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Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation
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In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-
Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which
the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker,
the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame
propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the
turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends
itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness
of the flame curvature probability density function is identified as an unambiguous morphological marker for
the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is
shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while
it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect
to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental
propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and
below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL
instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.
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I. INTRODUCTION

Since the seminal work of Darrieus [1] and Landau [2],
the planar configuration of a premixed flame (a deflagrating
front), propagating at constant speed with respect to the
fresh combustible mixture, was observed to exhibit instability
with respect to perturbations of any wave number. The
effect, referred to as Darrieus-Landau (DL) or hydrodynamic
instability, was recognized to be caused by the flow expansion
and the ensuing streamline coalescence or deviation in the
presence of small flame perturbations, leading to local flow
acceleration or deceleration and relative amplification of
the flame wrinkling. Markstein [3] later introduced a phe-
nomenological dependence of flame speed on flame curvature,
conditioning the instability to small wave numbers alone. More
rigorous asymptotic theories subsequently appeared, based on
the multi-scale structure of premixed flames [4], eventually
deriving a hydrodynamic model [5] from which emerged a
linear dependence of flame speed on stretch rate, which incor-
porates both curvature as well as hydrodynamic strain effects,
both modulated by a parameter known as Markstein length, of
the order of flame thickness, representative of diffusive effects.
As a result, the operating pressure, mixture composition, and
type, which all affect the Markstein length, are parameters
which are expected to affect the cutoff wave number of
the DL instability [6]. Clearly, the larger the characteristic
hydrodynamic length, established by the geometrical features
of the experimental apparatus (or computational domain), with
respect to the cutoff wavelength, the more intense the DL
instability.
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A considerable number of experiments revealed DL in-
stabilities in a variety of premixed flame configurations in
the form of flame surface corrugation [7–9]. In particular,
the laminar propagation of spherical flames revealed self-
acceleration due to the onset of a fractal conformation, brought
about by DL instability as the flame expands [10,11]. The
emergence of fractal flame structures was also observed using
a variety of numerical models, ranging from weakly nonlinear
Sivashinksky-like models [12,13] to large scale fluid dynamic
computations [14].

Of particular importance, albeit utilizing different stand-
points, is the observation that DL effects may play a consider-
able role not merely in a laminar setting but also in the context
of turbulent propagation of premixed flames [15–19]. Indeed, a
number of experimental studies were carried out emphasizing
the specific role of intrinsic DL instability [20–23] in premixed
turbulent flame propagation. However, the interplay between
DL-induced corrugation and turbulence-induced wrinkling
and the manner in which they act synergistically to augment
the turbulent propagation speed is still a matter of intense
scrutiny (a critical review of instability effects in turbulent
combustion can be found in [24]). In particular, the well-
known difficulty in determining a universal scaling law for
the turbulent propagation speed in terms of the operative
parameters, a task generally hindered by the strong dependence
from experimental conditions, can be subject to an additional
layer of complexity in the presence of DL instability. An
inherent problem in experiments, for example, is the absence of
a reliable criterion to determine the presence of DL instability.
In spite of this, recent numerical and theoretical work [25–27]
strongly suggest a potentially significant influence of DL
effects on turbulent propagation, especially at lower turbulence
intensity.
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If we are to attempt to distill open issues from the exper-
iments dedicated to the analysis of DL effects on turbulent
propagation, three distinct questions would arise, namely:
(i) unambiguously establish the presence or absence of a
DL-induced flame morphology on a turbulent premixed flame,
given the operating conditions and the fuel type, (ii) quantify
the effect of the intensity of the DL instability on the flame
morphology and propagation, and (iii) investigate whether the
DL-induced effects are mitigated or even suppressed as the
intensity of the turbulence increases.

In this work we address the above questions utilizing first a
series of large scale numerical simulations of two-dimensional,
slot burner, premixed turbulent flames, a configuration which
allows the attainment of statistical steadiness of any derived
flame property. We identify the stability limits for the flame
in such a way as to induce or suppress DL instability at
will. We then identify the skewness of the flame curvature
distribution as a statistical morphological quantity to be used
as an unambiguous marker for DL-induced effects on the
turbulent flame. We also measure the turbulent propagation
speed and assess the effect of the intensity of the DL instability
and of the incident turbulence. Secondly we perform a series
of experiments on propane-air, atmospheric pressure Bunsen
flames at different equivalence ratios and different Reynolds
numbers. We utilize two distinct Bunsen diameters which are
chosen to be respectively above and below the estimated cutoff
wavelength in the range of compositions used. The previously
defined morphological marker is successfully validated on the
experimental flames, proving it can be used to identify the
presence of DL effects on turbulent flames.

II. NUMERICAL SIMULATIONS

To study the morphological properties of premixed flames
subject to DL instability, we adopt a one-step irreversible
Arrhenius reaction model in which a deficient reactant deter-
mines the reaction rate and is entirely depleted across the flame
while the concentration of other reactants remains essentially
unchanged. We further assume low-Mach number conditions
which are justified as a deflagration wave propagates at a speed
S0

L (unstretched laminar flame speed) far smaller than the speed
of sound in the combustible mixture. We note that the use
of the deficient reactant model enables the coherent use of
results obtained within the asymptotic hydrodynamic theory
of premixed flames developed in Ref. [5] and in particular the
linear stability properties of flames derived therein.

We nondimensionalize spatial variables with respect to
a hydrodynamic length scale L, which is assumed as the
width of the slot burner, while time is nondimensionalized
by L/S0

L. Other nondimensional variables, such as density
and mass fraction of the deficient reactant, are measured in
units of ρu and Yu, where the subscript ‘u’ denotes the value
in the unburned fresh mixture, while velocities are measured
in units of S0

L. The nondimensional temperature is defined
as θ = (T − Tu)/(Tad − Tu), where T is the dimensional
temperature and Tad is the adiabatic flame temperature,
i.e., the temperature downstream of an adiabatic unstretched
planar flame. Associated to the flame is a diffusive length
scale �D = λ/ρucpS0

L = Dth/S
0
L, where λ and cp are the

thermal conductivity and specific heat at constant pressure

of the combustible mixture, respectively, and Dth the thermal
diffusivity. The ensuing conservation equations thus read
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where δ = �D/L is the nondimensional diffusive length
which is taken as a measure of the flame thickness. Le =
λ/cpD is the Lewis number measuring the ratio of the
heat to mass diffusivity, with D = ρuD, where D is the
diffusion coefficient of the deficient reactant. Re = ρuS

0
LL/μ

is the Reynolds number, with μ the dynamic viscosity,
and the effect of buoyancy is neglected. Dynamic viscosity
μ, thermal conductivity λ, specific heat cp, and coeffi-
cient D are assumed constant. The viscous stress tensor
reads

Sij = ∂ui

∂xj

+ ∂uj

∂xi

− 2

3
δij

∂uk

∂xk

. (4)

Under the low-Mach assumption the dimensional hydrody-
namic pressure P1 (where its nondimensional counterpart
is p1 = P1/ρuS

0
L

2
) represents an O(M2) deviation, with

M � 1 being the Mach number, from the thermodynamic
pressure P0 which is uniform in space. Thus the equa-
tion of state for a perfect gas mixture once nondimen-
sionalized reads ρ = (θ (σ − 1) + 1)−1, where σ = Tad/Tu

is the ratio of the adiabatic flame temperature to the un-
burned mixture temperature. The continuity equation re-
duces to a constraint on the divergence of the velocity as
follows

∂uj
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(5)

Finally, the reaction rate takes the form

� = Ze2

2Le
Y exp

(
Ze(θ − 1)

1 + α(θ − 1)

)
, (6)

where Ze = Ta(Tad − Tu)/T 2
ad is the Zel’dovich number, with

Ta = Ea/R the activation temperature and Ea activation
energy and α = 1 − σ−1.

The spatial discretization of the governing equations is
based on the spectral element method [28,29] which splits
the computational domain into E conforming rectangular
elements. In each of the spectral elements, the solution
is approximated by an N − 1 dimensional tensor-product
based on the N th order Lagrange polynomials which are
defined on Gauss-Lobatto-Legendre quadrature points. The
discretized system of equations is solved numerically using a
modified version of the highly scalable, incompressible, and
low-Mach number spectral element flow solver NEK5000 [30].
Time integration is performed using a high-order splitting
scheme for the low-Mach number variable density flows [31]
decoupling the stiff thermochemistry subsystem (temperature
and deficient reactant equations) from the hydrodynamic
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FIG. 1. Schematic of the computational domain.

subsystem (momentum equation). The thermochemistry sub-
system is integrated by means of the stiff ordinary differential
equation solver CVODE [32], while the hydrodynamic sub-
system is advanced in time using a third-order semi-implicit
formulation [29,33,34].

Numerical simulations are performed on a two-dimensional
rectangular domain of non-dimensional width Lx/L = 3 and
height Ly/L = 3, where, again, L is the width of the slot
burner, taken to be the reference hydrodynamic length and
placed symmetrically at the lower boundary. The order N of
each element is chosen so as to guarantee a minimum of ten
grid points within the flame thickness δ, with the exception of
the minimum simulated flame thickness δ = 0.004. The latter
required the highest resolution with E = 512 and N = 8 for
each spatial dimension resulting in ≈6 points within the flame
thickness.

Free-slip boundary conditions for the velocity and zero-
flux for the scalars (temperature and deficient reactant) are
adopted at the left and right boundaries of the computational
domain, while zero-flux outflow conditions for both scalars
and velocity components are used at upper boundary. Inflow
conditions for both velocity and scalars are used at the lower
boundary. A representation of the computational domain is
displayed in Fig. 1. In particular at the slot burner inflow,
Dirichlet conditions for temperature and deficient reactant are
imposed, θ = 0 and Y = 1, corresponding to a fresh mixture
with nondimensional bulk inflow velocity uy = U = 3. The
latter velocity, in laminar conditions, corresponds to a slot
flame height which approximately extends half the height of
the domain. A laminar coflow condition at the lower boundary
on each side of the burner inflow is also implemented, with
θ = 1 and Y = 0, corresponding to a burned mixture so as to
stabilize the slot flame. The vertical coflow velocity magnitude
uy = Uc is set at a value of the same order of the velocity
magnitude downstream of the laminar slot flame (e.g., for
σ = 8, Uc ≈ 8) so as to minimize shear and avoid Kelvin-
Helmholtz instabilities interfering with the dynamical features
of the flame.

FIG. 2. Root mean square of velocity perturbations urms (solid
line) and mean temperature θCL (dashed line) along the slot centerline
for δ = 0.008 < δc and u′

0 = 1.5.

Superimposed to the burner bulk inflow, a homogeneous,
isotropic, synthetic turbulence signal is added possessing
prescribed two-point statistics. In particular, the velocity per-
turbation signals u′

i(x,y), generated using a method developed
by Klein [35] and illustrated in [13], possess a prescribed
autocorrelation function Ruu(r) = exp(−πr2/4�2), with r

the distance between two points [36], which give them a
spatial scale � resembling an integral scale, in addition to

an intensity u′
0 = (u′

iu
′
i)

1/2
which is taken as representative

of the intensity of the fluctuating flow-field impacting the
flame. The inflow perturbation velocities u′

i(x,t) are simply
obtained by sweeping the signals u′

i(x,y) with y = Ut . Note
that the Reynolds number was kept constant (Re = 200) for
all simulations in order to maintain the same degree of viscous
dissipation leading to identical decay rates of the inflow
turbulence. As shown in Fig. 2 for a representative case
(δ = 0.008, u′

0 = 1.5), the rms of the velocity perturbations
along the slot burner centerline exhibits an approximate decay
of 10% at a vertical distance of y = 0.5 from the burner inlet,
which can be assumed as the position of the flame brush
leading edge where the flame brush region can be inferred
from the mean temperature profile along the centerline. Note
the increase in rms corresponding to the flame brush region,
caused by the effect of flame tilt and thermal expansion [26].

Table I displays all the operative parameters used in the
numerical simulations, a selection of which is visible in
Fig. 3. The flame thickness δ acts as a bifurcation parameter,
suppressing DL instability above a critical value δc and
promoting them below such value. The determination of δc

is illustrated below. The Lewis number, on the other hand, was
kept above unity to suppress any thermal diffusive instability.
For the other parameters listed in Table I, representative
values for common hydrocarbon fuels are assumed. Given
the range of �/δ and u′

0 used, the regime spanned by the
simulations is that of ‘corrugated flamelets’, extending up

TABLE I. Main parameters used in the numerical simulations of
two-dimensional slot burner flames.

δ σ Le Ze u′
0 �

0.004–0.05 8 1.2 9 1.5,2.5 0.05
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FIG. 3. Two-dimensional simulations of slot burner flames with σ = 8, Le = 1.2, and of different nondimensional thickness δ = �D/L

with �D the flame thickness and L the burner diameter. The displayed field is nondimensional temperature θ . Flames with δ < δc where
δc = 0.015 is the critical value, exhibit DL instability. (a) δ = 0.0275 > δc, (b) δ = 0.015 ∼ δc, (c) δ = 0.008 < δc, (d) δ = 0.004 < δc. Note
superadiabatic temperatures (θ > 1) issuing from highly curved flame crests. The domain shown is smaller than the entire actual computational
domain.

to a weakly turbulent regime, similarly to previous studies
such as Ref. [37]. The range of turbulent Reynolds numbers
Ret = u′

0�/ν spans between 15 and 25, where, for the latter
value, the energy spectrum of the streamwise component
of the incident flow-field was observed to extend for more
than one order of magnitude above and below the integral
scale �.

A. Stability limits

Results from the linear stability analysis of a premixed
planar flame can be employed to estimate the conditions for
which DL instability is promoted in the context of the current
deficient reactant flame model to be simulated. Asymptotic
dispersion relations were rigorously derived under the deficient
reactant assumption [5,38,39]. Such relations, expressing the
growth rate ω(k) of a perturbation of transverse wave number
k = 2π/λ, with λ the perturbation wavelength, are usually cast
in the form of a series expansion in powers of k, truncated so
as to include a linear term expressing the DL hydrodynamic
instability and a quadratic stabilizing term due to diffusive
effects. In particular Ref. [5] yields a general non-linear
hydrodynamic model in which the flame is a gas-dynamic
discontinuity between the fresh and burnt mixture, propagating
at a flame speed Sf = S0

L − LK, where K = S0
Lκ + KS is

the flame stretch rate inclusive of the effect of curvature κ

and hydrodynamic strain KS and L is the Markstein length.
Given the unit normal n to the flame, directed towards the burnt
gases, then κ = −∇ · n and Ks = −n · E · n, with E the rate
of strain tensor. We note, therefore, that the hydrodynamic
model generalizes Markstein’s hypothesis, mentioned in the
introduction, by including a corrective stretch factor on
the flame speed, due to diffusive and reactive processes,
ultimately responsible for the short wavelength stabilization.
A closed form relation expressing L /�D = M , where M is
known as the Markstein number, can be rigorously derived
from a generalized version of the hydrodynamic model [6]
in terms of operative parameters such as σ , Le, and Ze,

reading

L /�D = σ

σ − 1

∫ σ

1

η(τ )

τ
dτ + Ze(Leeff − 1)

2(σ − 1)

×
∫ σ

1

η(τ )

τ
ln

(
σ − 1

τ − 1

)
dτ, (7)

where the function η(T/Tu) summarizes the temperature
dependence of transport coefficients and Leeff is an effective
Lewis number which is an average of the reactants’ Lewis
numbers but for off-stoichiometric mixtures coincides with
the Lewis number of the deficient reactant. Note that when
constant properties are assumed across the flame then η ≡ 1.

Utilizing a slightly simplified hydrodynamic flame model,
in which diffusive effects are retained only in the flame
speed expression, it was shown in [40] that a closed form
dispersion relation can be derived yielding very similar results
to more complete models. In particular by enforcing ω = 0 an
expression for the cutoff wavelength is derived, λc =
2πL (3σ − 1)/(σ − 1), so that the flame is hydrodynamically
unstable to any perturbation of wavelength λ such that λc <

λ < L. Equivalently, the instability condition λc < L, dividing
by �D , translates into δ < δc where δc = �D/λc. Thus planar
flames exhibiting nondimensional thickness smaller than the
critical value δc are hydrodynamically unstable. This concept
holds unaltered for slot flames for which the diameter L repre-
sents the minimum hydrodynamic length. Note, therefore, that
DL instabilities can be induced by decreasing the thickness of
the flame relative to the hydrodynamic length L. This can be
accomplished by increasing the operative pressure, driving the
composition towards stoichiometry or simply by increasing L.

In order to estimate δc, Eq. (7) is used to estimate L /�D

as a function of the operative parameters, where η ≡ 1
is assumed to enforce constant properties, similarly to the
deficient reactant model Eqs. (1)–(3). To illustrate the stability
limits we derive the maximum number of unstable wavelengths

nc = L/λc = (σ − 1)/{2π (L /�D)δ(3σ − 1)}, (8)
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FIG. 4. (a) Number of unstable wavelengths nc as a function of δ

and Le. Stability region corresponds to nc � 1. (b) Direct estimation
of L /�D from the slope of the linear regression model (dashed line)
between (nondimensional) local normalized flame speed and stretch
rate. Color map shows the normalized joint p.d.f. of flame speed
and stretch obtained from a simulated flame at δ = 0.008 and using
θ∗ = 0.8.

which is displayed in Fig. 4(a) as a function of δ and Le
all other parameters being constant. The locus nc = 1 is
clearly the stability boundary and thus represents the function
δc(Le,σ,Ze). Using the parameters of Table I we obtain
L /�D ≈ 2.8 corresponding to δc ≈ 0.017.

Alternatively, L /�D can be estimated directly from the
simulations. Given the asymptotic linear relation between
flame speed and stretch, the Markstein number can be
recovered from the slope of a linear regression model between
computed local values of said variables. The local stretch rate
K is computed by choosing an iso-surface representative of
the flame, such as θ (x,y,t) = θ∗, and determining the local
curvature and hydrodynamic strain. The local instantaneous
flame speed Sf , on the other hand, is assumed as the local
displacement speed [41,42], defined as the flame speed relative
to the local normal flow velocity, and is derived by following
the motion of the iso-surface θ = θ∗, whose dynamics is
described by a level-set equation of the kind

Sf

(
∂θ

∂xi

∂θ

∂xi

)1/2 ∣∣∣∣
θ=θ∗

=
(

∂θ

∂t
+ uj

∂θ

∂xj

)∣∣∣∣
θ=θ∗

, (9)

where the material derivative is computed from the right
hand side of Eq. (3). The displacement speed in Eq. (9) is
clearly sensitive to the choice of θ∗ given that such choice
determines the local value of density ρ∗ and thus of mass
flow and incident velocity. To eliminate the dependence from
θ∗, the displacement speed is normalized by the local density
ratio [41], thus yielding Ŝf = Sf ρ∗/ρu. Figure 4(b) displays
the joint probability density function (p.d.f.) between the
normalized displacement speed and stretch, highlighting the

linear regression model (dashed line), the slope of which yields
an estimate of the Markstein number L /�D ≈ 2.8, sufficiently
close to the value obtained using Eq. (7), corresponding to
δc ≈ 0.02. The value of θ∗ used in Fig. 4(b) was chosen to
represent an iso-surface close to the burned side, consistently
with the findings in Ref. [41]. The values of δ selected for
the simulations, shown on Table I, were, in conclusion, clearly
chosen so as to encompass the bifurcation value δc.

B. Results: Morphology and propagation of turbulent flames

As mentioned in the Introduction, we now address the
first issue of unambiguously establishing the presence or
absence of DL-induced morphological features on turbulent
premixed flames. It is widely recognized from experimen-
tal [9], numerical [12,40,43], and analytical studies [44,45]
that DL instability induces a characteristic cusp-like wrinkling
on a freely propagating planar laminar flame which acts as
a morphological signature for DL effects. During the linear
growth phase, a flame perturbation will exponentially grow
in amplitude until, in the non linear phase, the DL growth is
contrasted by the Huygens principle of normal propagation
and the flame is stabilized into a finite amplitude, cusp-like
conformation [46]. In a fully laminar setting, such cusp-like
cells will coalesce into a unique steady cell, encompassing
the entire hydrodynamic domain [26]. Given the associated
flame area increase with respect to the planar conformation,
the steady propagation speed U of a flame exhibiting DL
instability will be substantially higher than the reference,
unstretched, laminar speed of a stable planar flame S0

L. A
measure of such increase can be obtained from the Sivashinsky
equation [47] and its modifications [48] for which the flame
speed can be derived analytically. For example, in Ref. [48]
an expression is derived for the nondimensional steady
propagation speed in the form U/S0

L = 1 + Um(σ )f (δ/δc).
Figure 5 displays such propagation speed as a function of
δ/δc and clearly exhibits the bifurcative behavior for δ/δc < 1
accompanied by a substantial increase in speed.

Shifting our attention to turbulent flames, previous stud-
ies [23,26] have shown that the characteristic, DL-induced,
cusp-like morphology persists, exhibiting highly curved crests
and smoother, wider troughs which introduce an asymmetric
distribution of flame surface curvature. In other words, when
the planar flame loses stability, in addition to turbulence-driven

FIG. 5. Steady laminar propagation speed, scaled with the planar
speed S0

L, for a planar flame experiencing DL instability. The model
is derived from the Sivashinsky equation and corrected [48] for finite
expansion ratio σ (case shown σ = 8).
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FIG. 6. Curvature of iso-contour θ = θ∗ along the flame coordi-
nate s. Upper and lower panel display curvature profiles, respectively,
for the stable and unstable flames displayed in Fig. 3.

wrinkling it exhibits localized bursts of negative curvature
(provided the flame normal is in the direction of burnt
gases) corresponding to crests and more moderate positive
curvatures corresponding to troughs. On the other hand, a
flame for which the planar conformation is stable will not
exhibit any bias on curvature once wrinkled by turbulence.
Figure 6 displays the flame curvature for a stable (δ > δc)
and an unstable (δ < δc) slot flame selected from the present
turbulent simulations, shown in Fig. 3. Thus, even in a
mildly turbulent setting, we observe a dramatic morphological
dichotomy between stable and unstable flames, similarly to
the bifurcative behavior shown for laminar flames in Fig. 5,
which suggests that the statistical properties of curvature can
act as an unambiguous marker for DL effects. In particular, the
skewness of curvature p.d.f., measuring its asymmetry about
the mean, is an observable expected to act as such marker.
We note that some authors [49] have observed other features
such as transient unburned mixture fingers which can also
induce a preferentially negative flame curvature, although this
phenomenon was not linked to DL-instability and is therefore
not expected to increase or decrease its intensity as δ is varied
across the bifurcation value δc.

Figure 7 displays curvature p.d.f.’s for selected simulated
flames which clearly exhibit a pronounced skewness towards
negative curvatures for δ below the bifurcation value δc while,
above such value, distributions are largely more symmetrical

FIG. 7. Probability density function of curvature for sta-
ble (δc = 0.017 < δ = 0.028,0.035) and unstable (δc > δ =
0.015,0.004,0.008) flames.

FIG. 8. (a) Skewness of flame curvature distribution versus
δ/δc for two values of turbulence intensity. (b) Turbulent burning
velocity versus δ/δc for two values of turbulence intensity. Inset:
Time-averaged concentration iso-contours Y = Y ∗ = 0.9 for δ =
0.008,0.015,0.00675, and u′

0 = 1.5.

and insensitive to variations of δ. Indeed Fig. 8(a) clearly and
unambiguously shows that a nondimensional parameter such
as the skewness of the curvature distributions, characterizing
their degree of symmetry, exhibits a threshold behavior
whereby for δ > δc it is insensitive to variations of the
parameter δ, highlighting a wrinkled flame surface devoid
of a preferential curvature, while for δ < δc the skewness
experiences a dramatic drop, becoming highly sensitive to
δ, a manifestation of the presence of localized, preferentially
curved structures of increasingly negative curvature. We also
note that a lower moment such as the mean or variance of the
curvature, while still exhibiting a different behavior for stable
and unstable flames, is less effective as a marker as it lacks
the clear threshold behavior of skewness. In addition, while
lower moments such as mean or variance are not invariant
under a linear transformation of the random variable, skewness
is indeed invariant and as such it is independent of any
renormalization of curvature, e.g., such as the rescaling of
curvature by the thickness δ.

A first conclusion that can be drawn from the simulations
is that an observable such as the skewness of curvature
distribution will likely act as an unambiguous marker for
DL instability effects also in the context of experimental slot
or Bunsen flames. In an experimental setting, control of the
bifurcation parameter δ = �D/L will be achieved either by
varying the slot or Bunsen diameter L and/or by varying the
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flame thickness �D through stoichiometry and/or pressure. In
the following sections we verify this through an experimental
analysis of propane or air turbulent Bunsen flames.

We now focus our attention on the turbulent burning
velocity of the slot flames and, in particular, how this is affected
by the onset of DL instability and by the intensity of the
incident turbulence. The concept of global consumption speed
ST,GC [50] as a definition for turbulent burning velocity ST

is particularly suited to slot or Bunsen geometries. Because
all of the supplied fresh mixture passes through the flame,
mass conservation implies that the inlet mass flow rate be
expressed as ṁ = ρuST,GCAY=Y ∗ where ST,GC is the effective
burning velocity of the turbulent flame of area AY=Y ∗ corre-
sponding to the time-averaged generic iso-contour Y = Y ∗.
The inset in Fig. 8(b) displays time-averaged iso-contours
for representative values of δ at a fixed turbulence intensity.
While such time-averaged iso-contours exhibit some degree
of residual asymmetry, their area was found to have reached
sufficient statistical convergence which is of relevance in the
determination of the turbulent burning velocity. It is apparent
that as δ is decreased below the critical value, the effect of the
DL-induced flame morphology is to decrease the area AY=Y ∗
of such averaged iso-contour. Given the constant mass flow,
such a decrease is accompanied by a corresponding increase
in the turbulent burning velocity which is, in turn, caused by
an increase in the instantaneous area per unit flame length or
flame surface density (a measure of the average flame surface
to volume ratio). This effect is evident in Fig. 3 where as δ

is decreased the flame wrinkling and thus the instantaneous
flame area per unit flame length is observed to increase and,
concurrently, the flame height is observed to decrease due to
mass continuity.

Indeed Fig. 8(b) clearly shows that for the same (low)
turbulence intensity u′

0 = 1.5, Lewis number and expansion
ratio, two clearly distinct turbulent propagation regimes exist,
characterized by the absence or presence of DL instability. In
particular, for δ > δc a regime exists for which the turbulent
burning velocity is insensitive to variations of δ while for
δ < δc a different regime ensues where ST becomes highly
sensitive to δ and a DL-driven enhancement of ST is observed.
The consequence of this on laboratory flames is the following:
given a combustible mixture, of fixed composition and at
a given pressure, thus yielding a given flame thickness �D ,
two distinct turbulent propagation regimes exist for the same
turbulence intensity u′

0. Such regimes can be triggered by
varying the hydrodynamic length L (e.g., the diameter of a
Bunsen burner) so as to promote (δ < δc) or suppress (δ > δc)
DL instabilities.

The above arguments address the second question which
was put forth in the introduction regarding the effect of DL
instability on the flame morphology and turbulent propaga-
tion. In the following sections we will verify the foregoing
observations in the context of an experimental Bunsen flame.
The third question, on the other hand, addressed the impact
of turbulence intensity in mitigating or even suppressing the
role of DL instability in the turbulent flame morphology and
propagation. Increasing the turbulence intensity to u′

0 = 2.5,
Fig. 8(a) shows a pronounced decrease in the sensitivity
of curvature skewness to δ, for δ < δc, while the discussed
threshold behavior seems to persist, albeit in a less noticeable

form. This essentially suggests that the turbulence generated
wrinkling has a mitigating function on the DL-induced flame
morphology. Similarly, at such higher turbulence intensity,
Fig. 8(b) exhibits a far reduced sensitivity of the turbulent
burning velocity to δ while the dual behavior caused by DL
effects and observed at lower intensity seems to disappear
completely. This also suggests that the increase in flame
area per unit flame length induced by DL effects alone, is
mitigated by the effect of turbulence generated wrinkling.
Also noteworthy is that, contrary to the lower intensity case or
even to the representative laminar scenario depicted in Fig. 5,
at higher intensity the effect of DL instability extends to an
entire range of values of δ protruding away from the bifurcation
point into the stable region. This behavior was also observed
in a number of previous studies utilizing a variety of methods
such as the stochastic Sivashinsky equation [13] or a hybrid
level set methodology [27,37]. While still unproven, it is to be
expected that a further increase in intensity would completely
overshadow any effect due to hydrodynamic instability, thus
eliminating any residual functional dependence of curvature
skewness or ST on the parameter δ. To conclude, these findings
suggest that DL effects on the turbulent propagation of a
premixed flame are clearly evident and noticeable albeit strictly
confined to a low turbulence intensity regime.

III. EXPERIMENTAL INVESTIGATION

The effects of DL instability on an experimental propane
(C3H8) or air Bunsen flame at atmospheric pressure are now
investigated. Similar guidelines to those followed in the numer-
ical investigation are used. In particular, results from asymp-
totic theory are utilized in order to estimate the critical flame
thickness δc as a function of the equivalence ratio φ which, in
the experimental campaign, acts as an independent parameter.
The nondimensional flame thickness δ = �D/L is varied either
by varying φ, which acts on �D , or by adopting a different
Bunsen diameter L. Because DL instability is triggered for
δ < δc, two Bunsen diameters are chosen in such a way that
unstable conditions are always met for the larger diameter
while stable conditions, δ > δc, are consistently met for the
smaller diameter, irrespective of the equivalence ratio φ used.

To estimate δc we need to adapt any asymptotic model
and ensuing dispersion relation to the propane or air mixture
used in experiments. In particular, by fitting experimental
data by Tseng et al. [51] for propane or air mixtures at
atmospheric pressure, we derive the functional dependence
of all the relevant operative parameters from the equivalence
ratio, namely σ (φ), S0

L(φ), and Tad (φ). In Sec. II A, a
slightly simplified hydrodynamic model was utilized yielding
a dispersion relation for the deficient reactant model, derived
by Creta and Matalon in Ref. [40], which we refer to here as
the CM dispersion relation. This can be adapted to propane
or air mixtures by using in Eq. (7) a temperature dependent
transport coefficient, i.e., η(T/Tu) = (T/Tu)γ and an effective
Lewis number representing a weighed average of the fuel and
oxidizer Lewis numbers as described in [6,52]. The exponent
γ is usually taken as a constant between 1/2 and 1.

The most general dispersion relation, however, was derived
by Matalon, Cui, and Bechtold [6] directly for a two reactant
mixture, and is referred to here as MCB. In its dimensional
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form the MCB dispersion relation reads [6]

ω(k) = ω0 S0
L k − Dth ω1 k2,

(10)
ω1 = B1 + Ze(Leeff − 1)B2 + PrB3,

where ω0 = (−σ + √
σ 3 + σ 2 − σ )/(σ + 1), Pr is the Prandtl

number and B1, B2, and B3 are coefficients, functions of σ ,
whose expression can be found in Ref. [6]. It is easily verified
that for the MCB relation the critical thickness reads δc =
ω0/(2πω1).

Additional models were used, such as the one formulated
by Pelce and Clavin [38], which we refer to as PC, who derive
a dispersion relation in the form

ω(k) = � S0
L k

(11)
� = σ

σ − 1
{[ω3 + L k(L k − 2σ )]1/2 − L k − 1},

where ω3 = (σ 2 + σ − 1)/σ and where the effect of gravity
was neglected. An expression for the Markstein number
was derived by Clavin and Garcia [53] which accounts for
temperature dependent diffusivities. In particular, using the
dependence given by the kinetic theory of gases in the
approximation of rigid sphere, corresponding to an exponent
γ = 1/2, such expression is given by

L /�D = 2σ√
σ + 1

+ Ze(Leeff − 1)

[
2√

σ + 1

− σ

σ − 1
ln

(√
σ + 1

2

)]
. (12)

Finally the PC model was used similarly to Ref. [25] using
Eq. (7) for the Markstein length to generalize the temperature
dependence. We refer to the latter model as PC1.

Figure 9 displays the critical flame thickness δc as a function
of the equivalence ratio φ as estimated by the foregoing

FIG. 9. Critical nondimensional flame thickness δc as a function
of equivalence ratio φ for propane or air mixtures, using different
dispersion relation models (notation defined in the text) and different
exponents γ for temperature dependence of transport coefficients.
Dashed curves represent the nondimensional flame thickness δ =
�D/L for two Bunsen diameters: L = 18 mm (lower dashed curve)
and L = 9 mm (upper dashed curve). All pertinent data for propane or
air mixtures was taken from Ref. [51] while diffusivities were taken
from Ref. [52].

models. Regardless of the temperature exponent used, pro-
vided it is chosen in the range γ ∈ [1/2,1], all models seem
to yield similar results, with only a slight variability with φ,
around the average value δc ≈ 0.006. As mentioned, this value
acts as a guideline for the choice of the Bunsen diameters. In
other words, given the flame thickness dependence on equiva-
lence ratio for propane or air mixtures at atmospheric pressure,
�D(φ), the Bunsen diameter L is chosen so that in order to
trigger DL instabilities δ(φ) = �D(φ)/L < δc ≈ 0.006 in the
range of φ of interest, and otherwise if instabilities are to be
suppressed. This analysis yields a ‘large’ diameter, chosen as
L = 18 mm, for which δ(φ) < δc, at least in a wide range
of near-stoichiometric mixtures which, observing Fig. 9, can
be roughly estimated as φ ∈ [0.7,1.6]. Thus, such diameter is
expected to be larger than the cutoff wavelength and therefore
to exhibit DL instabilities. A ‘small’ diameter L = 9 mm is
also identified, for which δ(φ) > δc for all values of φ, which is
systematically smaller than the estimated cutoff wavelength at
each φ and thus expected to be unable to sustain instabilities.
In a previous experimental study [23] the presence of DL
instability was conjectured based on similar considerations
and on flame curvature albeit using a single Bunsen diameter.
The use of the additional smaller diameter, which is expected
to suppress instabilities, is intended here to serve the purpose
of unambiguously highlighting morphological differences
between stable and unstable flames.

A. Experimental results

The experimental setup is similar to that described
in [23,54,55]. As mentioned, two Bunsen diameters are utilized
and the ensuing flames analyzed by means of a PIV setup using
a laser source of 54 mJ Nd:YAG equipped with a 60 mm focal
length camera working at a resolution of 1024 × 1280 pixels.
The range of composition and bulk Reynolds numbers tested
is reported in Table II, where Re = 4ṁ/(μπL) with ṁ the
reactive mixture flow rate and μ the dynamic viscosity. Note
that the latter definition differs from that given in Sec. II. The
flame front position is determined from the sudden jump in
alumina particle number density caused by the flame zone
expansion which, in Mie scattering images, corresponds to
zones at very different levels of scattered light intensity. Thus
an intensity threshold easily identifies the flame surface. Image
postprocessing yields global quantities such as flame surface
area (under the hypothesis of axis-symmetric flame) and local
quantities such as flame curvature. Thus, turbulent burning
velocities, defined as the global consumption speed introduced
previously, are easily recovered from the average flame front
position while morphological properties can be extracted from
the p.d.f.’s of curvature [23].

Additional parameters of interest for the experimental
campaign, characterizing the incident flow field, are given in

TABLE II. Main parameters used in the experimental investiga-
tion of C3H8/Air flames at atmospheric pressure.

L [mm] φ Re

9.0,18.0 0.7–1.8 2500–7000
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TABLE III. Main experimental flow parameters corresponding to
unreactive cases (φ = 0). Velocities are expressed in ms−1 while the
correlation length � in mm.

L = 9 mm L = 18 mm

Re Ret UCL u′
0 � Re Ret UCL u′

0 �

2500 − 5.2 0.1 − 2500 − 3.2 0.19 −
5000 20 9.8 0.5 0.6 5000 38 5.9 0.6 0.96
7000 29 13.4 1.1 0.4 7000 43 6.8 1.0 0.65

Table III for representative unreactive cases, corresponding to
equivalence ratio φ = 0. In particular, the mean of the axial
velocity UCL and its root mean square u′

0, calculated at the
centerline, away from the wall boundary layer influence, are
reported, both expressed in ms−1. The last column reports the
correlation length � (expressed in mm) defined as the integral
of the autocorrelation coefficient of the axial velocity. For
each bulk Reynolds number, the turbulent Reynolds number
Ret = u′

0�/ν is also given. All the quantities have been
evaluated at 5 mm above the jet nozzle exit (see Ref. [56]
for details). For case at Re = 2500 (considered laminar) the
correlation coefficient is not reported.

Figure 10 shows the different morphological features of
two sets of flames obtained with the two different Bunsen
diameters L = 18 and 9 mm at the same Reynolds number
and for the same range of equivalence ratios. In particular,

FIG. 10. Mie scattering images of C3H8/Air flames at Re =
5000. Upper panels: Bunsen diameter L = 18 mm. Lower panels:
L = 9 mm. Flames a-d and I-IV correspond to φ = 0.8,1.1,1.4,1.5,
respectively.

FIG. 11. Skewness of flame curvature versus δ/δc for experimen-
tal C3H8/Air flames at Re = 2500–7000 using two Bunsen diameters
L = 9 and 18 mm. Range of equivalence ratio for smaller diameter
is φ ∈ [0.8,1.7] while for larger diameter φ ∈ [1.1,1.7].

signature effects due to DL instability are visible for the
larger diameter in terms of cusp-like wrinkling, while these
effects are absent for the smaller diameter. Following the
conclusions of the numerical campaign, we now monitor the
instability marker, identified as the skewness of the flame
curvature p.d.f.. This is shown in Fig. 11 as a function of δ/δc

where δc is estimated with the CM model of Fig. 9 (albeit no
significant difference is noticed using other models). Similarly
to numerical simulations results of Fig. 8(a), we observe a
clearly distinct behavior of curvature skewness depending on
whether δ/δc > 1 or < 1. Skewness levels are related to the
largest absolute curvature that can be evaluated, which, for
experiments, is limited to the image resolution of ∼90 μm and
to flame thickness which varies in the range 50–100 μm. Note
that for each Bunsen diameter, data points on the iso-Re curves
are obtained by varying the equivalence ratio φ. In particular,
for the smaller diameter, data is confined to δ/δc > 1 and
curvature skewness, which is only mildly negative, seems to
be insensitive to variations of equivalence ratio. This behavior
is coherent with the absence of DL instabilities, as shown by the
numerical analysis. On the other hand, for the larger diameter,
data is almost entirely confined to δ/δc < 1 and the skewness
becomes abruptly negative and highly sensitive to variations
of equivalence ratio, a behavior coherent with the presence of
DL-induced morphology. This confirms, in an experimental
setting, the dichotomic behavior of flame morphology with
respect to variations of the parameter δ. Note that, as expected,
the abrupt change in skewness is most evident at the lowest bulk
Reynolds number, which is considered laminar, thus excluding
a possible additional role, other than that played by δ, of the
turbulent scale � in the onset of such behavior. Turbulence
intensity, on the other hand, will play a role in mitigating such
effect, as explained below.

Observing Fig. 11 and following the data sets for increasing
Re numbers, we also observe a decrease in the abrupt drop
in curvature skewness as δ/δc < 1 for higher Reynolds. In
this context, the bulk Re can be directly related to turbulence
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FIG. 12. Turbulent burning velocity versus δ/δc for experimental
C3H8/Air flames at Re = 2500–7000 using two Bunsen diameters
L = 9 and 18 mm.

intensity (see Table III), thus indicating a similar behavior
to Fig. 8(a) whereby higher intensity translates to a reduced
sensitivity of skewness to δ. This is particularly evident for the
Re = 7000 data set of Fig. 11, corresponding to the highest
turbulent intensity examined, for which skewness does not
seem to exhibit a sudden drop as δ/δc is decreased below
unity, but rather it seems to be subject to a uniform decrease.

Finally, for the same experimental data sets, in Fig. 12
we monitor the dimensional turbulent burning velocity ST ,
evaluated as the global consumption speed ST,GC . Similarly
to the numerical findings [Fig. 8(b)], we observe two dif-
ferent regimes of turbulent propagation. While for δ > δc

the turbulent propagation speed seems to be less sensitive
to variations of δ, for δ < δc, corresponding to the larger
Bunsen diameter, a DL-driven regime ensues for which the
turbulent propagation speed is enhanced and becomes highly
sensitive to δ. Indeed, Fig. 12 suggests that the presence
of DL-induced flame corrugation can more than double the
turbulent propagation speed at a given Reynolds number and
mixture composition.

Contrary to numerical simulations where δ is an inde-
pendent parameter, in experiments the ratio δ/δc is varied
by using two different Bunsen diameters and by varying the
equivalence ratio, which implies a variation in laminar flame
speed. Figure 13 displays the turbulent flame speed adequately
rescaled with respect to the unstretched laminar flame speed
S0

L. While the data in Fig. 13 reflect the fact that for each of
the two Bunsen diameters, smaller values of δ correspond to
higher values of S0

L, it still exhibits a clear amplification of the
normalized turbulent speed when δ < δc, similarly to Fig. 12.
Figure 14 shows the enhancement of turbulent propagation
speed between the Bunsen diameter L = 18 mm flames and
L = 9 mm flames at each corresponding equivalence ratio,
which reaches a factor of two at φ = 1.2 ∼ 1.3 with a tendency
to decrease as φ increases. Note from Fig. 13 that for some
lean flames (φ = 0.8,0.9,1.0) at the lowest Reynolds number
of 2500, we observe ST,GC/S0

L < 1. A tentative explanation
for this may be found in the effect of buoyancy, which may

FIG. 13. Turbulent burning velocity normalized with laminar
flame speed versus δ/δc. Notation is identical to Figs. 11 and 12.

play a role at the lowest Re and which was found in Ref. [57]
to induce longer turbulent Bunsen flames in lean conditions,
corresponding to lower values of ST,GC .

As we have seen, the numerical campaign suggests that an
increase of turbulence intensity causes a decrease of both flame
curvature skewness and turbulent propagation speed sensitivity
to variations of δ as it is decreased below the critical value
δc. While this seems to be confirmed in experiments for the
curvature skewness (Fig. 11), the variation of the Reynolds
number does not cause appreciable changes in the sensitivity
of ST on δ. Higher Reynolds numbers should possibly be
investigated in order to observe such an effect.

IV. SUMMARY

In this investigation we performed two-dimensional nu-
merical simulations of slot burner premixed turbulent flames
as well as experiments of C3H8/Air turbulent Bunsen flames
with the objective of (i) unambiguously identifying the effect
of Darrieus-Landau (DL) instability on the morphology and
propagation of turbulent premixed flames, (ii) quantifying
such an effect and, finally (iii) assessing whether the increase
of turbulence intensity mitigates or even suppresses such
effect.

The numerical campaign is based on a deficient reactant
model which enables the coherent use of results obtained
within linear stability analysis, thus allowing the unambiguous

FIG. 14. Enhancement (ratio) of turbulent burning velocity be-
tween Bunsen diameter L = 18 mm flames and L = 9 mm flames.
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identification of the stability limits in terms of an independent
parameter δ, measuring the flame thickness nondimensional-
ized with respect to the slot width. As δ < δc, where δc is
the bifurcation value, DL instability dramatically changes the
morphological features of the turbulent flame. We identify
the skewness of the flame curvature p.d.f. as an unambiguous
marker for the presence of DL-induced effects. In particular,
in the absence of DL instability, skewness remains insensitive
to variations of δ, while for δ < δc a bifurcative effect is
observed with the skewness becoming highly sensitive to δ.
As a results of such dichotomic behavior of flame morphology
with respect to variations of the parameter δ, we observe
a similar dual behavior in the turbulent propagation of the
flame. In particular, for the same turbulence intensity and
expansion ratio, the onset of DL instability is observed to
cause a sudden increase in the turbulent propagation speed
which is otherwise insensitive to variations of δ. An increase
in turbulence intensity tends to attenuate such sharp, dual be-
havior, mitigating the effect of DL instability, thus suggesting
it is a feature limited to low turbulence intensity regimes of
propagation.

Experimental C3H8/Air turbulent Bunsen flames are also
analyzed via a PIV setup. The bifurcation parameter δc is
estimated by adapting several analytical asymptotic models to

propane or air mixtures. DL instability is then triggered by
adopting two Bunsen diameters and concurrently varying the
equivalence ratio. Experimental flames, similarly to numerical
simulations, exhibit a clear dichotomic behavior of flame
morphology, with the curvature skewness becoming extremely
sensitive to variations of δ when δ < δc while remaining
insensitive to δ for δ > δc. A similar dual behavior and
enhanced sensitivity is also observed in terms of the turbulent
propagation speed. In addition, Reynolds number effects,
connected to turbulence intensity effects, are also analyzed.
While the sensitivity to δ of curvature skewness is observed
to decrease with Re, no appreciable effect is observed for the
turbulent propagation speed, possibly suggesting that higher
Re numbers should be investigated in order for turbulence to
have a mitigating effect over DL-induced effects.
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dell’Istruzione, Universitá e della Ricerca (MIUR). The
authors acknowledge the Italian Super-Computing Interuniver-
sity Consortium CINECA for support and high-performance
computing resources under Grant No. DL-3D/HP10CRXOHF.

[1] G. Darrieus, Propagation d’un front de flamme, unpublished
work, presented at La Technique Moderne (Paris) and in 1945
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