of a disk with thickness thk.
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FIG. 2. Levitation height H as a function of the vibration
velocity amplitude. Disk radius R = 10 mm, vibration frequency f =
19.5 kHz. Solid curves denote the present model; points represent the
experimental data from Ref. [25]; and dashed lines correspond to
numerical model from Ref. [25].
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FIG. 3. Levitation height H as a function of the vibration
velocity amplitude. Disk radius R = 20 mm, vibration frequency f =
19.5 kHz. Solid curves denote the present model; points represent the
experimental data from Ref. [25]; and dashed lines correspond to
numerical model from Ref. [25].

Both models—our semianalytical and published numerical
one—are in good agreement with the experiment. However,
our model has an advantage that it is much simpler for
computation.

2. Comparison to the experiment

We have conducted a series of experiments in order to
validate the model in various levitation regimes. During the
experiments, the levitation height was measured for different
aluminum and glass disks. The experimental setup is illustrated
in Fig. 4. The transducer with piezos creates mechanical

FIG. 4. Experimental setup.
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FIG. 5. Predicted levitation height vs. experimental data.

vibrations, which are amplified by the booster. The sonotrode
on the top is designed to have a uniformly flat radiating face.

The transducer was run at 20 kHz and two vibration
amplitudes were tested: 3 μm and 5 μm. Disks of radii 20 mm
and 35 mm were used and the sample weight was in the range
3–200 g. The set of the experiments covered a wide range of
levitation height from 26 μm to 220 μm. This allowed us to
validate the model in both viscous and acoustic regimes. The
summarized results are presented in Fig. 5, where the predicted
levitation heights are compared to the experimental data. Our
model agrees well with the experiment; the root-mean-square
error over the set of experiments is 14%.

The dependence of the levitation height on the specific
weight σ = m/πR2 of the sample is shown in Fig. 6 in
log-log scale. As described above, the change of vibration
amplitude a results in shifting (i.e., scaling) the curves only.
Also, the different radii almost do not affect the dependence.
Furthermore, three regimes are observable. Each regime
corresponds to a different slope of the curve on the plot. For
the small levitation heights, less than about 20 μm, the viscous
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FIG. 6. Levitation height as a function of specific weight for
different disk radii R and vibration amplitudes a. Points correspond
to experimental data.
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FIG. 7. Pressure profiles for various disk radii and levi-
tation heights. Vibration amplitude a = 3 μm for all cases.
(a) R = 20 mm, H = 30 μm; (b) R = 35 mm, H = 30 μm; (c) R =
20 mm, H = 150 μm; (d) R = 35 mm, H = 150 μm.

regime works. It approximately corresponds to � < 3. Then
from 20 to 50 μm there is a viscoacoustic zone, where two
mechanisms compete (3 < � < 20). For the heights more than
50 μm acoustic effects dominate (� > 20).

B. Pressure profile

Pressure profile may be important for some sensitive
applications. Our model allows its computation. Modeling
shows that the pressure distribution varies from almost uniform
to wavy shape. As was discussed above, the key factor is the
levitation height. For low heights, the boundary layers are
overlapped and the system goes in viscous regime resulting
in close-to-uniform pressure with a rapid drop near the edge
only. In contrast, for larger heights, there is a distance between
the boundary layers and inertia effects begin to play its role,
which causes longitudinal acoustic wave and, therefore, a wavy
pressure profile.

In Fig. 7, four different pressure profiles are illustrated. The
plots in the first row correspond to viscous regime and show
close-to-uniform distribution. On the other hand, the second
row depicts the situation of acoustic regime, which creates
a wavy profile. In addition, the pressure values indicate that
the total levitation force significantly decreases in comparison
with the viscous regime.

IV. CONCLUSION

In the present work, we derived an involved semianalytical
model of ultrasonic near-filed levitation. In contrast to existing
analytical models our approach does not require knowing
the levitation height in advance and allows us to cover both
viscous and acoustic regimes of levitation. Furthermore, the
intermediate viscoacoustic regime is resolved. It is achieved
by incorporation of multiple physical effects important in
the process: inertia, viscosity, compressibility, viscosity-
temperature-pressure dependence, nonplanar levitating object,
and nontrivial boundary condition. Accounting for all these
effects allows treating a wide range of levitation distances.
At the same time, the model’s accuracy is at the level of
well-tuned straightforward numerical simulation. However,
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due to reasonable assumptions and additional mathematical
treatment the problem is reduced to five linear PDEs with
no time-dependence. It implies low computational cost in
comparison with the full numerical study.

During the model derivation we determined the applicabil-
ity limits of the acoustic and viscous approaches and explained
it in terms of the ratio of the gap thickness to the boundary
layer thickness. The model results allow us to distinguish three
regimes of the levitation, which show different change of
levitation force with the gap thickness. In the case of small
levitation distances, the boundary layers are overlapped and
only viscous effects play a role. Then there is a viscoacoustic
regime for moderate levitation heights, and, for large distances,
the boundary layers are negligibly thin and inertial effects
dominate. The last case allows propagation of the longitudinal
acoustic wave, which results in a wavy pressure profile. Such
waviness may be undesirable for highly sensitive levitating
objects.

Although it was not in the focus of our work, the suggested
approach allows study of acoustic streaming in the air gap.
The steady flow is described by the second-order velocities
u(2)

0 , which are found from Eqs. (32)–(33a).
The model was successfully validated against the published

experimental and numerical work of Nomura et al. [25]. In
addition, a series of experiments was conducted to cover
different levitation regimes. The model results are in good
agreement with the experimental data with root-mean-square
error of 14%.
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APPENDIX: DETAILS OF SCALING ANALYSIS

1. Nondimensionalization

In this Appendix we describe how scaling analysis implies
the transition form the initial Eqs. (3)–(8) to simplified
Eqs. (11)–(15).

First of all, we reproduce the scaling used in the beginning
of the Sec. II:

x̃α = xα

R
, z̃ = z

H0
, t̃ = ωt, ṽz = vz

ωH0
, ṽα = vα

ωR
,

p̃ = p

p0
, ρ̃ = ρ

ρ0
, μ̃ = μ

μ0
, s̃ = s

cv

, T̃ = T

T0
,

where cv is the heat capacity at constant volume and p0, ρ0, μ0,
T0 are the pressure, density, viscosity, and temperature of air
at normal conditions. Here and later Greek indices α, β, and
ϕ span the numbers 1 and 2. The ratio of the gap thickness to
the disk radius is denoted by ζ = H0/R. The second viscosity
is nondimensionalized as η = μb/μ0. The introduced length

and velocity scales implies scaling of the viscous stress tensor,

τ̃αβ = ταβ

μ0ω
, τ̃αz = H0

μ0ωR
ταz,

τ̃zα = H0

μ0ωR
τzα, τ̃zz = τzz

μ0ω
,

the viscous dissipation term,

�̃ = H 2
0

μ0ω2R2
�,

and the total stress in z direction,

σ̃zz = p0σzz.

To simplify the notation we omit tildes over nondimensional
variables.

The stress tensor components can be expressed in terms of
velocities:

ταβ = μ

(
∂vα

∂xβ

+ ∂vβ

∂xα

)
+

(
η − 2

3
μ

)(
∂vϕ

∂xϕ

+ ∂vz

∂z

)
δαβ,

(A1)

ταz = τzα = μ

(
∂vα

∂z
+ ζ 2 ∂vz

∂xα

)
, (A2)

τzz = 2μ
∂vz

∂z
+

(
η − 2

3
μ

)(
∂vϕ

∂xϕ

+ ∂vz

∂z

)
, (A3)

where δαβ is Kronecker δ and summation over repeated Greek
indices is assumed. Then the viscous dissipation term � may
be written as

� = ταz

∂vα

∂z
+ ζ 2

(
ταβ

∂vα

∂xβ

+ τzα

∂vz

∂xα

+ τzz

∂vz

∂z

)
. (A4)

After nondimensionalization momentum Eqs. (3a) take the
form

γK2ρ

(
∂vα

∂t
+ vβ

∂vα

∂xβ

+ vz

∂vα

∂z

)

= − ∂p

∂xα

+ �

(
∂ταz

∂z
+ ζ 2 ∂ταβ

∂xβ

)
, (A5)

γ ζ 2K2ρ

(
∂vz

∂t
+ vβ

∂vz

∂xβ

+ vz

∂vz

∂z

)

= −∂p

∂z
+ ζ 2�

(
∂τzβ

∂xβ

+ ∂τzz

∂z

)
, (A6)

where nondimensional numbers K and � are defined as

K =
√

ω2R2ρ0

γp0
, � = μ0ωR2

p0H
2
0

.

The continuity Eq. (3b) takes the nondimensional form

∂ρ

∂t
+ ∂

∂xα

(ρvα) + ∂

∂z
(ρvz) = 0. (A7)

The energy Eq. (6) is written as

ρT

(
∂s

∂t
+ vα

∂s

∂xα

+ vz

∂s

∂z

)

= �

(
∂2T

∂z2
+ ζ 2 ∂2T

∂xα∂xα

)
+ ��, (A8)
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where nondimensional numbers � and � are defined as

� = κ

ρ0ωcvH
2
0

, � = μ0ωR2

ρ0cvT0H
2
0

. (A9)

Finally, the total stress in z direction, which is used for
computation of levitation force, is

σzz = −p + ζ 2�τzz. (A10)

2. Neglecting small terms

For further analysis we will need the following relation-
ships, which may be found in Refs. [29,33]:

c =
√

γ
RT0

M =
√

γ
p0

ρ0
, c̄ =

√
8RT0

πM =
√

8

πγ
c

μ0 = ρ0lc̄

3
, κ = ρ0lc̄

3
cv,

cp − cv = R/M, cp/cv = γ,

where c is the speed of sound, c̄ is the mean molecular
speed, l is the molecular mean-free path, R is the universal
gas constant, M is the molar mass of gas, and cv and cp

are specific heat capacities at constant volume and constant
pressure, respectively.

Next we use the introduced relationships to estimate
magnitudes of the nondimensional numbers K , �, �, �.
Assuming the typical disk radius R ∼ 10−2 m, gap thickness
H0 ∼ 10−5–10−4 m, acoustic wavelength λ ∼ 10−2 m, vibra-
tion amplitude a ∼ 10−6 m, and mean-free path l ∼ 10−8 m,
we obtain the characteristic values:

ζ = H0

R
∼ 10−3 − 10−2,

ε = a

H0
∼ 10−2 − 10−1,

K = 2π
R

λ
∼ 100,

γK2 = 4π2γ
R2

λ2
∼ 101,

γ ζ 2K2 = 4π2γ
H 2

0

λ2
∼ 10−5 − 10−3,

� = 4
√

2πγ

3

lR2

λH 2
0

∼ 10−2 − 100,

ζ 2� = 4
√

2πγ

3

l

λ
∼ 10−6,

� =
√

2

3π
√

πγ

lλ

H 2
0

∼ 10−4 − 10−2,

� = (γ − 1)� ∼ 10−2 − 100.

Basing on the estimated values, we can neglect the terms
involving γ ζ 2K2, ζ 2�, and �. The numbers γK2 and �

cannot be neglected.
We will pay a special attention to the quantity �. Though

it is of the same order as �, detailed analysis shows that the
term �� of Eq. (A8) can be omitted.

First of all, we should note that the viscous dissipation term
� is quadratic in the velocity amplitude. Due to Eqs. (A2)

and (A4) in the leading order, it has the form

�� = �μ
∂vα

∂z

∂vα

∂z
. (A11)

It does not affect the equations of first order in ε. Consequently,
in the first order we have

∂s(1)

∂t
= 0. (A12)

Then we recall the first-order analysis described in the
paper. For the case of a planar axisymmetric disk, the first-order
Eqs. (29) and (30) can be solved analytically, giving

v
(1)
1 = − i

γK2

(
sinh(�z) sinh(�(1 − z))

sinh(�)
− 1

)
∂p

(1)
1

∂r
, (A13)

p
(1)
1 = γ

2

(
1 − KJ0(rk)

KJ0(k) − ikJ1(k)

)
, (A14)

where v is the radial velocity, p is the pressure,

� =
√

i� =
√

i
γK2

�
, k = ωR

c
√

1 − 2�−1 tanh(�/2)
,

and J0, J1 are zero- and first-order Bessel functions of the first
kind.

We will examine the velocity derivative ∂v/∂z in the
limiting viscous and acoustic regimes. It takes the largest value
on the boundary. For the viscous case � � 1 the asymptotic
relation holds

max

∣∣∣∣∣∂v
(1)
1

∂z

∣∣∣∣∣ ∼
∣∣∣∣∣ �2

2γK2

∂p
(1)
1

∂r

∣∣∣∣∣ = 1

2�

∣∣∣∣∣∂p
(1)
1

∂r

∣∣∣∣∣. (A15)

To estimate the pressure gradient we note that k ∼ �−1 and em-
ploy the Bessel function asymptotic for large arguments [34].
It leads to the magnitude approximation∣∣∣∣∣∂p

(1)
1

∂r

∣∣∣∣∣ ∼ γK

2
. (A16)

Substituting estimations (A15) and (A16) into Eq. (A11),
we obtain

�� = �ε2

∣∣∣∣∣∂v
(1)
1

∂z

∣∣∣∣∣
2

∼ ε2 γ 2(γ − 1)K2

16�

= 3γ 2(γ − 1)π2

16
√

(2πγ )

a2

lλ
∼ 10−3. (A17)

Therefore, for viscous regime the right side of the energy
Eq. (A8) vanishes.

Similar analysis for acoustic regime, � � 1, gives estima-
tions

max

∣∣∣∣∣∂v
(1)
1

∂z

∣∣∣∣∣ ∼
∣∣∣∣∣ �

γK2

∂p
(1)
1

∂r

∣∣∣∣∣ = 1

K
√

γ�

∣∣∣∣∣∂p
(1)
1

∂r

∣∣∣∣∣, (A18)∣∣∣∣∣∂p
(1)
1

∂r

∣∣∣∣∣ ∼ γK

2
, (A19)
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resulting in the typical scale of viscous dissipation term

�� = �ε2

∣∣∣∣∣∂v
(1)
1

∂z

∣∣∣∣∣
2

∼ ε2 γ (γ − 1)

4

= γ (γ − 1)

4

a2

H 2
0

∼ 10−5. (A20)

The estimated magnitudes of the viscous dissipation term
for viscous case Eq. (A17) and acoustic case Eq. (A20) allows
us to neglect it in our calculations.

In addition, the magnitude of �� was computed with the
exact first-order solution Eqs. (A13) and (A14) numerically
for the heights 10–200 μm and disk radii 5–50 mm. The
calculations confirm that viscous dissipation term is negligible
comparing to ε2 and thus can be omitted.

3. Simplified equation

Summarizing the scaling analysis of the former sec-
tion we end up with the following simplified momentum

equations:

γK2ρ[∂t u + (v · ∇u)] = −∇sp + �∂z(μ∂zu), (A21)

∂zp = 0, (A22)

continuity equation

∂tρ + ∇ · (ρv) = 0, (A23)

and energy equation

∂t s + v · ∇s = 0. (A24)

The total stress in z direction is reduced to

σzz = −p. (A25)

These simplified equations are used in the main body of the
paper.
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