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Localized fluidization in granular materials: Theoretical and numerical study
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We present analytical and numerical results on localized fluidization within a granular layer subjected to a local
injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are
recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the
injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The
analytical approach is at the continuum scale, based on Darcy’s law and Therzaghi’s effective stress principle.
It provides a good description of the phenomenon as long as the porosity of the granular assembly remains
relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on
the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous
situations which occur at larger injection rates. The results from both methods are in qualitative agreement with
data published independently. A more quantitative agreement is achieved by the numerical model. A direct link
is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While
narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single
homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime
and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure.
Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.
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I. INTRODUCTION

In a broad sense, fluidization refers to the fluid-induced
mobility of solid grains in a granular material subjected to
upward seepage flow [1]. Fluidization is employed in a wide
variety of industrial processes such as heat transfer, petroleum
refining, coal conversion, and water treatment [2,3]. It may
also occur as a result of seepage flow in a soil, in which
case it can be the cause of internal soil erosion that can
lead to serious failures of hydraulic works (dykes, levees,
dams, etc.) [4–6]. A particular case is when there is very
localized influx of fluid, leading to a spatial heterogeneity of
the phenomenon, this situation is generally termed localized
fluidization in the literature. Such a configuration appears in
tapered fluidized bed reactors found in many industrial process
(drying, coating crystallization, mixing, etc.) [7,8], spouted
beds, or in some natural geological formations [9]. Eventually,
fluidized zones induced by underground pipe leakage are
also a major concern as ground surface may collapse due
to the leak, causing important accidents [10]. In addition,
channelling can be observed in some applications of fluid bed
reactors. Channelling is a condition wherein the fluid passes
through the bed along localized paths [11]. This phenomenon
should be avoided due to its adverse effects. Hydromechanical
instabilities have been observed experimentally and simulated
numerically in the case of a saturated granular medium when
a localized flux is injected through a small orifice [12–15].

Despite the large number of works dedicated to fluidized
beds [16–18], only a few have focused on the initial and
developing phases of a localized fluidized zone inside a
granular medium [14,15,19,20]. The present study is devoted
to this specific aspect.

A typical configuration for laboratory experiments on
localized fluidization is shown in Fig. 1. The previous works on
such configurations evidenced three successive regimes during
a gradual increase of the injection rate [14,15,20]. At very
low rates, the bed is stable. Larger rates cause bed expansion

even before any fluidization zone can be observed (expansion
regime). For a yet larger rate, the hydrodynamic forces exerted
on some particles are sufficient to counterbalance their weight,
triggering movements above the injection point in the so-called
“fluidized” zone (cavity regime). Eventually, the height of
the fluidized zone increases with the injection rate, until
it reaches the top of the granular layer (chimney regime).
Experimental results on the progressive development of a
fluidized zone in a saturated bed of grains under the effect
of a localized upward flow [14] enabled to gain insight into
the fluidized regimes. However, information at the grain scale
and details of the pressure field were not accessible by this
way. In order to overcome these limitations and analyze more
deeply the local mechanisms responsible for fluidization and
grain destabilization a numerical model, embedding fluid-solid
coupling on the microscale, is used in this work.

Overall, the process is highly nonlinear, which makes
the analytical study impossible without crude simplifications.
Nevertheless, it will be seen that a continuum scale model
can give some insight into some governing mechanisms. In
this work, we provide closed form solutions for the field
of initial pore pressure in the problem of Fig. 1. It enables
the determination of the effective stress at every point of
the problem. Then the effective stress field will be used to
determine the extents of the fluidized zone.

A more realistic simulation of the process is possible using
a numerical model of grain-fluid systems. To this aim, we use
a coupling between the discrete element method and a pore-
scale finite volume method (DEM-PFV) [21,22] to simulate the
complete process from the expansion regime to the chimney
regime.

This work is devoted to two objectives. First, analytical
and numerical simulations performed in this study enable a
better understanding of the local mechanisms responsible for
fluidization and the variables of which govern the phenomenon
describing the initial and developing phases of fluidization
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FIG. 1. Sample geometry and boundary conditions.

from punctual to a source of infinite size and completing
the experimental previous work [14]. Secondly, by track-
ing the effective stress within the medium it is shown that
the effective stress constitutes a relevant parameter assessing
the occurrence of fluidization. Thus the effective stress field,
as well as the porosity field, gives a good approach to describe
the internal configuration and define the fluidized zones inside
the granular assembly.

The paper is organized as follows. First, we define the
physical model and the relevant dimensionless variables.
Secondly, the theoretical and numerical models are introduced
in Sec. II. The results are presented in Sec. III and compared
to data available in the literature. Finally, numerical results are
used to highlight the role of flow rate, particle sizes, aperture of
the injection zone, and viscosity of the pore fluid. The domains
corresponding to the different fluidization regimes are defined
in terms of dimensionless injection rate and dimensionless
aperture.

II. METHODOLOGY

A. Problem statement and experimental setup

As a model system we consider a layer of monodisperse
spheres immersed in a viscous fluid inside a rigid box. The
system is subjected to gravity and the density of the solid
particles is larger than that of the fluid (i.e., the particles
sink). The granular layer is initially at static equilibrium, then
subjected to a local injection of fluid through the bottom face
of the box (Fig. 1). At the free surface of the granular layer the
total stress and the fluid pressure are both null. The lateral and
bottom faces are fixed (i.e., zero-displacement condition) and
impermeable—the injection orifice excepted. The injection
occurs through a rectangular area that covers the whole depth
of the box. In this injection area the boundary condition for the
solid particles is the same as for the rest of the bottom face:
no displacement, as if a rigid grid was stopping the particles
while letting the fluid pass through.

Hereafter, the theoretical analysis of this problem is two
dimensional (2D), thus exploiting the invariance along depth

when the distance between the front and back plates is much
smaller than the other extents (as found in the published
data). On the other hand, the numerical model considers
three-dimensional (3D) sphere assemblies. Granular systems
are indeed 3D at the microscale even when the average
displacement field is 2D. It was thus considered a requirement
to simulate three-dimensional grains to approach realistic
responses. Periodic boundary conditions are assumed along the
horizontal directions, consistent with the two dimensionality
at the macroscale. They are preferred over rigid faces in order
to not introduce heterogeneities of the microstructure near the
boundaries.

The setup described here is inspired by the physical exper-
iments of [14]. Spherical beads were poured into a box before
the box was slowly filled with oil via the bottom injection
hole. The experiments were carried out by imposing different
injection rates. Flow through the porous medium remained
in the Stokesian regime as Reynolds number was kept low
during the experiments. Stokesian regime is considered in the
theoretical and numerical models as well. Visualization of the
granular structure was made possible by the combined use of
two optical techniques: refractive index matching between the
liquid and the beads and planar laser-induced fluorescence.
Fluidization—in fact, particles mobility—was then evaluated
by image processing. The injection was done through a
circular aperture of diameter D = 14 mm at the center of
the bottom face. We will not consider a circular aperture in our
model system in general since it breaks the invariance along
depth, thus introducing additional and superfluous complexity.
However, one numerical simulation with a circular aperture has
been carried out and will be reported for direct comparisons
with the experimental result.

The physical variables of the problem are summarized in
Table I.

The porosity of the porous medium appearing in Table I is
defined by the ratio n = Vv

Vt
, where Vv is the volume of void

space and Vt the total volume of material (note that n = 1 − φ,
where φ denotes the solid fraction). The physical properties of
the materials used in the experiments are specified in Table II.

B. Dimensionless variables

Based on the above variables we introduce the so-called
submerged (or apparent) density of the solid phase γ ′ =
(1 − n)(γs − γw), and the reference vertical effective stress

TABLE I. Physical and geometrical variables of the problem. The
dimensions are defined in the (FLT ) (force, length, time) system.

Variable Dimension SI units

Discharge per unit depth (q) L2T −1 (m2/s)
Pressure (P ) FL−2 (Pa)
Height (H ) L (m)
Length (l) L (m)
Grain diameter (D) L (m)
Dynamic viscosity (μ) FL−2T (Pa s)
Aperture (a) L (m)
Solid eight density (γs) FL−3 (N m−3)
Fluid weight density (γw) FL−3 (N m−3)
Porosity (n)
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TABLE II. Solid and fluid properties of the experiments.

Characteristic Experiment

Width (L) 0.20 m
Initial height (Ho) 0.12 m
Depth (s) 0.08 m
Mean radius (rm) 0.00250 m
Density of the solid phase (ρs) 2230 kg m−3

Density of the fluid phase (ρf ) 850 kg m−3

Dynamic viscosity (μs) 0.0183 Pa s

σ ′
0 corresponding to the intergranular stress at the bottom of

the layer (see next section), i.e.,

σ ′
0 = (1 − n)(γs − γw)H = γ ′H. (1)

Normalization by this reference pressure leads to the following
dimensionless group, where the normalized form of each
variable is denoted by the “∗”. The relevance of this set of
dimensionless variables will be demonstrated in Sec. IV. Note
that the dimensionless fluid pressure is a normalized excess
pore pressure, i.e., the difference between absolute pressure
and hydrostatic pressure.

(i) Normalized fluid pressure:

p∗ = P + γw(y − H )

σ ′
0

. (2)

(ii) Normalized flux:

q∗ = qμ

D2σ ′
0

. (3)

(iii) Normalized coordinates:

x∗ = x

l
(4)

and

y∗ = y

H
. (5)

(iv) Normalized aperture:

a∗ = a

l
. (6)

As it will be shown later, the response of the system for a
given injection rate strongly depends on the macroscale hy-
draulic conductivity K of the granular material (ratio between
seepage velocity and pressure gradient). K is proportional
to the squared particle size as in K = κ0

D2

μ
, where κ0 is

dimensionless and depends on porosity only (see, e.g., the
Kozeny-Carman form of this relationship). Through K there
is an effect of particle size in the continuum scale modeling.
An alternative definition of the normalized flux is thus, instead
of Eq. (3),

q∗
k = q

Kσ ′
0

. (7)

Both q∗ and q∗
k will be used in the analysis. The definition

of q∗ is simpler and, since K has not been measured in
the experiments of [14], it is the only form we can use for
comparing data and simulations. q∗

k has the advantage of

reflecting the change of porosity at any step of fluidization and
will be used for the interpretation of some numerical results.

C. Theoretical model

We suggest that fluidization can be seen as a special case
of the so-called liquefaction. The latest refers to situations in
which the total stress tensor σ in a saturated material and the
pressure of the pore fluid P are such that the effective stress
tensor

σ ′ = σ + P I (8)

vanishes or has at least one vanishing eigenvalue. In this
context, fluidization is simply the liquefaction produced by
a particular combination of gravitational acceleration and
upward seepage flow (while liquefaction in general can occur
in nongravitational systems and regardless of seepage flow).

Momentum balance for the solid-fluid mixture in the
Stokesian regime lets one deduce the component σyy of the
total stress in the problem

σyy = γsat(y − H ), (9)

where γsat is the average weight density of the saturated
material, defined by γsat = nγw + (1 − n)γs = γw + γ ′.

As long as the free surface is approximately flat and the
porosity (hence γsat) is approximately uniform, σyy is constant.
Consequently, the changes in the effective stress in Eq. (8) can
only result from a change of the excess pore pressure, itself
controlled by the injection rate. The key part of the theoretical
modeling is thus to determine the spatial distribution of pore
pressure within the specimen to identify the zones in which it
reaches (or exceeds) the total stress.

The granular material will then be considered fluidized at a
particular location (x,y) if

γsat(y − H ) + P (x,y) � 0, (10)

or in an equivalent dimensionless form, introducing the
normalized effective stress σ ′∗:

σ ′∗ := y − H

H
+ p∗(x,y) � 0. (11)

In order to find closed form solutions for P , the following
assumptions have been considered:

(i) Darcy’s law applies at the bulk scale, i.e., the seepage
flow is driven by the gradient of excess pore pressure with a
velocity v = −K∇(P + γwy).

(ii) The porous medium is homogeneous and the deforma-
tion is null or negligible; hence conductivity K is uniform in
space and time.

Under these assumptions, the final expression of the
pressure at any point of the specimen can be obtained as a
sum of the pressures induced at this point by an infinite set of
punctual sources or sinks the symmetries of which replicate
the actual boundary conditions (see the Appendix for further
details):

P + γwy = q

2πK

∞∑
j=−∞

∞∑
i=−∞

−1|j |

× [ln(
√

(x − i l)2 + (y − jc)2)], (12)

052905-3
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where c = 2H as sources and sinks are spaced by a distance
equal to twice the sample height. If a finite injection area is
considered rather than an injection point, the above expression
needs to be integrated on the aperture width:

P + γwy = q

2πK

∫ a/2

−a/2

∞∑
j=−∞

∞∑
i=−∞

−1|j |

× [ln(
√

(x − i l − s)2 + (y − jc)2)]ds. (13)

Note that the pressure defined by Eq. (A4) is singular at the
injection point, where the pore pressure is infinite. In the limit
a∗ = 0 there is therefore a finite-sized fluidized zone for any
value of the injection rate. Conversely, Eq. (13) takes finite
values in the injection area, thus defining a clear threshold
in terms of injection rate below which the effective stress is
strictly compressive everywhere.

According to Eq. (13), K must be known in order to find
the pore pressure. In the DEM-PFV numerical model, K is a
result, and it depends on the particle size and the porosity of
the assembly. Consequently, the analytical and the numerical
methods can be compared directly by plugging K from the
numerical model into Eq. (13).

It is important to recall, however, that Eq. (13) is only
valid for a homogeneous medium, which is not necessarily
the case in experiments or numerical simulations. As soon
as localized fluidization occurs, significant differences are
expected between this equation and the actual or simulated
fluid pressure.

D. Numerical model

The behavior of a granular bed subjected to localized
upward flux can be investigated using different coupled DEM-
fluid models. Some previous works were based on couplings
between the DEM and the lattice Boltzmann [23] (LBM)
method in two dimensions [19,20,24,25].

2D granular systems are peculiar from a mechanical point
of view and their hydraulic properties are unclear—strictly
speaking they are impermeable since they don’t offer any free
path to the fluid. A quantitative approach of the problem thus
requires 3D models. To this aim, the so-called DEM-PFV
coupling was used for the present study [26]. DEM-PFV
refers to a microhydromechanical model combining the DEM
and a pore scale finite volume formulation of the viscous
flow of an incompressible pore fluid [21,22]. It enabled 3D
simulations at a reduced cost compared to 3D DEM-LBM
simulations.

The solid particles in the model are spherical and slightly
polydisperse (uniform distribution deviating by 2% from the
mean diameter). The interaction between them are elastic
plastic, with normal and tangential stiffness kn and ks , and
Coulomb friction angle φ. Newton’s second law of motion is
integrated explicitly through iterative time stepping (imple-
mentation details can be found in [27]). The fluid flow model
is based on a pore scale discretization of Stokes equations,
where the pores are defined by the tetrahedra of a regular
triangulation [22]. At each time step, the geometry and rate
of deformation of each pore is updated on the basis of particle
motions. In turn, the fluxes are determined and the fluid forces
on the particles are obtained. They are integrated in the law

of motion for each particle. This work is carried out using
the PFV implementation provided by the open source code
YADE-DEM [27].

The initial granular layer is obtained by simulating the
gravitational deposition of a cloud of particles in a periodic
box. The deposition stage stops when the particles reach static
equilibrium. The layer is then subjected to an influx of fluid at
the bottom, as shown in Fig. 1. The simulated granular layer
is made up of 5000 spheres, the mean diameter of the grain is
D = 0.0166 m, and the height of the sample is H ≈ 19D.

The effective stress in simulated granular systems can be
computed directly based on the contact network. Follow-
ing [21], the average effective stress tensor associated to one
particle of a saturated material is defined by

σ ′ = 1

Vp

Nc∑
k=1

f k ⊗ xk, (14)

where Nc is the number of contact with other particles, f k is a
contact force, xk the position vector of the contact point, and
Vp the volume of the Voronoi cell enclosing the particle. This
definition results in rather scattered values when plotted per
particle but meaningful results can be obtained when they are
averaged locally (see Sec. III B).

FIG. 2. Evolution of the dimensionless pressure field p∗ for an
injection aperture a∗ = 0.1 and two injection rates q∗ = 0.00019 (a)
and q∗ = 0.00067 (b).
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III. RESULTS AND DISCUSSION

A. Analytical solution

Figure 2 shows the evolution of the pressure field after
Eq. (13) for increasing flux values and an aperture of 10% of the
width of the specimen [a∗ = 0.1 (Eq. (6)]. Near the injection
area, the pressure contours tend to concentric half-circular
shapes due to the quasiradial flow distribution. On the other
hand, the isolines are horizontal near the side walls, consistent
with the no-flux condition. Following Sec. II C, the fluidized
zone can be identified with respect to the sign of the effective
stress. In order to show the evolution of the fluidized zone
and to identify the flux values triggering different steps of
the fluidization phenomenon, the normalized effective stress
is plotted in Fig. 3 for apertures a∗ = 0.1 [plots (a), (b), and
(c)] and a∗ = 0.8 [plots (d), (e), and (f)]. Therein the extent
of the fluidized zone can be defined through the shape of the
null-pressure isoline.

From the first series of plots (narrow aperture) we can
distinguish the regimes described in [14]. Low flux values
correspond to the expansion regime in which no fluidization
zone is detected [plot (a) in Fig. 3].

As the flux increases, pore pressure keeps building up until
it balances the total stress. At this point a fluidized zone
starts developing above the injection area, corresponding to
the cavity regime [plot (b) in Fig. 3]. Eventually, the fluidized
zone reaches the top of the specimen, leading to a chimney of
fluidized grains [plot (c) in Fig. 3].

The solution with a wider injection area [bottom series,
plots (d), (e), and (f) in Fig. 3] shows that a slightly larger
flow rate is required to initiate the fluidization above a wide
aperture.

Distinguishing the cavity regime from the chimney regime
in this situation is made uneasy by the fact that large aperture
tends to fluidize the granular layer simultaneously at every
point in space, thus merging the cavity and chimney regimes
into one single regime as a∗ → 1.

B. Numerical simulations

Figures 4 and 5 show the evolution of porosity within the
simulated layer. Porosity is defined for each particle as the ratio
of the volume of the void to the total volume of the Voronoi
cell enclosing the particle [21]. The fields of Figs. 4 and 5
are in fact a moving average of the per-particle porosity for
reducing the noise due to the scattered local values. The large
porosity values at the top of the layer are artifacts and should
be disregarded: the particles of the free surface have large
porosity values by definition as their Voronoi cells enclose
some void space above the free surface. This artifact gives a
fringe of high porosity through the moving average procedure.
We notice that, with the exception of this top boundary layer,
the deposition process results in a rather uniform porosity
throughout the sample. To some extent a high porosity layer is
also noticeable near the bottom plate, in this case not an artifact
but a perturbation of the microstructure by the rigid wall. There
is no perturbation near the vertical boundaries thanks to the
periodicity.

The porosity changes inside the layer are shown in Figs. 4
and 5 for a∗ = 0.1. A narrow color scale is used in the
former to emphasize the expansion regime, which appears as
a rather homogeneous process. During the expansion regime
the porosity increases over all the points within the sample
(from n = 0.360 to n = 0.368 in average, excluding the free

FIG. 3. Evolution of the dimensionless effective stress field when the injected flux increases. Narrow aperture (a∗ = 0.1) on the first line
and wide aperture (a∗ = 0.8) on the second line. The normalized fluxes are q∗ = 0.00019 (a),(d), q∗ = 0.00105 (b),(e), q∗ = 0.00114 (c), and
q∗ = 0.00126 (f).
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FIG. 4. Evolution of the porosity for narrow aperture (a∗ = 0.1) in a very detailed color scale. (a) Static regime, q∗ = 0. (b) Expansion
regime, q∗ = 0.00095.

surface) and no significant heterogeneities are detected. The
height of the granular layer increases almost uniformly during
this expansion, reaching values over y∗ = 1 (see Fig. 8).

Figure 5 highlights the heterogeneous changes of porosity
as localized fluidization starts developing: a cavity appears for
q∗ = 1.16 × 10−3, followed by a chimney for q∗ � 1.45 ×
10−3. In both cases the particles located in the regions of low
porosity are moving and have only transient contacts with each
other, while the particles of the dense regions are static and
contribute to a permanent contact network.

Plot (c) in Fig. 5 (q∗ = 1.45 × 10−3) shows inside the
chimney a region of even higher porosity (n ≈ 0.5 near
y∗ = 0.7). This pattern is typical and was found in most
simulations. In fact, this bubble of high porosity is not fixed
in time and space: the figure only shows a snapshot at one
particular time. The bubble actually tends to move up until
it reaches the free surface, then another bubble appears at
the bottom in a cyclic manner—very much like air bubbles
produced in a water tank. This is in clear contrast with the
cavity regime in plot (b) (q∗ = 1.16 × 10−3) in which the
porosity field is stationary.

After setting the injection rate back to zero and reaching
a final equilibrium state, a region of high porosity remains
(n ≈ 0.42 locally) above the injection point and throughout
the layer [plot (d) in Fig. 5]. It denotes an irreversible change
of porosity in the layer after the injection steps.

Cavities and chimneys may also be analyzed by means
of the effective stress [Eq. (14)]. However, null effective
stress was never clearly found in the simulations since particle
collisions occur in the fluidized zone and the corresponding
contacts are reflected in the effective stress (arguably, zero-
contact states hardly exist in agitated granular suspensions—
see, e.g., Ref. [28]). Conventionally, the fluidized zone in the
simulations is defined by the points where the effective stress
is less than 10% of the initial effective stress. This threshold
is such that the cavity shape in plot (b) in Fig. 5 matches the
cavity in the top map in Fig. 6. After some iterations we have
found 10% of the initial effective stress is a good criterion
to predict fluidized zones located inside the specimen. More
restrictive thresholds (i.e., 5% of the initial effective stress)
would delay the actual formation of the cavity and introduce
some noise as effective stresses are never zero due to internal

FIG. 5. Evolution of the porosity for narrow aperture (a∗ = 0.1). (a) Static regime, q∗ = 0. (b) Cavity regime, q∗ = 0.00116. (c) Chimney
regime, q∗ = 0.00145. (d) Irreversible changes in porosity after reducing the flux back to q∗ = 0.
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FIG. 6. Evolution of the fluidized zone for narrow aperture
(a∗ = 0.1). Blue (light gray) zone represents nonfluidized zone
( σ

σo
� 0.1). Red (dark gray) zone corresponds to fluidized zone

( σ

σo
< 0.1). (a) Cavity regime, q∗ = 0.00116. (b) Chimney regime,

q∗ = 0.00145.

collisions. A coarse-grained function has been used as well
when plotting the dimensionless effective stress maps in order
to obtain accurate and consistent data. Therefore, the averaged
effective stress zones leading to fluidization never reach, in
appearance, the top of the layer. Furthermore, the height of the
cavity can be found by means of the effective stress criterion as
the highest fluidized point inside the sample. Cavity [plot (a)
in Fig. 6] and chimney [plot (b) in Fig. 6] of fluidization can be
easily identified when the injection area is small (a∗ = 0.1). On
the contrary, concerning large apertures (Fig. 7), fluidized zone
does not look as a chimney due to the fact that an important
part of the sample has liquefied.

FIG. 7. Fluidized zone for a wide aperture (a∗ = 0.9) and q∗ =
0.00156; an important part of the sample has liquefied. Blue (light
gray) zone represents nonfluidized zone ( σ

σo
� 0.1). Red (dark gray)

zone corresponds to fluidized zone ( σ

σo
< 0.1).

C. Comparison with experiments

The results from the previous sections let the height of the
cavity be defined by considering in both models the maximum
height where the fluidization criterion is met. It is thus possible
to compare the models with the data from [14], given in terms
of height of cavity versus flow rate.

Practically the fluidized zone in the tests was identified
using time-averaged images of the granular layer, from which
the regions with moving grains could be distinguished from
the static ones according to a particular threshold. It was not
possible to apply the very same definition of fluidization in the
models, mainly because the details of the experimental steps
and the thresholds were not reported. This possible cause of
discrepancy has to be kept in mind.

In the models, the injection area has been defined so far
as a band covering the whole depth of the sample, while the
laboratory tests were done with a smaller and circular orifice.
For this comparison, the injection area has been modified
in the DEM-PFV model to match that of the experiment. It
is obviously not possible to reflect this particular geometry
in the theoretical model, which is strictly two dimensional.
Besides, the physical properties of the materials used in the test
(Table II) have been used directly as input parameters of both
the theoretical and the numerical model. The only exception is
the particle size: in the numerical model the grains are larger
than the real ones. We do not expect significant bias from this
upscaling, as demonstrated in Sec. IV.

Figure 8 shows the ratio of cavity height Hc to initial height
of the specimen Ho. A qualitative agreement is found between
the tests and the DEM-PFV simulations. The experimental
increasing path is slightly steeper than the numerical one.
Regarding the decreasing path, both experimental and numer-
ical curves have the same tendency when Hc/Ho > 0.5. On
the contrary, the gap between the decreasing curves widens
when Hc/Ho < 0.5, as the numerical curves are much steeper
than the experimental one. We can clearly observe similar
slopes when Hc/Ho > 0.5 for all the curves except for the
experimental increasing path. This is related to the unknown

FIG. 8. Normalized height of the cavity in the theoretical and
numerical models, compared with the experimental data from [14].
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initial packing from the experiments, which is presumably
looser than the numerical samples and eases the propagation
of the cavity. Besides, the numerical model overestimates the
flux for cavity and chimney development (a shift is evidenced
between numerical and experimental curves). This difference
is mainly attributed to the fact that the permeability resulting
from the numerical model is not exactly the same as the one of
the real packing of glass beads. However, it is worth noting that
permeability is not an input of the model but results from the
description of solid fluid interactions at particle scales. Such
interactions are described in the numerical model without any
fitting parameter. In these conditions, numerical predictions
may be considered satisfying from a quantitative point of view
(it would be easy to fit very closely the experimental data by
adding a single fitting parameter to the computation of the
permeability in the model). The gap between the curves in
the decreasing path when Hc/Ho < 0.5 could be attributed
to diameter differences. Experimental specimen height is
H ≈ 24D, where D is the mean diameter. On the other
hand, numerical sample height is H ≈ 10D. Furthermore,
experimental and DEM results may differ as a consequence of
the different criteria used to obtain the height of the fluidized
zone.

The analytical solution has been included in Fig. 8 as well.
We can observe a smooth transition between the origin of
the cavity and the point it reaches the top of the sample
forming a chimney. Despite the fact analytical curve is near
the experimental and numerical ones, analytical solution
is based on a 2D media. On the contrary, numerical and
laboratory simulations have a three-dimensional effect within
the specimen due to the upward flow being injected through a
circular orifice at the bottom of the bed rather than a rectangle
covering the depth of the sample (see Fig. 1).

D. Flux-pressure relationship and fluidization regimes

In Fig. 9 the fluid pressure at the inlet in the DEM-PFV
simulation is plotted as a function of the imposed flow rate.

FIG. 9. Dimensionless pressure-flux, p∗-q∗, curve for an
increasing-decreasing cycle of flux at the bottom of the sample.
DEM-PFV simulation with an injection aperture a∗ = 0.1.

The imposed rate is increased over time up to a maximum, then
decreased back to zero, with increments �q∗ = 0.000057.
Each flux value is kept constant over enough simulated time
to exhibit the stationary solutions.

Very low flux values correspond to the situation when
the particles do not move significantly and the pore pressure
increases linearly with the flow rate, as expected from Eq. (13).
At larger discharges the expansion regime leads to a noticeable
increase of the porosity and hydraulic conductivity, such that
the pressure is no longer proportional to the flux. Pore pressure
keeps increasing until it reaches a peak (p∗ ≈ 1.10). As the
peak value is reached, the fluidized cavity starts developing.
Further increase of the flux results in a decreasing pressure
as the cavity progressively approach the free surface. When
the chimney is fully developed the pressure tends to a residual
value in average, although the bubbling trend commented on
in the previous section produces some fluctuation around that
value (see Fig. 9).

In the flux-decreasing phase, pressure values are always
below the first flux-increasing curve. It is easily explained
by the increased porosity leading to greater conductivity.
The irreversible increment of porosity in the granular layer
is evidenced in Fig. 5(d). Starting from an initially dense
material (n ≈ 0.365, close to the random close packing RCP),
fluidization results in making looser the granular bed (at
least locally, reaching porosity n ≈ 0.410 not so far from the
random loose packing RLP). Then if the flux is increased again
(not shown in the present work), no peak is observed in the
p∗-q∗ plot, following closely the flux decreasing curve.

Hereafter, we focus on the increasing phase since the main
focus of this work is on the initiation and development of the
fluidized zone.

The nonlinearity of the flux-pressure relation before the
peak can be explained by the increase of the hydraulic
conductivity as porosity increases in the expansion regime.
In order to isolate this effect the results can be plotted
considering the second definition of dimensionless flux q∗

k [see
Eq. (7)], where the updated conductivity is used. The hydraulic
conductivity at one particular time is obtained based on Eq. (7)
and considering the average porosity above the injection
area. In Fig. 10 three curves are considered: the analytical
solution (red curve with circle symbols), the numerical results
interpreted as if conductivity was constant in time (blue line
with square symbols), and the interpretation including the
updated conductivity (green line with triangle symbols).

Figure 10 shows a perfect fit of the analytical solution by the
numerical results at low fluxes (“0” - “1” path) when plotted
with the updated conductivity. After point “1” the granular
assembly starts expanding significantly and some nonlinearity
appears but it is less significant in the p∗-q∗

k plot.
The cavity regime begins immediately after the pressure

peak is reached (point “2”). As can be seen in Fig. 10, the
blue-squared p∗-q∗

k curve clearly deviates from the analytical
solution after this point, reaching lower values of q∗

k . This is to
be understood as a deviation from the homogeneous porosity
field assumed for the theoretical derivation: the conductivity
increases much more above and around the inlet than in the rest
of the simulated layer. Finally, the chimney regime is reached
(point “3” in Fig. 10), triggering bubbling events through the
layer. The nonsteady nature of the chimney is visible in the
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FIG. 10. p∗-q∗
k curves comparison at the center of the injection

orifice with an injection aperture a∗ = 0.1.

scattering of the results after point “3” in terms of both p∗
and q∗

k .
In order to compare the numerical and the analytical results

in more details the difference between the pressure fields is
shown in Fig. 11. The difference is normalized by the analytical
pressure at the inlet.

Figure 11 evidences that the error between the pressure
obtained numerically and the analytical solution is especially
high in the vicinity of the inlet, where error reaches values up to
30%. However, error rapidly decreases far from the injection

FIG. 11. Relative error between numerical and analytical pres-
sure within the entire sample. (a) Expansion regime, q∗ = 0.00095.
(b) Cavity regime, q∗ = 0.00116.

point where the average error is usually lower than 10% as
permeabilities do not significantly change. Moreover, error
increases within the entire specimen when fluidization begins,
as we can see in plot (b) of Fig. 11, though the error is still low
and acceptable.

The shape of the fluidized zone resulting from the analytical
and the numerical simulations can be compared through the
map of effective stress. The analytical fluidized zone is defined
by the null-pressure isoline, in the simulation we retain the
σ ′∗ = 0.1 isoline as discussed previously. Figure 12 shows that
the isolines are relatively similar in the undisturbed regions
on both sides of the sample. On the contrary, they differ
significantly above the inlet. As a matter of fact, a chimney-
shaped fluidized zone appears in the analytical solution in
the middle image (q∗ = 1.14 × 10−3), while at the same flow
rate the cavity only starts developing in the simulation. The
chimney regime is attained for a value of q∗ = 1.20 × 10−3 in
the numerical simulation; in this situation, σ ′∗ < 0.1 is found
in every point located vertically between the free surface and
the inlet.

IV. SENSITIVITY ANALYSIS

Provided that the normalized pressure (p∗) and flux (q∗)
given in Eqs. (2) and (3) are relevant dimensionless vari-
ables, there should be a unique relationship between them
independent of the mean particle size and fluid viscosity. This
is verified in this section. Figure 13 shows the pressure-flux
relations for a monotonously increasing flux and a∗ = 0.1, in
terms of both the physical units (P − Q) and the dimensionless
quantities (p∗-q∗). For fluid viscosity ranging from μ = 10−3

to 2 × 10−2 Pa s, and mean particle size ranging from d =
1.66 to 2.48 cm. The pressure-flux results are collapsed in
one single curve when expressed with p∗ and q∗, which
confirms the relevance of the chosen variables and validates the
proposed dimensionless numbers. Besides, the dimensional
plots (Fig. 13, diagrams on the right) all show a marked
peak at approximately P = 3400 Pa (p∗ = 1.05) regardless
of the flow rate. This value corresponds to pressure gradients
balancing gravitational and frictional forces. This suggests
that fluid pressure, instead of flow rate, is the most natural
parameter for defining fluidization criteria.

Nevertheless, the p∗-q∗ relation is not absolutely unique
as it depends on the remaining dimensionless variable:
normalized aperture of the injection area. This dependency is
shown in Fig. 14 for a∗ ranging from 0.02 to 1 (a∗ = 1 means
uniform influx through the surface of an infinite half-space).

A clear pattern can be identified in Fig. 14. Large apertures
induce liquefaction over all the granular medium when the
pressure peak attains a value close to p∗ = 1, the expected
value for homogeneous fluidization.

On the other hand, the excess of pore pressure required
to reach fluidization is larger for small apertures (p∗ ≈ 1.1).
The reason why p∗ exceeds unity with small apertures is
that the mobility of the column above the injection zone is
constrained not only by gravity (gravity alone would lead
to p∗ = 1 as an upper bound) but also by interactions with
particles on both sides of the column. The pore pressure
required to develop a cavity and a chimney of fluidization in the
specimen must then exceed the sum of weight and a downward
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FIG. 12. Evolution of the analytical and numerical effective stress fields for different flow rates (injection aperture a∗ = 0.1). (a) q∗ =
0.00105: cavity regime; (b) q∗ = 0.00114: chimney regime in the theoretical model; cavity regime in the numerical model. (c) q∗ = 0.00120:
chimney regime.

force coming from contact interactions between the stable
mass and the mobile particles. As aperture becomes larger
the mass of stable particles is progressively reduced and it

eventually disappears in homogeneous fluidization (a∗ → 1),
hence the additional downward force vanishes and no peak is
observed.

FIG. 13. Sensitivity analysis on pressure-flux curves with injection aperture a∗ = 0.1. Viscosity dependency with normalized p∗-q∗

variables (a) and physical units (b); diameter dependency with normalized p∗-q∗ variables (c) and physical units (d).
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FIG. 14. Aperture dependency. p∗-q∗ curves at the bottom of the
sample with different injection apertures.

The aperture dependency is summarized in the diagram of
Fig. 15 where the different fluidization regimes are identified
for particular combinations of simulated flow rate and aperture.
As mentioned before and confirmed in Fig. 15, large apertures
(a∗ close to 1) lead to the entire liquefaction of the granular
assembly rather than forming a cavity and a chimney of
fluidization (cavity regime gets narrower near a∗ = 1.).

Qualitatively, similar tendencies are predicted by Eq. (13)
of the theoretical model (see also Fig. 3). The regimes deduced
in this way are presented in Fig. 16. Nevertheless, three
significant differences are found. First, the transitions between
the different regimes are shifted to lower fluxes compared
to the simulations since the increase of hydraulic conductivity
induced by the injection is not accounted for in Eq. (13), which
thus overestimates the actual pore pressure for a given flux and
anticipates the fluidization.

Secondly, the line separating the expansion and the cavity
regimes for narrow apertures is nearly vertical in the former

FIG. 15. Occurrence of the different fluidization regimes (static
or expansion, cavity, or chimney) depending on aperture a∗.

FIG. 16. Theoretical prediction of the different regimes (static or
expansion, cavity, or chimney regimes) in the dimensionless aperture-
flux, a∗-q∗, plane.

diagram while it is getting horizontal when the aperture
decreases. This is due to the divergence of the theoretical
inlet pressure when a∗ → 0, which results in a finite sized
cavity for every nonzero influx in this limit. It does not occur
in the numerical simulations because the spatial discretization
of the flow problem introduces a lower bound for the range
of effective aperture: when a∗ is of the order of the average
distance between two solid particles, further decrease in a∗
means no change in the solution. Likewise, we would not
expect any difference if the injection was done with syringes
using needles of different sizes, as soon as the needles are
smaller than the pores of the material.

Finally, the transition between the cavity and the chimney
regimes has a “D” shape in the simulation (maximum q∗ values
for a∗ = 0.5–0.6, and q∗ values decrease when narrower or
wider apertures are considered), whereas it is approximately a
straight line theoretically. The shift toward lower q∗ values
for wide apertures (a∗ near 1) is expected because no
interaction remains between fluidized and nonfluidized zones;
then fluidization is reached for lower flux. As a matter of fact,
this phenomenon can be observed in Fig. 14. In a∗ = 0.80,
a∗ = 0.90, and a∗ = 1.00 cases, liquefaction starts when
the plateau is reached for q∗ ≈ 1.5 × 10−3. In a∗ = 0.50
and a∗ = 0.60 cases, chimney of fluidization is attained for
slightly larger q∗ ≈ 1.65 × 10−3 (after this point pressure
values oscillate as a consequence of the bubbling effect).

V. CONCLUSIONS

In this work, fluidization of a granular bed through an
injection orifice has been investigated numerically using
DEM-PFV simulations and analytically using a simplified
continuum model.

Qualitatively the DEM simulations were found to compare
well with available data in terms of the different fluidization
regimes. To some extent a reasonable quantitative agreement
was also found, without introducing any fitting parameter,
although some differences remain. The origin of these dif-
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ferences is unclear as long as no published data include pore
pressure measurements.

The theoretical model was assuming a constant hydraulic
conductivity in space and time and the effective stress was
used for defining a fluidization criterion. It could approximate
the DEM solution quite well at low fluxes. It deviates from
the DEM solution at larger fluxes when expansion of the bed
and localized fluidization leads to significant changes of the
conductivity in space and time. Nevertheless, the analytical
model predicts the transitions between the different regimes
and it provides a simple framework to explain the main
trends. This theoretical approach may also shed light on the
interactions between two or more adjacent chimneys in the
case of multiple injection points [14,20].

The numerical model allowed one to describe the internal
configuration by means of the effective stress and the porosity
fields within the granular medium. This approach enabled one
to define accurately the cavity and chimney shape. Besides,
compression-decompression cycles were evidenced once the
chimney regime was reached.

The size of the injection area was found to determine
whether or not a chimney regime exists for certain injection
rates. Small injection areas lead to an early regime of
fluidization with respect to the injected flux. In this case,
gradual increase of the injection rate results in a peak of the
inlet pressure at the transition between the cavity regime and
the chimney regime. On the contrary, large apertures produce
liquefaction for larger injection rates; the chimney is wider and
difficult to identify due to liquefaction occurring over most of
the sample instead of a localized zone. Consistently, the peak in
the pressure-flux curves tends to disappear and the evolution of
pressure increases monotonically as a function of the injection
rate until it reaches a plateau. The domains of occurrence of the
different regimes have been defined in terms of dimensionless
aperture and dimensionless flux.

Our analysis suggests that the inlet pressure is the primary
variable controlling fluidization more directly than the injec-
tion rate. The published data reports the injection rate only;
hence the difficulty in comparing experiments and simulations.

Our suggestion for future experiments is to measure the inlet
pressure, ideally. Alternatively, an independent measurement
of the permeability would enable the calculation of inlet
pressure at least for the initial stages before any significant
change of the local porosity.
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APPENDIX : ANALYTICAL EXPRESSION OF
THE PRESSURE FIELD INDUCED BY

A SINGLE INJECTION POINT

In order to obtain analytical expressions of the pore pressure
the following assumptions have been considered, leading to a
standard Laplace problem:

(i) The fluid flows through a macroscopically homogeneous
porous medium.

FIG. 17. Fluid flowing outwards in a 2D porous media due to a
punctual source.

(ii) The flow velocity follows Darcy’s law; its velocity v is
proportional to the local pressure gradient:

v = k

μ
∇P, (A1)

where k is the intrinsic permeability and μ the dynamic
viscosity (both uniform in space).

(iii) The fluid is incompressible, hence a divergence-free
condition: ∇ · v = k

μ
∇2P = 0 everywhere except at injection

points.
We first define the solution corresponding to a punctual

source in an infinite domain. The flow has a rate Q[m3/s] (see
Fig. 17) and the radial component of the velocity of the fluid
at a distance r can be expressed as

v = Q

2πr
. (A2)

Combining and solving Eqs. (A1) and (A2) for a punctual
source leads to the expression of the pressure drop �P between
two points located at distances r and ro respectively from the
punctual source:

�P = Po − P = μQ

2πk
ln

(
r

ro

)
= μQ

2πk
ln

(√
x2 + y2

ro

)
. (A3)

This solution satisfies the Laplace equation (	2P = 0)
in an infinite 2D space. Due to the linearity of the Laplace
equation two or more potential functions of this form centered
in different points can be combined to describe the pressure
and flow fields induced by a set of punctual sources (where
Q can be negative or positive). Namely, an appropriate set
of sources in an infinite medium can replicate the features
of the pressure field induced by one single source in a finite
sized domain. A no-flux condition at a boundary of the finite
domain corresponds to a symmetry of the sources in the
infinite domain. On the other hand, a null pressure condition
corresponds to a skew symmetry of the sources with respect
to this boundary.

For our particular boundary conditions, the null pressure
condition on the top boundary (y = c/2) suggests two conju-
gate sources with fluxes Q and −Q located on either side of
this boundary at heights y = 0 and y = c (Fig. 18). However,
the symmetry with respect to the no-flux bottom boundary
(y = 0) imposes to replicate the −Q source in y = −c. In
turn, this replicate is itself reflected by a skew symmetric
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Q source in y = 2c, etc. Recursively, it leads to an infinite
series of sources aligned vertically and alternating positive
and negative fluxes. In addition, the no flux conditions on the
lateral boundaries lead to symmetries with respect to the lines
x = −l/2 and x = l/2. The previous set of conjugate sources
is thus replicated periodically in the horizontal direction.
Finally, the pressure at any point of the finite domain can be
obtained by assuming the pressures associated to each source
of the infinite set of sources or sinks:

P = Qμ

2πk

∞∑
j=−∞

∞∑
i=−∞

−1|j |[ln(
√

(x − i l)2 + (y − jc)2)],

(A4)

where c = 2H , as sources and sinks are separated by a
distance which is twice the height of the thickness of the layer.
Figure 18 shows the pressure field induced by such an array of
sources; the size of the actual finite domain is superimposed.

FIG. 18. Pressure field for semi-infinite sources net.
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[13] M. H. Köhl, G. Lu, J. R. Third, K. P. Pruessmann, and
C. R. Müller, Magnetic resonance imaging (MRI) of jet
height hysteresis in packed beds, Chem. Eng. Sci. 109, 276
(2014).

[14] P. Philippe and M. Badiane, Localized fluidization in a granular
medium, Phys. Rev. E 87, 042206 (2013).

[15] F. Zoueshtiagh and A. Merlen, Effect of a vertically flowing
water jet underneath a granular bed, Phys. Rev. E 75, 056313
(2007).

[16] T. B. Anderson and R. Jackson, Fluid mechanical description of
fluidized beds. Equations of motion, Ind. Eng. Chem. Fundam.
6, 527 (1967).

[17] D. Gidaspow, R. Bezburuah, and J. Ding, Hydrodynamics of
circulating fluidized beds: Kinetic theory approach, Technical
Report, Illinois Inst. of Tech., Chicago, IL, 1991.

[18] H. S. Mickley and D. F. Fairbanks, Mechanism of heat transfer
to fluidized beds, AIChE J. 1, 374 (1955).

[19] X. Cui, J. Li, A. Chan, and D. Chapman, Coupled DEM-LBM
simulation of internal fluidisation induced by a leaking pipe,
Powder Technol. 254, 299 (2014).

[20] J. Ngoma, P. Philippe, S. Bonelli, J. Y. Delenne, and F.
Radjai, Interaction Between Two Localized Fluidization Cavi-
ties in Granular Media: Experiments and Numerical Simulation,
Geomechanics from Micro to Macro: Proceedings of the Inter-
national Symposium on Geomechanics from Micro to Macro
IS-Cambridge 2014 (Cambridge University Press, Cambridge,
UK, 2014), pp. 151–1576.

[21] E. Catalano, B. Chareyre, and E. Barthélemy, Pore-scale
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