
PHYSICAL REVIEW E 94, 052604 (2016)

Enhanced diffusion in finite-size simulations of a fragile diatomic glass former
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Using molecular dynamics simulations we investigate the finite-size dependence of the dynamical properties
of a diatomic supercooled liquid. The simplicity of the molecule permits us to access the microsecond time
scale. We find that the relaxation time decreases simultaneously with the strength of cooperative motions when
the size of the system decreases. While the decrease of the cooperative motions is in agreement with previous
studies, the decrease of the relaxation time opposes what has been reported to date in monatomic glass formers
and in silica. This result suggests the presence of different competing physical mechanisms in the relaxation
process. For very small box sizes the relaxation times behavior reverses itself and increases strongly when the
box size decreases, thus leading to a nonmonotonic behavior. This result is in qualitative agreement with defect
and facilitation theories.
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I. INTRODUCTION

The microscopic origin of the large increase of the
relaxation times of supercooled liquids on decreasing the
temperature is still a matter of conjecture [1–4]. Most
theories [4–13] postulate that this dynamical slowing down
is related to the increase of a correlation length, possibly due
to cooperativity [14–18], and that it may have a structural or
dynamical origin. This picture of cooperative length scales is
supported by the increase of the activation energy in fragile
glass formers [19,20] to values commonly larger than a typical
chemical bond energy, leading to a non-Arrhenius dependence
of the α relaxation time with the temperature.

To better understand the relation between the cooperativity
and the viscosity, the simplest method is to modify the
cooperativity and study the effect of induced modification on
the viscosity. Because the α relaxation time τα and the viscosity
η are related (most common assumptions on that relation are
τα ∼ η/T or τα ∼ η, for a critical review, see Ref. [21]),
we chose to focus our attention on the relaxation time τα

in this work. In molecular dynamics simulations, the system
size introduces a cutoff on any cooperative mechanism and
can thus be used to tune the cooperativity [22–32]. Since the
cooperative motions and the viscosity increase simultaneously
when the temperature drops, we may expect a decrease of
the viscosity when the system size, and, consequently, the
cooperativity will decrease. Models predicting that kind of
behavior are [24] the Adam-Gibbs theory [5], the frustration
limited domain theory [7,8], the random first-order transition
theory (RFOT) [4,9,10], and the facilitation theory, while
the mode coupling theory predicts the opposite effect [11].
The facilitation theory [13] and, more generally, defect
theories [12] predict also an abrupt slowing down when
the size of the system will be small enough for no defect
(no excitation in the facilitation theory) to be temporarily
present in the system. A review of the different theories
predictions on size effects can be found in Ref. [24]. Note
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that a different picture on cooperative mechanisms predicts
an increase of the viscosity when the system size decreases.
When the temperature drops it becomes increasingly harder
to find relaxation pathways with low-enough energy barriers,
leading to an increase of the relaxation time. Finding those
pathways requires considering cooperative rearrangements
involving larger and larger numbers of particles. Truncating
the system size thus removes the possibility of finding such
large-scale cooperative events, leading to an increase of the
relaxation time in that picture.

Molecular dynamics (MD) simulations [33–35] reproduce
the unexplained slowing down at the approach of the glass
transition temperature, while having the unique property to
give access to the position and motion of each atom at any
time during the virtual experiment. MD simulation is thus an
invaluable tool to study the glass-transition problem [36–40]
and more generally condensed matter phenomena [41–44].
In this work we study finite-size effects using molecular
dynamics simulations of a simple molecular liquid. We use
finite-size simulations [22–32] instead of confinement [45–
56] because finite-size simulations have the advantage over
confinement to cut off the cooperativity without introducing
any confining wall nor modifying the symmetry or the
dimensionality of the system, as long as periodic boundary
conditions are used. The simplicity of the molecule permits
us to access large time scales with aging times larger than the
microsecond.

Previous experiments and simulations using confinement
found, depending on the conditions, mostly an increase, but
sometimes a decrease of the viscosity with the system size [45–
56]. However, previous finite systems simulations [22–32]
found to our knowledge always an increase of the viscosity
together with a decrease of the cooperativity when the system
size decreases. In this work we observe a decrease of the
relaxation times associated with a decrease of the cooperativity
when the system size decreases. When decreasing the system
size further we observe the abrupt slowing down predicted
by facilitation and defects theories. We also observe the
intermittent disappearance of the excitations in the system
sizes corresponding to that strong slowing down.
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II. CALCULATIONS

We model the molecules [57] as constituted of two atoms
(i = 1,2) that we rigidly bond fixing the interatomic distance
to d = 2.28 Å. Each atom of our linear molecule has a mass
m = 50 g/Na where Na is the Avogadro number. Atoms of
the set of linear molecules constituting our liquid interact with
the following Lennard-Jones potentials:

Vij = 4εij [(σij /r)12 − (σij /r)6], (1)

with the parameters: ε11 = ε12 = 0.5 kJ/mol, ε22 = 0.4
kJ/mol, σ11 = σ12 = 4.56 Å, and σ22 = 4.33 Å.

Our molecule is thus 6.7 Å long and 4.5 Å wide. With these
parameters the liquid does not crystallize when supercooled
even during long simulation runs [57]. This model has been
described and studied in detail previously [57] and was found
to display the typical behaviors of fragile supercooled liquids.
To increase the efficiency of our simulations and be able to
decrease significantly the simulation box size, we chose a
small cutoff value for the Lennard Jones potentials rc = 1.55
σ11 = 7.07 Å. The potential function is then shifted as usual
so its value at the cutoff is zero. This method insures that
no energy fluctuations are induced by the cutoff. We found
very small differences between simulations with larger cutoff
values (2.5σ11 and 3σ11) and our small cutoff (1.55σ11), in
the conditions T = 120 K and N = 500 molecules. Note
that more sophisticated methods exist that suppress the force
discontinuity at the cutoff [58] but modify the shape of the
potential. As they are modeled with Lennard-Jones atoms, the
potentials are quite versatile. Due to that property, a shift in
the parameters ε will shift all the temperatures by the same
amount, including the glass-transition temperature and the
melting temperature of the material. We use periodic boundary
conditions. The density is set constant in our calculations at
ρ = 1.615 g/cm3. When rescaled, or in dimensionless units,
that density value is larger than the density of the original
model [57] and thus leads to a more viscous medium. For
large system sizes, the relaxation time τα follows the mode
coupling theory behavior τα = τ0 (T − Tc)−γ with a critical
temperature Tc = 106 K. We use the Gear algorithm with
the quaternion method [33] to solve the equations of motions
with a time step 	t = 10−15 s. The temperature is controlled
using a Berendsen thermostat [59]. We give more details in the
Appendix.

III. RESULTS AND DISCUSSION

A. Dynamical and structural evolution with the system size

We display in Fig. 1 the incoherent scattering function
FS(Q,t) which represents the autocorrelation of the density
fluctuations at the wave vector Q. This function gives
information on the structural relaxation of the material. We
define FS(Q,t) by the relation:

FS(Q,t) = 1

NNt0

Re

⎧⎨
⎩

∑
i,t0

eiQ·[ri(t+t0)−ri(t0)]

⎫⎬
⎭. (2)

Here we choose Q as the wave vector corresponding to the
maximum of the structure factor S(Q). FS(Q,t) then allows
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FIG. 1. (a) Self-incoherent scattering function FS(Q,t) for the
molecules center of masses using various simulation boxes sizes. We
have used the wave number Q = Q0 = 1.54 Å−1 that corresponds to
the location of the maximum of the structure factor. The temperature
is T = 120 K. From the left to the right around t = 5 ns: N = 100
molecules (continuous red line) and then N = 200, 400, 600, and 800
molecules. The α relaxation time τα increases with the system size.
(b) Diffusion coefficient D [red (dark) circles] and inverse of the α

relaxation time τ−1
α [green (light gray) circles] versus the simulation

box size quantified by the number of molecules N. The temperature
is T = 120 K. Inset: Detail of the diffusion coefficient D evolution
as a function of N for small system sizes, showing the rapid decrease
of the diffusion coefficient for N < 98. This decrease is expected by
the facilitation theory for small system sizes; however, other causes
are possible as for example an undetected partial crystallization of
the liquid.

us to calculate the α relaxation time τα from the equation:

FS(Q,τα) = e−1. (3)

Figures 1(a) and 1(b) show the appearance of size effects,
since the function FS(Q,t) and its relaxation time depend on
the system size, and τα increases with the system size in the
figure. The function FS(Q,t) in Fig. 1(a) also displays the three
time regimes that are characteristics of supercooled liquids.
The molecular motions are ballistic at small times because the
molecules have not encountered the boundaries of the cages
created by their neighbors. Then, on the plateau time scale,
the molecules are trapped inside the cages. Eventually, on
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the α relaxation time scale, the molecules escape the cages.
Figure 1(a) shows that size effects are absent on both the
ballistic and the plateau regime in our system. Size effects
occur at the plateau ending, i.e., when molecules begin to
escape the cages, which suggests that size effects mainly
affect the probability to escape the cages, not the microscopic
motions of the molecules, or the average size of the cages since
the height of the plateau is not modified. Since cooperative
motions also appear on the same time scale (at the end of
the plateau regime) in glass formers, this result agrees with the
hypothesis of a relation between size effects and cooperative
motions.

The α relaxation time τα decreases as the system size
decreases. When we decrease the simulation box size, we cut
off the cooperative motions in our liquid. Thus, if we interpret
the variations of the viscosity as arising from the modification
of the cooperativity, for that simple molecular liquid the
viscosity increases when the cooperative motions increase,
which is similar to what we observe when we decrease the
temperature of supercooled liquids. This result agrees with
theories of the glass transition that are based on activated
cooperative mechanisms. A well-known example is the Adam-
Gibbs theory, for which the size of the postulated cooperatively
rearranging regions (CRR) decreases when the system size
decreases, leading to a decrease of the viscosity. However,
previous simulations [22–30,32] on different molecular and
atomic liquids have shown an increase of the relaxation times
when the system size decreases, results that better agree
with the mode coupling theory (MCT). These two opposite
behaviors suggest that different relaxation mechanisms could
be present in different supercooled liquids. Simulations of
slightly different models suggest that these different behaviors
are triggered by the shape of the molecule.

We observe in Fig. 1(b) an abrupt arrest of the α relaxation
when we decrease the system size even further, i.e., below N =
97 molecules. For these small system sizes, when we decrease
the temperature to 120 K, the relaxation is first roughly similar
to the relaxations of slightly larger boxes (N = 100) and then
undergoes rapid aging towards slow relaxation. This slowing
down implies a nonmonotonic behavior of τα , as the relaxation
time first decreases with the system size and then strongly
increases, supporting the presence of different relaxation
mechanisms. We note that the facilitation theory predicts that
for small-enough systems when defects called excitations will
not be present inside the small simulation box the dynamics
will stop. Consequently, the behavior we observe agrees with
the facilitation theory prediction for small systems. However,
the slowing down for small N is so rapid that one may think
of simpler causes, as, for example, a partial crystallization of
the liquid. Following that idea, we have searched for partial
crystallization that could explain the abrupt slowing down
of the dynamics. We did not find any sign of crystallization
as a modification of the radial distribution function or large
fluctuations in statistical quantities that usually appear during
crystallization. However, similar results on different systems
would be needed to ensure that this behavior is actually induced
by the decrease of the excitation concentrations for small
systems.

The non-Arrhenius dependence of the relaxation times
and of the diffusion coefficient with temperature is another
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FIG. 2. Diffusion coefficient (D: diamonds) and α relaxation time
(τα: circles) versus temperature for different simulation box sizes.
The lines correspond to an Arrhenius behavior. The upper curves, i.e.,
purple (light gray) diamonds and green (light gray) circles correspond
to the larger boxes N = 800 molecules, while N = 100 molecules
for the two other curves, i.e., blue (dark) diamonds and red (dark)
circles. The larger boxes display the largest relaxation times and
smallest diffusion.

behavior that most theories associate with the cooperativity
in supercooled liquids. For various values of the box sizes,
Fig. 2 shows the temperature evolution of the inverse of the
diffusion coefficient 1/D and of the α relaxation time τα . We
see in thefigure that while the evolution is super-Arrhenius
for the larger boxes τα = τ0 eEa (T )/kBT [i.e., evolves faster
than a pure exponential or, equivalently, Ea(T ) increases with
1/T ], as the size of the box decreases the result tends to an
Arrhenius law (i.e., Ea ≈ constant). As most theories expect
the super-Arrhenius behavior of the diffusion in glass formers
to be due to the increase of a correlation length, the observed
decrease of the non-Arrhenius behavior, here associated with a
decrease of the cooperative motions, agrees with that picture.
When decreasing the size of the box, the correlation length
scale cannot expand to distances further than the box size,
thus leading to a more Arrhenius behavior.

In opposition with the dynamical functions studied above,
the structure factor S(Q) stays constant when we modify the
system size, as shown in Fig. 3. S(Q) reaches its maximum
at the wave vector Q0 = 1.54 Å−1, that corresponds to a
structural length scale δ0 = 2π

Q0
= 4.1 Å. We thus do not find

any significant variation of that structural length δ0 with the
box size, or with the temperature.

B. Cooperative motions dependence on the system size

In agreement with previous studies [22–32] our results sug-
gest that the strength of the cooperativity decreases when the
size of the system decreases. This decrease of the cooperativity
arises from the cutting off of long range cooperative motions,
which is due to the decrease of the system length scale. In the
following subsections, we use various correlation functions to
directly study the extent of cooperativity inside the liquid, thus
showing it actually decreases with the size of the box.
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FIG. 3. Structure factor S(Q) for various simulation boxes sizes
from N = 100 (red continuous line) to N = 800 (purple dotted line).
The maximum of the first peak is located at Q0 = 1.54 Å−1.

1. Dynamic susceptibility

For measuring the strength of the cooperative motions,
the most convenient function is the dynamic susceptibility
χ4 defined as [14]

χ4(a,t) = βV

N2
(〈Ca(t)2〉 − 〈Ca(t)〉2) (4)

with

Ca(t) =
N∑

i=1

wa(|ri(t) − ri(0)|). (5)

In these equations, V denotes the volume of the simulation
box, N denotes the number of molecules in the box, and β =
(kBT )−1. Also, the symbol wa stands for a discrete mobility
window function, wa(r), taking the values wa(r) = 1 for r < a

and zero otherwise. We use the value a = 1.5 Å in this work,
which maximizes χ4 in our liquid at the density of the study.

In Fig. 4 we show the evolution of the dynamic suscep-
tibility χ4(t) with the temperature and the system size. We
normalize the susceptibility with the corresponding maximum
value χ0 in the largest system size (N = 800) and temperature
(T = 200 K) investigated. Thus, the first points to the left in
Fig. 4(a) have a value equal to 1. Figures 4 show how the
susceptibility increases when the temperature drops, which
is a typical behavior in glass formers, reflecting the increase
of the cooperativity characteristic length. Above T = 150 K
the susceptibility is the same for the various system sizes
investigated (from L/2 = 19.8 Å to 10.9 Å), showing that
the cooperativity length scale ζ is significantly smaller than
our smaller system size for these temperatures (i.e., ζ < 10.9
Å for T � 150 K). Then as the temperature decreases the
results corresponding to different system sizes split, the smaller
box susceptibilities increasing less than those for the larger
boxes. This result suggests that as the temperature decreases,
the increase of the cooperativity length scale progressively
encounter the limits of larger boxes, leading to the split in the
susceptibilities. This result thus confirms the picture of a cutoff
of the cooperative length scale by the system size and shows
the decrease of the susceptibility with the system size.
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FIG. 4. (a) Maximum value of the four-point dynamic suscep-
tibility χ4 for different temperatures and system sizes. From top
to bottom: N = 800 (green circles), N = 200 (blue circles), and
N = 100 molecules (red circles). The lines are guides to the eyes
intended to clarify the figure. (b) Four-point dynamic susceptibility
χ4 for different temperatures. N = 100 molecules. The temperature
increases from right to left: T = 115 K (red curve), 120 K (green
curve), 130 K (blue curve), 140 K (purple curve), 160 K (light
blue curve), 180 K (yellow curve), and 200 K (black curve). (c)
Four-point dynamic susceptibility χ4 for different temperatures.
N = 800 molecules. The temperature increases from right to left:
T = 115 K (red curve), 120 K (green curve), 130 K (blue curve),
140 K (purple curve), 160 K (light blue curve), 180 K (yellow curve),
and 200 K (black curve).
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Together with that increase of χ4(t) when the temperature
drops, the maximum of the peak [Figs. 4(b) and 4(c)]
progressively shifts to larger times showing an increase of the
characteristic time scales involved in the cooperative motions.
We also observe a decrease of the susceptibility by a factor
2 when the half length of the simulation box decreases from
L/2 = 19.8 Å to 10.9 Å. This result shows that the cooperative
motions decrease significantly when the system size decreases,
as expected in the picture of a cutoff introduced by the size of
the system. Note that the small but continuous increase of the
susceptibility that we observe in Fig. 4(b) for a small box size
(N = 100 molecules) can be linked to the small non-Arrhenius
behavior of τα observed in Fig. 1 with that box size. In that
viewpoint, the small box simulations are consistent with the
description of a different liquid with a smaller fragility.

2. Stringlike motions

The cooperativity in supercooled liquids is partly repre-
sented by stringlike cooperative motions [60–62] of the most
mobile molecules. Molecules follow each other in strings,
with a characteristic time delay 	t that increases when the
temperature drops. The size of the strings has been associated
to the size of the Cooperatively rearranging regions postulated
by Adam’s and Gibbs’s theory in various works [63–65]. To
quantify the extent of stringlike motions in our liquid, we
define the function Istring(	t) that measures the normalized
number of molecules that follow other molecules in our
simulation box, with a characteristic time 	t . The distinct
part of the Van Hove correlation function

Gd (r,	t) = 1

N

N∑
i,j=1;i �=j

δ(r − |ri(	t) − rj (0) |) (6)

represents the probability to find a molecule at time 	t a
distance r away from the location of another molecule at time
0. When the temperature decreases a peak in this function
develops around r = 0 for a characteristic time 	t = t∗,
showing that molecules are following each other on that
characteristic time. We will here calculate Istring by integrating
that correlation function between r = 0 Å and r = Rc =
3.65 Å. Istring(	t) is equal to zero for short times because Rc

is chosen smaller than the distance to the first neighbor, then
Istring(	t) increases sharply due to the molecules following
each others, and eventually it decreases to a constant value for
long time scales when the positions of the molecules are totally
uncorrelated. For this calculation we restrict ourselves to the
5% most mobile molecules in order to increase the proportion
of stringlike motions and the precision of our results. We
define the mobility of molecule i at time t : μi(t,	t), with
a characteristic mobility time 	t as

μi(t,	t) =|ri(t + 	t) − ri(t) | . (7)

We then define Istring(	t) as

Istring(	t) = 1

ρ

∫ Rc

0
Gd (r,	t)4πr2dr (8)

and define Istring as the maximum of Istring(	t).
Figure 5 shows the maximum values of Istring(	t) for

various temperatures and system sizes. As with the suscep-
tibility, we normalize Istring with the corresponding value
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FIG. 5. Strength of the stringlike motions for the 5% most mobile
molecules. I 0

string is the value of Istring for the largest system size
(N = 800) and temperature (T = 200 K) investigated. From top to
bottom, the sizes are as follows: N = 800 (green circles), N = 400
(purple circles), N = 200 (blue circles), and N = 100 molecules (red
circles). The lines are only guides to the eyes intended to clarify the
figure, and some caution must be taken for the interpretation of the
figure as other fits are possible within the error bars.

I 0
string in the largest system size (N = 800) and temperature

(T = 200 K) investigated. The largest size plotted (N = 800
molecules) displays the expected increase of stringlike motions
(Istring) as the temperature drops. This result is in agreement
with the increase of the susceptibility observed in Fig. 4 at
low temperatures and shows that the cooperativity of our
system increases with 1/T . Then as the system size decreases,
stringlike motions cannot extend to distances larger than
the box size and are thus inhibited. Note that, due to their
particular shape, strings of n molecules are larger and thus
more influenced by the system size than spherical aggregates
of n molecules. We observe indeed in the figure an important
decrease of the stringlike motions (larger than a factor 2) as
the system size decreases. For a box containing N = 400
molecules, the string motion strength Istring stays roughly
constant in the figure. For smaller boxes (N = 100 to 200
molecules), the string motion strength even decreases when
the temperature drops.

The number of molecules moving in strings has been
associated in previous works to the system’s configurational
entropy [63–65] and to the size of the CRR postulated by the
Adam-Gibbs theory [5]. Within this picture a decrease of the
strings size can be linked in the Adam-Gibbs model to the
evolution of the relaxation times with the formula [63–65]:

τα = τ0e
A/T Sconf. = τ0e

A(n∗−1)/T , (9)

where Sconf is the configurational entropy, n∗ is the average
number of molecules inside a string, T the temperature, while
A and τ0 are constants. This formula leads to a decrease of the
relaxation times when the strings’ size decreases as observed
in our simulations.

3. Aggregation of the most or least mobile molecules

One of the main characteristic of cooperative motions,
called dynamical heterogeneities (DH), is the observed struc-
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FIG. 6. Strength of the aggregation of the 5% most mobile
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tural heterogeneity in displacements. Molecules that move
“fast” (mobile molecules) segregate and “slow” molecules also
segregate. The terms “fast” and “slow” here do not refer to the
instantaneous velocities but to the molecule’s displacement
[i.e., the mobility μi(t,	t)] on a characteristic time 	t that
increases when the temperature drops. Indeed instantaneous
velocities are uniformly distributed, provided that the system
is at equilibrium.

Figures 6 and 7 show, respectively, the strength Imobile and
Islow of the aggregation of the most or least mobile molecules
in our liquid versus temperature for different system sizes.
Here Imobile and Islow are the maximum values of Imobile(	t)
and Islow(	t) that we obtain from the equations:

Imobile(	t) =
∫ Rc

0
gmob−mob(r)4πr2dr

/∫ Rc

0
g(r)4πr2dr − 1

(10)
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FIG. 7. Strength of the aggregation of the 5% least mobile
molecules. From top to bottom, the sizes are as follows: N = 800
(green circles), 400 (purple circles), 200 (blue circles), and 100
molecules (red circles). The lines are guides to the eyes intended
to clarify the figure.

and, similarly,

Islow(	t) =
∫ Rc

0
gslow−slow(r)4πr2dr

/∫ Rc

0
g(r)4πr2dr − 1.

(11)
The variable 	t appears in these equations from the definition
of the mobility μi(t,	t) that we use to discriminate the
5% percent most or least mobile molecules. g(r) is the
radial distribution function between the centers of masses
using the whole set of molecules, while gmob−mob(r) and
gslow−slow(r) are the radial distributions between the most
or least mobile molecules only. Rc = 7.05 Å is a cutoff
that we chose to be at the position of the first minimum
of g(r).

We observe in Fig. 6 a behavior that is between what we
observed for string motions in Fig. 5 and for the dynamic
susceptibility in Fig. 4. For the largest box investigated
(N = 800 molecules) the aggregation strength Imobile increases
roughly by a factor 2 when the temperature drops, showing
a large increase of cooperative motions. Then for smaller
system sizes, Imobile decreases due to the cutoff generated
by the limited box size on cooperative motions. As for
string motions we even observe a decrease of the dynamic
heterogeneity Imobile at low temperatures. Note that Imobile

contains, but is not limited to, molecules participating to
strings.

The strength Islow of the aggregation of the least mobile
molecules in Fig. 7 increases more rapidly (a factor 2.7 in
the figure) than Imobile when the temperature drops for the
largest box (IN=800

slow > IN=800
mobile ). Then, for smaller boxes, the

aggregation of slow molecules decreases tending to a roughly
constant behavior with temperature for the smallest box of the
figure. For the small boxes we observe an aggregation strength
similar for the slow and mobile molecules (IN=100

slow ≈ IN=100
mobile ).

C. Excitation concentration versus system size

The excitations, which are the elementary diffusive mo-
tions, are important quantities in the facilitation theory [13]
but also can lead us to a better understanding of the physical
processes that induce the diffusion. We define the excitations
as molecules moving more than a threshold value 	r during
a time lapse 	t . We choose 	r large enough for the molecule
to escape the cage and diffuse and 	t small enough to
see elementary processes. Consequently, we consider the
molecule i as excited at time t if it fulfills the following
condition: | ri(t + 	t) − ri(t)) |> 	r . In what follows, we
choose 	t = 10 ps and 	r = 1.5 Å.

Figure 8 shows that the concentration of excitations
increases slightly when the system size decreases and reaches a
maximum for N = 98 and then, below N = 97, the excitation
concentration decreases abruptly. The concentration of exci-
tations thus follows the same trend as the diffusion coefficient
when the size of the system decreases. This result suggests that
the increase of the diffusion when the system size decreases
arises from the increase of the concentration of excitations
and that the abrupt decrease of the diffusion similarly arises
from the decrease of the concentration of excitations. Figure 9
confirms that picture as the diffusion coefficient per excitation
decreases when the system size increases, showing that the
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FIG. 8. Average excitation concentration in percentage versus the
system size. The temperature is T = 120 K.

increase in the diffusion coefficient arises from the increase
in the concentration of excitations and not from an increase
of the diffusion per excitation. We explain that continuous
decrease of the diffusion per excitation for N > 98 as arising
from the preferential cutoff of large cooperative stringlike
motions. Since the larger cooperative motions are also the
fastest (i.e., correspond to the most mobile molecules) [60],
the preferential cutoff of these motions induces a decrease in
the average mobility per excitation.

We will now search an explanation for the evolution
of the excitation concentration and diffusion coefficient in
our system. When the system size decreases the relative
fluctuations in the number of excitations increases, leading for
small sizes intermittently to a very small number of excitations
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FIG. 9. Diffusion coefficient divided by the average excitation
concentration versus the system size. 〈r2(t)〉 = 〈Ce〉〈r2(t)e〉 + (1 −
〈Ce〉)〈r2(t)non.e〉, leading for large t values to 〈r2(t)〉 ≈ 〈Ce〉〈r2(t)e〉.
Consequently, since D = limt−>∞〈r2(t)〉/6, D/〈Ce〉 quantifies the
average contribution to the diffusion induced by an excitation. When
the system size decreases this average contribution decreases, a result
that we interpret as coming from the cutoff of long cooperative chains
that correspond to the larger diffusive motions [17]. The temperature
is T = 120 K.
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lines correspond to the zero of the next graph. The temperature is
T = 120 K.

or even no excitation inside the system. When it happens
it induces an abrupt decrease of the diffusion coefficient.
Then as the motion is stopped this behavior persists and
the concentration of excitations averaged on time continue
to decrease. That behavior is in qualitative agreement with the
facilitation theory.

To test that explanation we display in Fig. 10 the time
dependence of the excitation concentration. The figure shows
an increase of the fluctuations when the size decreases, with
large fluctuations for N = 100 and an intermittent behavior
for the smaller size (N = 94). These results thus confirm
the picture of the evolution of the diffusion arising from the
fluctuations of the excitations.

The slight increase of the concentration of excitations and
as a result of the diffusion, observed for larger decreasing sizes,
is more difficult to explain. When the size decreases, it results
in a cutoff of cooperative motions. However, as discussed
above, the larger cooperative stringlike motions, that will be
preferentially cut off due to their size, correspond to the fastest
motions, leading to the decrease of the average diffusion per
excitation with decreasing N that we observe in Fig. 9. We
note that this decrease could also explain the decrease of the
diffusion observed in other systems. We tentatively explain the
increase of the excitation concentration in our system as due
to an increase of smaller size cooperative motions as the large
strings are cut off.

IV. CONCLUSION

In this work we have studied the finite-size dependence of
the dynamical and structural properties of a very simple glass
former made of linear dumbbell Lennard-Jones molecules. Our
aim was to investigate the relation between the cooperativity
length scale that the system size modifies and the dynamics of
the liquid. Functions measuring cooperative motions, such as
the dynamic susceptibility, the strength of the aggregation of
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the most mobile or least mobile molecules, and the strength
of string motions all were found to display an increase of
their maximum values as the temperature decreases. All these
functions also display a decrease of their maxima when the size
of the system decreases. We concluded that when the system
size decreases, cooperative motions cannot extend to larger
distances than the box size, leading to the observed decrease of
the cooperativity. These results agree well with previous works
using finite size to investigate the presence of cooperative
length scales in various glass formers. Comparing that decrease
of the cooperativity with the evolution of the relaxation
time of the material, we found that the relaxation time, like the
cooperativity, decreases when the size of the box decreases.
However, we note that this result is in opposition with what was
found previously in different glass formers like silica, and Kob
Andersen mixtures of Lennard-Jones atoms [22–26]. Finally,
we found that the finite-size dependence of the transport
properties is nonmonotonic, suggesting the presence of two
different competing physical mechanisms with different length
scales, a result that may explain the opposite tendency found
in previous works for the relaxation times evolution with the
system size.

APPENDIX: SIMULATION DETAILS

Simulations of small systems are usually more affected
by thermostats or simulation algorithms than simulations of
larger systems. Thus we have tested the effect of the variation
of the simulation time step and of the Berendsen thermostat
parameter on our main results. We also have tested the effect of
including the box replica to improve the statistical accuracy in
a few particular cases and show these data here. We study
different system sizes, but we focus our attention on the
small system size N = 100 that corresponds approximately
to the maximum of the diffusion in our simulations. We did
not find significant variations of the diffusion coefficient and
cooperative motions in that study.

1. Time step variation

Figure 11(a) shows the diffusion coefficient obtained using
different time steps 	t ranging from 5 10−16 s to 5 10−15 s
in the simulations. For larger time steps the simulations are
usually not possible with predictor-corrector algorithms. For
large time steps, we expect the results to be affected due to
the decrease in the precision of the algorithm. However, these
results show that there is no significant effect on the diffusion
coefficient for 	t � 5 10−15 s. The strength of string like
motions in Figure 11(b) also show no significant variation for
the different time steps displayed.

2. Thermostat parameter

Figure 12(a) shows the diffusion coefficient obtained from
simulations using different strength parameters (1/τBerendsen)
for the thermostat. A decrease in 1/τBerendsen corresponds to a
decrease in the strength of the thermostat, and 1/τBerendsen = 0
corresponds to the microcanonical limit (i.e., no thermostat).
The values in the figure correspond to a parameter τBerendsen

ranging from 10−15 s to 8 10−13 s (i.e., 1/τBerendsen ranging from
1.2 1012 s−1 to 1015 s−1. We have used a strength parameter
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FIG. 11. (a) Diffusion coefficient versus the simulation time step
	t . The precision of the calculations and the CPU time both increase
for small time steps leading usually to search for a compromise, but
we have used in our work a relatively small time step (	t = 10−15 s).
The lines are guides to the eyes. The temperature is T = 120 K. (b)
Strength of string like motions versus the simulation time step 	t .
T = 120 K.

1/τBerendsen = 1013 s−1 in our work. We expect spurious effects
to appear for large values of the parameter 1/τBerendsen as the
thermostat will decrease the thermal fluctuations in the system.
This effect is expected to be larger for small system sizes, due
to the decrease in the number of degrees of liberty for small
systems that will lead to an increase of the thermostat effect on
the molecular motions. We see in Fig. 12(a) that a thermostat
effect appears for N = 100 when the strength parameter of
the thermostat is larger than 1/τBerendsen ≈ 1014 s−1. Finally,
Fig. 12(b) shows that the strength of the stringlike motions
stays constant when we vary the thermostat parameter within
the strength range of the figure.

3. Simulation box replica

In this section we show the effect of adding the first replica
of the simulation box to improve the statistics in the calculation
of the correlation functions. While the diffusion coefficient
and the susceptibility cannot be improved with that method
as they use correlations between the successive positions of a
molecule, the functions based on radial distribution functions
calculations or on distinct Van Hove correlation functions can
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FIG. 12. (a) Diffusion coefficient versus the inverse of the
thermostat constant τBerendsen. A decrease in 1/τBerendsen corresponds
to a decrease in the strength of the thermostat and 1/τBerendsen = 0
corresponds to the microcanonical limit (i.e., no thermostat). The
temperature is T = 120 K. (b) Strength of string like motions versus
the inverse of the thermostat constant τBerendsen. T = 120 K.

be improved slightly with that method. We show in Fig. 13
the radial distribution function (RDF) with or without the
contribution of the 26 first replica of the box. The calculations
are limited here to r < L/2 when only the simulation box is
used, and to r < L when the replica are used. Consequently,
the calculations do not include the correlation between the
molecule and its replica. The figure shows that within that
range of r there are no spurious effects and the RDF thus
could be extended to increase the precision by using the replica.
Results shown in the manuscript use these replica to increase
the precision, using the limit r < 0.75L. As expected the RDF
are exactly the same for r < L/2.

The effect of using the replica on the distinct Van Hove
correlation function, using the 5% most mobile molecules, is
shown in Fig. 14. We see the appearance of a peak around
r = 0 Å showing that molecules are following each other on
the characteristic time t∗ used in the calculation. The presence
of that peak is a characteristic of stringlike motions and used
in the manuscript to calculate the functions Is that measure the
strength of the string motions. The figure shows quite small
differences between the calculation using the replica method
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FIG. 13. Radial distribution function between the center of
masses, using molecules from the simulation box (red continuous
line) or molecules from the simulation box and the first 26 box replica
(green dashed line). The calculations are limited here to r < L/2
when only the simulation box is used and to r < L when the replica
are used. N = 100 molecules and T = 120 K. The temperature is
T = 120 K.

and the calculation using only the simulation box. These small
differences arise from the contribution of the molecules of the
simulation box that are located at r > L/2 (i.e., that are in the
corners of the box). These contributions increase slightly the
accuracy of the calculation.
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FIG. 14. Distinct part of the Van Hove correlation function,
using the 5% most mobile molecules from the simulation box (red
continuous line) or molecules from the simulation box and the first
26 box replica (green dashed line). As in Fig. 13, the calculations are
limited to r < L/2 when only the simulation box is used and to r < L

when the replica are used. N = 100 molecules and T = 120 K. The
peak around r = 0 Å shows that molecules are following each other
on the characteristic time t∗ that corresponds to the maximum of the
non-Gaussian parameter. Functions Is correspond to the integration
of that peak. ρ is the number density. The temperature is T = 120 K.
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