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Phase behavior of a binary fluid mixture of quadrupolar molecules

Masatoshi Toda,1,* Shinji Kajimoto,1 Shuichi Toyouchi,1 Toshihiro Kawakatsu,2 Yohji Akama,3

Motoko Kotani,3,4 and Hiroshi Fukumura1

1Department of Chemistry, Tohoku University, Sendai, 980-8578, Japan
2Department of Physics, Tohoku University, Sendai, 980-8578, Japan
3Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan

4WPI-AIMR, Tohoku University, Sendai, 980-8577, Japan
(Received 28 March 2016; revised manuscript received 9 October 2016; published 2 November 2016)

We propose a model molecule to investigate microscopic properties of a binary mixture with a closed-loop
coexistence region. The molecule is comprised of a Lennard-Jones particle and a uniaxial quadrupole. Gibbs
ensemble Monte Carlo simulations demonstrate that the high-density binary fluid of the molecules with the
quadrupoles of the same magnitude but of the opposite signs can show closed-loop immiscibility. We find that an
increase in the magnitude of the quadrupoles causes a shrinkage of the coexistence region. Molecular dynamics
simulations also reveal that aggregates with two types of molecules arranged alternatively are formed in the
stable one-phase region both above and below the coexistence region. String structures are dominant below the
lower critical solution temperature, while branched aggregates are observed above the upper critical solution
temperature. We conclude that the anisotropic interaction between the quadrupoles of the opposite signs plays a
crucial role in controlling these properties of the phase behavior.
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I. INTRODUCTION

Phase behavior of multicomponent mixtures is one of the
key issues in condensed matter research [1]. When we are
to understand the mechanism of the phase behavior, among
various phase diagrams, those of binary fluid mixtures are
of fundamental importance because they are easy to control
and analyze. We show typical temperature-composition phase
diagrams observed in binary liquids in Fig. 1. The apexes on
these phase coexistence curves are the critical points. Based
on the position of the critical points on the phase diagram,
these phase diagrams can be classified into three types: the
upper critical solution temperature (UCST) type [Fig. 1(a)],
the lower critical solution temperature (LCST) type [Fig. 1(b)],
and closed-loop type that has the characters of both UCST-
and LCST-type phase diagrams [Fig. 1(c)]. Although most
binary liquids show the UCST-type phase diagram, there is
a certain group of mixtures that show the LCST-type phase
diagram. Water-phenol and hexane-nitrobenzene systems are
examples of the former type, while water-triethylamine and
water-1-ethylpiperidine systems are ones of the latter type [2].
Examples of the remaining closed-loop type are rather few
but have a special importance as a prototype system to study
both UCST- and LCST-type phase behaviors in a unified
manner. Nicotine-water mixture is a typical example of this
category [2,3]. From a scientific point of view, such a closed-
loop phase diagram is a manifestation of the reentrant phase
transition [4], which has been a target of intensive studies in
the fields of colloidal science [5], protein science [6], and high
energy physics [7]. From an engineering point of view, on
the other hand, understanding the differences in the behavior
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between UCST and LCST is also crucial in controlling the
phase separation phenomena in chemical processing.

The phase behavior near the UCST of a binary mixture can
be explained by the balance between the entropy of mixing
of the two components and the van der Waals attractive inter-
action between similar species. On the other hand, the phase
behavior near the LCST is more complicated than that near the
UCST and is still not well understood. As far as low-molecular
systems are concerned, it is known that the behavior is related
to an entropy effect associated with molecular orientations
caused by anisotropic intermolecular interactions [4,8]. At low
temperatures, specifically, the anisotropic interactions form
molecular complexes composed of different species, which
exist in the spatially homogeneous one-phase state below the
LCST. Anisotropic interactions such as hydrogen bond also
play a key role in the formation of self-organized structures
observed in condensed matter [9]. Hence, understanding
molecular details of the behavior of liquids with the anisotropic
interactions is one of the central issues of materials science.
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FIG. 1. Three temperature-composition phase diagrams often
observed in binary liquids: (a) UCST-type, (b) LCST-type, and
(c) closed-loop-type (LCST < UCST) phase diagrams. In each
diagram, the red curve is the phase coexistence curve, i.e., the binodal
curve, and the apex(es) on the curve is (are) the critical point(s).
Thermodynamically, the binary liquid separates into two phases in
the region labeled “2 phases”, while it is homogeneous in the region
labeled “1 phase”.
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Based on the above idea, previous studies have adopted a
short-ranged anisotropic interaction between different species
into their models [10–12], with which they succeeded in
reproducing the closed-loop phase diagram. As these existing
studies have been carried out with on-lattice-based structures
and/or spatially discretized anisotropic interactions, however,
the shape and the statistical properties of the molecular
complexes at temperatures below the LCST can be artifacts
of the discretizations assumed in their models.

The purpose of this study is to uncover molecular-scale
properties of binary liquids with a closed-loop coexistence
region using an off-lattice molecular model which is more
realistic than the previous models. For this purpose, we
propose a minimal model molecule that is free from the lattice
discreteness. Our model molecule is an anisotropic molecule
that consists of only two elements: a Lennard-Jones (LJ)
particle and a uniaxial quadrupole. It is important here to
note that we succeeded in reproducing the LCST-type phase
diagram by using molecules with electric quadrupoles but
without electric dipoles. Because real molecules such as water
and triethylamine that show LCST-type phase diagram usually
have a permanent electric dipole in addition to quadrupoles and
higher multipoles, it has not been clear whether the electric
dipole is the origin of the LCST-type phase diagram or not.
Thus, our model system can serve as a counterexample to the
common idea that the LCST-type and the closed-loop-type
phase diagrams are caused by anisotropic interactions due
to the electric dipoles. From the standpoint of multipole-
multipole interactions, in this study, we examine the phase
behavior of our binary mixtures and discuss a condition for
the occurrence of the lower critical point or the closed-loop
coexistence region. We carry out molecular simulations on
the high-density binary mixture of the quadrupolar molecules
using two techniques, i.e., the Gibbs ensemble Monte Carlo
(GEMC) method [13–15] and the molecular dynamics (MD)
method. Our results show that the anisotropic interaction
between the quadrupoles of the opposite signs is a key factor in
the realization of a closed-loop coexistence region and that the
dipole-dipole interaction is not necessary for the occurrence
of the lower critical point.

The rest of this paper is organized as follows: We present
our model molecules in Sec. II and describe important parts of
the used simulation methods, i.e., GEMC and MD, in Sec. III.
We show the results obtained from the GEMC simulations in
Sec. IV and those from the MD simulations in Sec. V. In the
former section, we discuss the phase behavior and a condition
for the occurrence of the lower critical point from the viewpoint
of multipole-multipole interaction between the constituent
molecules. In the latter section, on the other hand, we discuss
structural properties in stable one-phase states outside the
closed-loop coexistence region. Finally, we conclude this study
with a brief summary and outlook in Sec. VI.

II. MODEL AND ITS PROPERTIES

A. Minimal model: Uniaxially quadrupolar molecules

Our model molecules are aimed to be a minimal model
that can reproduce the LCST-type or the closed-loop phase
diagrams. We also expect that a permanent electric dipole is not
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FIG. 2. Each of our model molecules A and B is a Lennard-Jones
(LJ) particle with a uniaxial quadrupole. We assume that the particles
A and B have the quadrupoles with the same magnitude but with the
opposite signs. Such a situation can be realized by assuming the same
density distribution of charges with the opposite signs for molecules
A and B.

an essential element for these phase diagrams. Thus, we want to
exclude any electric dipole from our model. In order to satisfy
these requirements, we introduce model molecules A and B
shown in Fig. 2. For the isotropic part of the intermolecular
interaction, we assume the usual LJ potential between the
same type of molecules (A-A and B-B) [16] and only the
repulsive part of the LJ potential between the different types
of molecules (A-B) [17], respectively. We assign a common
diameter σ and a common interaction strength ε to all of
these potentials. For the anisotropic part, we assume that each
molecule has an electrically polarized rigid rod with a total
length 2d embedded at the center of the molecule. We assign
point charges ∓2q and ±q to the center and both ends of the rod
in the molecule A/B, respectively. Judging from such charge
distributions, the overall net charge (monopole) and all the
odd-ordered multipoles (dipole, octupole, ...) of the molecules
are vanishing exactly and the quadrupole becomes the leading
contribution to the intermolecular Coulomb interaction [18].
Therefore, we can treat the molecule A/B as a quadrupolar
sphere with the quadrupole moment QA/B = ±2d2q. For the
MD simulations, we assign mass m to both ends of the rod in
each molecule. Our model molecules are conceptually similar
to TIP4P water model [19], which is widely used in the studies
on water. The main difference is that TIP4P has electric dipole,
while our particles do not. Although the usual LJ particles
have only translational degrees of freedom, our model particles
shown in Fig. 2 have additional rotational degrees of freedom,
which gives a kind of molecular shape to the spherical LJ
particle. Due to this reason, we call our simple model particles
“molecules.” Hereafter, we describe all the physical quantities
in nondimensional units by measuring length, energy, mass,
time, and electric charge in the units of σ , ε, 2m, (2mσ 2/ε)1/2,
and the elementary charge e, respectively. In addition, we use
reduced temperature by using the unit of ε/kB, where kB is the
Boltzmann constant.

B. Anisotropic interaction between quadrupolar molecules

Figure 3 shows the energy landscapes between the
quadrupolar molecules shown in Fig. 2. The energy is
comprised of the isotropic part described by the LJ potential
and the anisotropic one by the uniaxial quadrupole moment
with its magnitude |Q| = 4.32 × 10−2. Two variables of the

052601-2



PHASE BEHAVIOR OF A BINARY FLUID MIXTURE OF . . . PHYSICAL REVIEW E 94, 052601 (2016)

FIG. 3. The energy landscapes (a) between the same type of
quadrupolar molecules (A-A and B-B) and (b) between different types
(A-B). Two variables of the interaction potential are the distance r

between the cores of two molecules and the angle θ between two
molecular axes embedded in each of the molecules. In the upper
panel of each figure, the configuration of molecules is changed from
the parallel (collinear) to the perpendicular orientation. In the lower
panel, on the other hand, the configuration is changed from the
perpendicular to the parallel (noncollinear) one. The magnitude of
quadrupole moment is |Q| = 4.32 × 10−2. In all the landscapes, a
dashed contour line is drawn along energy zero and the other contour
lines are drawn every energy 10.

interaction energy are the distance r between the centers of
two molecules and the angle θ between two molecular axes
embedded in each of the molecules. The configuration of
the two axes at θ = 0 is a parallelly oriented, i.e., collinear-
shaped one in the upper panels of Figs. 3(a) and 3(b) and
a perpendicularly oriented, i.e., T-shaped one in the lower
panels. From these energy landscapes, we can recognize that
there is a clear short-ranged anisotropy in the interaction
between two quadrupolar molecules: In the case of a pair of the
same species, the T-shaped configuration is more preferred,
while in the case of a pair of the different species, the
collinear-shaped one is more preferred. Surely, the interaction
between a pair of our quadrupolar molecules is anisotropic as
with the interaction between a pair of the Stockmayer particles,
which consist of a usual LJ particle and a point dipole [20,21].
However, there are various differences in their behaviors. First,
the quadrupole-quadrupole interaction decays with the inter-
particle distance r as r−5 in three-dimensional space, while
the dipole-dipole interaction decays much more slowly as r−3

[22]. This means that the interaction between our quadrupolar
particles is a short-ranged interaction, while the interaction
between dipolar particles such as Stockmayer particles is a
long-ranged one. Next, the quadrupole-quadrupole interaction
oscillates more frequently along with the relative orientation
between the molecules than the dipole-dipole interaction. In
Sec. IV B, we will discuss another different point related to
the occurrence of the lower critical point or the closed-loop
coexistence region. These differences can surely affect the
phase behaviors.

phase 1

phase 2
A B

subsystem I

subsystem II
coupling

FIG. 4. Schematic image of Gibbs ensemble Monte Carlo
(GEMC) method. The subsystems I and II are taken from the bulk
regions (far from the interface between the two coexisting phases) of
the two phases which coexist with each other as sample systems. In
GEMC method, the subsystems are coupled and the usual periodic
boundary conditions are applied to each of the subsystems.

III. SIMULATION METHODS

A. Gibbs ensemble Monte Carlo (GEMC) method

In order to construct a phase diagram of the binary
quadrupolar fluid, we perform GEMC simulations [13–15].
Let us consider a system composed of two coupled subsystems
as shown schematically in Fig. 4. We take samples from each
of the bulk regions of the two coexisting phases, and call them
the subsystems I and II. As these subsystems are samples
of bulk systems, we can apply the usual periodic boundary
conditions to them. In addition, suppose that the temperature,
the volume, the pressure, the number of α-type molecules (α =
A, B), and their chemical potentials in the subsystem i (i = I,
II) are denoted as T (i), V (i), p(i), N (i)

α , and μ(i)
α , respectively. In

order to realize two-phase equilibrium of the binary system,
thermodynamic law requires that the following relations
should be satisfied between the two subsystems [1,23]:

T (I) = T (II), (1)

p(I) = p(II), (2)

μ
(I)
A = μ

(II)
A , (3)

μ
(I)
B = μ

(II)
B . (4)

In usual Monte Carlo simulations including GEMC, we can
specify (sub)system temperature as an input parameter. There-
fore, when the whole calculation works well, the condition (1)
is realized automatically. We should also remember that it is
prerequisite that each subsystem is in internal equilibrium. In
order to satisfy the internal equilibration and the remaining
conditions (2)–(4) in the standard GEMC method, we adopt
three types of trial moves shown in Fig. 5. First, local
translation and rotation of particles in each subsystem are
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FIG. 5. Three trial moves commonly used in the standard GEMC
method: (a) local translation and rotation of particles, (b) volume
change of the subsystems, and (c) particle migration from one
subsystem to the other one. In a condensed system, the trial move
(c) becomes practically impossible to be accepted.

performed as is shown in Fig. 5(a). These trial moves ensure the
internal equilibration. Next, volume change of the subsystems
in Fig. 5(b) is performed in order to ensure the condition (2).
Finally, particle migration from one subsystem to the other
one as is shown in Fig. 5(c) is performed to realize the
conditions (3) and (4). Using the GEMC method based on
these trial moves, we can achieve the two-phase coexistence
without having the interface between different phases. Because
the finite size effect of the simulation box mainly comes from
the interfacial region with a finite thickness, this GEMC tech-
nique can minimize the finite size effect and then miniaturize
the simulation box to some extent. The miniaturization of the
system size allows us to perform long time simulation runs
with which precise determination of the phase diagram can be
achieved. In a condensed system, however, the trial particle
migration procedure shown in Fig. 5(c) is almost impossible
to be accepted. In other words, the trial move leads to the
failure in the conditions (3) and (4). This is a serious problem
common to Monte Carlo (MC) simulations of the condensed
system based on the grand-canonical ensemble. In the next
subsection, we will propose a trick to solve this problem.

B. Our simplified scheme of GEMC

In order to improve the difficult situation seen in dense
systems discussed in the previous subsection, several efficient
algorithms such as the ghost-particle method [24,25] and the
cavity-biased MC method [26] have been devised. Neverthe-

(a) (b)

local translation
& rotation

subsystem subsystem I subsystem II

particle exchange
A
B

FIG. 6. Two trial moves which we adopt in order to promote
the equilibration of the system: (a) local translation and rotation
of particles and (b) particle identity exchange between the two
subsystems. The former move is the same as that in Fig. 5(a).

less, our two-component liquids are too dense (as described
in Sec. III D) for these techniques to work well, which tells us
that there is a number-density limit above which these methods
are no longer effective.

However, there is one case where we can avoid this problem,
i.e., the case where the binary system is completely symmetric.
In such a case, instead of the particle migration from one
subsystem to the other one as a trial move, we can exchange
particles A and B between two subsystems, which changes the
composition of each subsystem while keeping the total density
constant. We set the volumes and the numbers of the molecules
in the subsystems in the following way:

V (I) = V (II), (5)

N
(I)
A + N

(I)
B = N

(II)
A + N

(II)
B , (6)

N
(I)
A + N

(II)
A = N

(I)
B + N

(II)
B . (7)

In this case, the following equations are satisfied automatically:

μ
(I)
A = μ

(II)
B , (8)

μ
(I)
B = μ

(II)
A . (9)

Instead of the particle migration procedure as shown in
Fig. 5(c), we use an alternative: We exchange the molecule
A (B) in one subsystem for the molecule B (A) in the other
subsystem [27]. We show a schematic illustration of this trial
move in Fig. 6(b). When the exchange procedure works well,
the relation

μ
(I)
A − μ

(I)
B = μ

(II)
A − μ

(II)
B (10)

is satisfied in a statistical sense. From Eqs. (8)–(10), we
can derive the requirements (3) and (4) for the two-phase
equilibrium. As far as the symmetrical system is concerned,
the exchange procedure is much more efficient than the particle
migration procedure even at very high densities.

For further efficiency, we assume that the whole system
composed of the two subsystems obeys the NVT ensemble
and that each subsystem obeys the μVT one. In this case,
the relations (5)–(7) naturally ensure the condition (2) in an
averaged sense, which means that we do not have to try the
volume changes of the subsystems as shown in Fig. 5(b). For
the special case of equimolar chemical composition, as a result,
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the MC procedure can be limited to two kinds of trial moves as
shown in Fig. 6: (i) local translation and rotation of a molecule
in each subsystem [Fig. 6(a), which is the same as Fig. 5(a)]
and (ii) exchange of an A-B pair between the two subsystems
[Fig. 6(b)]. In the trial move (i), a randomly selected molecule
is given a uniformly random translation within a small cube
with each edge length l and a random rotation from u to
(u + γ v)/|u + γ v|. Here, u is a unit vector parallel to the
rigid rod in the molecule before rotation, v a unit one with
a random orientation, and γ a scale factor. In this study, we
select the trial moves (i) and (ii) with equal frequency and
define 2N trial moves as 1 Monte Carlo step (MCS), where
N is the total number of molecules in the whole system. This
simplified scheme of GEMC is similar to the usage by Das
et al. [28–30] of semi-grand-canonical Monte Carlo method
[15,31].

C. RATTLE and redistribution of forces on massless points into
mass points

After obtaining the closed-loop phase diagram using the
GEMC method, we performed MD simulations on the same
system with a larger system size. We especially focused on
the system in the one-phase regions above the UCST and
below the LCST of the closed-loop phase diagram obtained in
the GEMC simulation. As described in Sec. II A, our model
molecules include a rigid rod, on each end of which a mass m is
located (see also Fig. 2). In order to calculate the dynamics of
the two-component fluids properly, it is necessary to retain the
shape of the rods embedded in the LJ spheres at each time step.
Thus, we integrate the equations of motion with the RATTLE

algorithm [32,33], which is a velocity Verlet algorithm with
holonomic constraints and their time derivatives. In general
case, RATTLE algorithm requires us to solve quadratic and
linear simultaneous equations in the update of the positions
and velocities of the mass points in the molecules, respectively.
For each molecule, we have to solve these simultaneous
equations under a set of constraints that are satisfied in terms
of Lagrange multipliers. Because of the very simple model
molecule of this study, however, we can solve this set of
equations analytically, which reduces the computational cost
considerably.

In the following, we explain how to treat the forces acting on
massless points in our model molecules. As has been described
so far, our spherical molecules have a massless interaction
point at their cores. For the correct calculation of MD, we
have to redistribute the forces acting on the massless point
into the mass points appropriately. Following Berendsen and
van Gunsteren [34,35], we assign half of the forces on the
central massless point to each of the two mass points at both
ends of the rigid rod inside the molecule, which ensures that
both total force and total torque are conserved in each molecule
[34].

Throughout this study, we perform MD simulations with
the NVT ensemble. In order to keep the temperature of the
system constant, we adopt the Woodcock thermostat [36,37],
i.e., the simple velocity scaling to rescale the velocities of the
mass points in the molecules at each time step by a factor
of (T/T )1/2, where T is the desired temperature and T is
the instantaneous temperature. The heat bath ensures that

the distribution of the positions of the mass points at T is
canonical.

D. Parameter setup

Our simulation systems used as the subsystems of the
GEMC simulations and as the whole system of the MD
simulations are a three-dimensional cubic box with the usual
periodic boundary conditions. For the calculation of Coulom-
bic interaction, we perform the Ewald summation [15,16,38]
with the tabulation method [39] for GEMC and with the
particle-particle particle-mesh (P3M) method [40–43] for MD.
We set a dimensionless number A ≡ e2/4πε0εσ = 6.786 ×
102, where ε0 is the permittivity of vacuum.

Throughout this paper, the following simulation parameters
are used. For both GEMC and MD simulations, the number
density of molecules ρ = 0.8, the averaged number fraction
of molecule A, xA = 0.5, and the full length of the rigid
rod embedded in the molecule 2d = 0.6 are used. For the
GEMC simulations, we use the total number of molecules
N = 500 in each subsystem, and for the trial move (i)
[Fig. 6(a)], we set l = 0.2 and γ = 0.1 (see Appendix A
for the possibility of artificial anisotropy associated with this
trial move). The numbers of steps calculated to average the
physical quantities after equilibration at desired temperatures
are 104 MCSs. About how to equilibrate the systems and how
to get the phase coexistence curves in GEMC, readers should
refer to Appendix B. For the MD simulations, on the other
hand, we use N = 16 384 in the whole system and a time
increment 	t = 0.005. The numbers of time steps used to
obtain the average physical quantities after equilibration at
desired temperatures are 4 × 104 MD steps. For a discussion
on the effect of the time increment 	t on the dynamics of the
constituent molecules, readers should refer to Appendix D.

IV. RESULTS AND DISCUSSION FOR
GEMC SIMULATIONS

A. Phase diagram

Figure 7 is the closed-loop phase diagram (red curve)
for the binary system with the magnitude of the quadrupole
moment |Q| = QA = 4.32 × 10−2 (q = 0.240) obtained from
the GEMC simulations. The phase diagram has two critical
points. The critical compositions are both 0.5 and the critical
temperatures are estimated as UCST = 4.24 and LCST =
2.16. The familiar critical exponents β � 1

3 for the three-
dimensional Ising universality class [44] are observed for
both critical points (see Appendix C for details on the critical
temperatures and exponents). Similar result has been reported
in a previous work [12]. In our simulations, the magnitude
of the quadrupole moment |Q| is an important parameter
which controls the phase behavior. As is obvious from Fig. 7,
the shape of the coexistence region changes from a dome-
type shape with one UCST to a closed-loop-type one with
both UCST and LCST when the value of |Q| is increased.
Further increasing |Q| results in a gradual shrinkage of the
closed-loop coexistence region. At a certain critical value
of |Q|, eventually, the two critical points are expected to
merge and to change into a double critical point [4]. This
tendency to the polar magnitude is opposite to that of the
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FIG. 7. The closed-loop phase diagram for the binary quadrupolar
mixture with |Q| = 4.32 × 10−2 (red curve). Two critical tempera-
tures are UCST = 4.24 and LCST = 2.16 (larger red circles). The
error bars indicate the standard deviation. For comparison, we show
the phase coexistence curves with the other values of |Q| = 0,
3.96 × 10−2, 4.10 × 10−2, and 4.41 × 10−2 (black curves).

dome-type gas-liquid coexistence region for one-component
Stockmayer fluid [45,46] and its quadrupolar version, i.e.,
one-component fluid of LJ particles embedded with a point
quadrupole [47].

B. Condition for the occurrence of the lower critical point

In order to understand the phase behavior of our
high-density binary quadrupolar mixtures presented in the
previous subsection, we perform the angle averaging of
an orientation-dependent interaction between two nearest-
neighboring quadrupolar molecules [22]. We note that the
angle averaging of isotropic interactions gives no changes and
is meaningless. Generally speaking, in the high temperature
limit (or in the nonpolar limit), the Boltzmann factor associated
with the quadrupole-quadrupole interaction reduces to unity
and then the averaged anisotropic interaction in any types
of pair becomes exactly zero, which means that there is
no anisotropy between any molecules. With a decrease in
temperature (or with an increase in the polar magnitude), the
contribution to the averaged interaction from the orientations
with a negative energy becomes more and more dominant,
while that from the orientations with a positive energy
approaches zero, which causes the intermolecular anisotropy.
The resultant averaged anisotropic energy is always negative,
i.e., attractive.

We calculate the angle-averaged interactions between two
molecules A and B shown in Fig. 2 based on the method by Fan
et al. [48]. Their original method was proposed to calculate
the effective interaction parameter between two segments for
polymeric systems, a low-molecular version of which we will
treat in Sec. IV C. Since it is a little complicated, however,
we simplify their methodology. Suppose εαβ(j ) denotes the
configurational energy between two neighboring molecules α

and β (α, β = A, B) at a microscopic state j . We consider the
simplified configurations shown in Figs. 8(a) and 8(b): one of
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FIG. 8. (The upper panel) The microscopic configuration j used
for the calculation of the ensemble-averaged energy between our
model quadrupolar molecules shown in Fig. 2: (a) a pair of molecules
of the same type (A-A and B-B) with the energy εAA (BB)(j ) and (b)
a pair of molecules of different types (A-B) with εAB(j ). In each
case, the centers of the molecules are separated by the distance 21/6.
(The lower panel) The interaction energy Uαβ (r, θ1, θ2, ϕ) between
pure quadrupoles: (c) the configuration of two interacting uniaxial
quadrupoles α and β (α, β = A, B). Here, r is the distance between
the centers (O and P) of the quadrupoles and θ1 and θ2 are the
angles between the axes of the quadrupoles α and β and the line
OP, respectively. Numbers 1–4 beside the ends of these axes are just
the labels for the identification. (d) A view of the configuration along
the line OP. The angle ϕ means the relative twist of the axes of the
quadrupoles about the line.

two neighboring molecules is fixed at the center of a sphere
with a radius 21/6; the other molecule is free to move on the
spherical surface. The molecular axis of the latter molecule can
also be free to rotate. The angle-averaged version of εαβ(j ) is
defined as

〈εαβ〉 = Tr εαβ(j ) exp[−εαβ(j )/T ]

Tr exp[−εαβ(j )/T ]
. (11)

A pair of brackets 〈. . . 〉 means the ensemble average over
all the microscopic states. The averaged energy can be
decomposed into two parts: 〈εαβ〉 = 〈εαβ〉i + 〈εαβ〉a. Here,
〈εαβ〉i is the isotropic part and 〈εαβ〉a is the anisotopic one.
Due to the symmetry between the molecules A and B used
in this study, it is obvious that 〈εAA〉 = 〈εBB〉. In more detail,
〈εAA〉i = 〈εBB〉i = −1, 〈εAB〉i = 0, which are independent of
temperature, and 〈εAA〉a = 〈εBB〉a, which is dependent on tem-
perature. We want to evaluate the values of 〈εAA〉 and 〈εAB〉 and
their anisotropic parts quantitatively. Under the assumption
of the configurations as shown in Figs. 8(a) and 8(b), we
can get the analytical expression of 〈εαβ〉, which includes a
little complicated multiple integrals. Thus, we mainly evaluate
the integrals with Monte Carlo method [49]. Specifically, we
generate Mconf pairs of molecular configurations and then we
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FIG. 9. (a) The anisotropic parts 〈εαβ〉a of the ensemble-averaged
energies 〈εαβ〉 = 〈εαβ〉i + 〈εαβ〉a between our model quadrupolar
molecules α and β (α, β = A, B) and (b) the ensemble-averaged
energies 〈Uαβ〉 between pure quadrupoles α and β. These are
functions of the magnitude of quadrupole moment |Q| for different
values of temperature T . We set QA = −QB = |Q| and fix the
distance between the quadrupolar molecules or the quadrupoles at
21/6. In both panels, the solid curves correspond to the case of α = β

(A-A, B-B), while the dashed ones to the case of α �= β (A-B).

evaluate 〈εαβ〉 approximately using the following expression:

〈εαβ〉 �
∑Mconf

j εαβ(j ) exp[−εαβ(j )/T ]∑Mconf
j exp[−εαβ(j )/T ]

, (12)

where we set Mconf = 5 × 108. Once we obtain the ap-
proximate values, we can extract their anisotropic parts in
the following way: 〈εAA〉a = 〈εAA〉 + 1 and 〈εAB〉a = 〈εAB〉.
Figure 9(a) shows the anisotropic parts of the ensemble-
averaged energies between two quadrupolar molecules at
several temperatures (T = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0)
as functions of the magnitude of quadrupole moment |Q|.
We observe that the energy between the different types
is more attractive than those between the same type, i.e.,
〈εAB〉a < 〈εAA〉a < 0, and that the discrepancy is increased
with a decrease in temperature or with an increase in the
magnitude of the quadrupole moment, which promotes the
homogenization of the binary mixtures.

Strictly speaking, as described in Sec. II A, our model
molecules are approximately quadrupolar molecules, which
means that although the quadrupole is a major contribution
to them, they contain to some extent the higher even-ordered
multipoles such as hexadecapole. Therefore, we also have to
carry out the angle-averaging of a pure quadrupole-quadrupole
interaction in order to confirm the validity of the approxima-
tion. Figures 8(c) and 8(d) are the configuration of two pure
uniaxial quadrupoles α and β (α, β = A, B) with quadrupole
moments Qα and Qβ , respectively. Here, r is the distance
between the quadrupolar centers (O and P) and θ1 and θ2 are
the angles between the axes of the quadrupoles and the line OP.
Moreover, the angle ϕ is that between the two planes formed
by the axes with the line OP. The pure quadrupole-quadrupole
interaction Uαβ(r,θ1,θ2,ϕ) corresponding to this configuration
is expressed in the following way [22]:

Uαβ(r,θ1,θ2,ϕ) = 3AQαQβ

4r5
h(θ1,θ2,ϕ), (13)

where

h(θ1,θ2,ϕ) = 1 − 5 cos2 θ1 − 5 cos2 θ2

+ 17 cos2 θ1 cos2 θ2 + 2 sin2 θ1 sin2 θ2 cos2 ϕ

− 16 sin θ1 sin θ2 cos θ1 cos θ2 cos ϕ. (14)

We can easily derive the angle-averaged version of Eq. (13) as

〈Uαβ〉(r) =
∫

d�Uαβ exp[−Uαβ/T ]∫
d� exp[−Uαβ/T ]

, (15)

where d� = sin θ1 sin θ2 dθ1dθ2dϕ and the integrals are taken
over θ1 = 0 ∼ π , θ2 = 0 ∼ π , and ϕ = 0 ∼ 2π . After setting
QA = −QB = |Q| and r = 21/6, we evaluate the integrals
included in Eq. (15) numerically, not with Monte Carlo
method. We show the ensemble-averaged energies 〈Uαβ〉
between two pure quadrupoles at several temperatures as
functions of the magnitude of quadrupole moment |Q| in
Fig. 9(b). Obviously, the behavior of 〈Uαβ〉 is qualitatively the
same as that of 〈εαβ〉a, which ensures that our model molecules
can be actually regarded as quadrupolar molecules and that the
discussion in this study is based on the quadrupole-quadrupole
interaction.

Subsequently, we discuss a condition for the occurrence of
the lower critical point or the closed-loop coexistence region
in more details. When the quadrupole moments of two types
of molecules A and B have the same sign (QAQB > 0), of
course, either of the averaged energies between the same
type of molecules (A-A and B-B) is more attractive than
that between the different types of molecules (A-B). In the
special case of the same magnitude (QA = QB), all the
averaged energies are exactly consistent. Conversely, when
the quadrupole moments have the opposite signs (QAQB < 0)
and comparable magnitudes, the energy between the different
types is more attractive than those between the same type as
shown in Fig. 9(a). The stronger attraction between different
species, together with the entropy of mixing, drives the
mixing of the two components against the isotropic attraction
between similar species. The mixing tendency is amplified
with decreasing temperature or with increasing the magnitude
of the quadrupole moments and then enhanced to the maximum
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for the symmetric system as with our model (QA = −QB),
which results in the occurrence of the closed-loop coexistence
region and its shrinkage. In order to explain the mechanism
of the phase behavior of the one-component dipolar or
quadrupolar fluid with the gas-liquid coexistence region, on
the other hand, we can use the Flory-Huggins description for
ordinary polymer solutions [45,46]. The description predicts
that the longer the polymer chain is, the more upward the
UCST shifts. In the one-component polar fluids, an increase in
the magnitude of the dipole or quadrupole moment enhances
the growth of the aggregates composed of the same type of
molecules. Such an upward shift of UCST is the result of the
growth of the molecular aggregates.

C. Comparison with the lattice model of binary solutions

In order to check the validity of the closed-loop coexistence
region for our binary fluid, we calculate a dimensionless ef-
fective interaction parameter between two nearest-neighboring
molecules A and B. The quantity is called the χ parameter in
the Flory-Huggins model for polymer solutions. We have to
modify the parameter to fit our binary quadrupolar fluid. Using
the averaged energies 〈εαβ〉 introduced in Sec. IV B, we express
the modified parameter χeff(T ) in the following way:

χeff(T ) = z

T

[
〈εAB〉 − 1

2
(〈εAA〉 + 〈εBB〉)

]
, (16)

where z is the coordination number of the nearest-neighboring
pairs. We consider the number z as a constant, which is
a reasonable assumption in constant volume simulations of
the condensed system like the fluids used in this study. As
discussed in Sec. IV B, the symmetry between the molecules
A and B enables us to rewrite Eq. (16) into

χeff(T ) = z

T
[〈εAB〉a − 〈εAA〉a + 1]. (17)

In the special case when εαβ(j ) is completely isotropic, i.e.,
〈εAA〉a = 〈εAB〉a = 0, χeff(T ) reduces to the original χ param-
eter. The binary fluids with |Q| = 0 treated in this study are
an example of this case. In addition, χeff(T ) usually indicates
a variety of temperature dependence, while the original χ (T )
shows a simple behavior due to the form χ (T ) = C/T , where
C is generally a positive constant. Figure 10 shows the tem-
perature dependence of χeff(T )/z for the system with several
magnitudes of quadrupole moment (|Q| = 0, 3.96 × 10−2,
4.10 × 10−2, 4.32 × 10−2, and 4.41 × 10−2). Without loss of
generality, the parameter χeff(T ) is a useful criterion for the
liquid-liquid phase separation [23,50,51]: When the parameter
is larger than a critical value χc [χeff(T ) > χc], the system
causes the phase separation. Inversely, when χeff(T ) < χc,
the system keeps a spatially homogeneous one-phase state. In
this study, we define χeff(T )/z � 0.2 at UCST = 4.88 of the
system with |Q| = 0 as the common threshold χc/z (see also
Table II in Appendix C). In Fig. 10, we find that the systems
with the finite moment (|Q| �= 0) exceed the critical value
χc and then fall below it again with increasing temperature.
This is a reasonable proof for the occurrence of a closed-loop
coexistence region. For condensed binary mixtures of dipolar
particles such as Stockmayer particles, on the other hand,
we have confirmed that the corresponding effective parameter

 0
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) /

 z

Temperature   T

χc/z
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FIG. 10. The effective interaction parameters χeff (T ) as functions
of temperature T for different values of |Q|. The open circles show
the results from direct numerical integration of Eq. (11); the solid
curves show the results from numerical integration using Monte Carlo
method. When the effective interaction parameter is in the gray region,
the system undergoes a liquid-liquid phase separation.

χeff(T ) takes not such turnover profiles but monotonic decay
ones similar to the curve for the system with |Q| = 0 in Fig. 10.
To the best of our knowledge, actually, computational and
theoretical studies on two-component dipolar mixtures have
never observed the occurrence of the lower critical point or the
closed-loop coexistence region [52,53].

Next, we calculate the phase diagrams for our condensed
binary quadrupolar fluids based on a lattice theory of solutions
and then compare them with those obtained by GEMC sim-
ulations (Fig. 7). Let us consider a binary mixture composed
of two small molecules A and B with the same size and with
respective number fractions xA and xB = 1 − xA. In addition,
we describe the whole system with a set of lattice cells with
the same size as the molecules and assume that each cell is
occupied by only one molecule under the incompressibility
condition of the system. When the binary system is mixed
homogeneously, the free energy of mixing per lattice site is
expressed as the form of f (xA) T and f (xA) is given in the
following way [23,50]:

f (xA) = xA ln xA + (1 − xA) ln(1 − xA)

+χeff(T ) xA(1 − xA). (18)

We should note that the original lattice model of solutions was
proposed for the condensed mixtures dominated by the van der
Waals interactions. In this case, χeff(T ) in Eq. (18) is replaced
with the original χ parameter with the form of χ (T ) = C/T

as described above. The symmetry of the system enables us
to use the simple phase equilibrium condition for determining
the coexistence curve, i.e., the binodal curve:

∂f (xA)

∂xA
= 0. (19)
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Subsequently, the spinodal condition for determining the
spinodal line is given by

∂2f (xA)

∂x2
A

= 0 (20)

and then the critical points [xA, c, χeff(Tc)] can be obtained as
the solutions of the following simultaneous equations:

∂2f (xA)

∂x2
A

= 0, (21)

∂3f (xA)

∂x3
A

= 0. (22)

Although Eqs. (19) and (20) have to be solved numerically,
the simultaneous Eqs. (21) and (22) can easily be solved
analytically, which gives the following solutions:

xA, c = 1
2 , (23)

χeff(Tc) = 2. (24)

By substituting Tc = 4.88 (UCST) and 〈εαβ〉a = 0 of the
system with |Q| = 0 into Eqs. (17) and (24), we determine
the coordination number z = 2Tc = 9.76 approximately. Fig-
ure 11(a) shows the binodal curves for our binary fluids
with several magnitudes of quadrupole moment (|Q| = 0,
3.96 × 10−2, 4.10 × 10−2, 4.32 × 10−2, and 4.41 × 10−2),
which are calculated numerically based on the lattice model
of binary solutions. Each curve corresponds to the curve
χeff(T )/z with the same color as in Fig. 10. Clearly, the binary
fluids with the finite moment (|Q| �= 0) reproduce the closed-
loop coexistence region, as expected from the temperature
dependence of χeff(T )/z shown in Fig. 10. Moreover, the
closed-loop coexistence region shrinks monotonically with
an increase in |Q|. These behaviors of the phase diagrams
obtained from the lattice model are qualitatively the same
as those from the GEMC simulations (see Fig. 7) except
that the mean-field model for the binary fluids with |Q| =
3.96 × 10−2 reproduces the closed coexistence curve, while
the GEMC simulations for the corresponding system do not
in the temperature range (T � 1.5) we have calculated in
this study. If we perform more GEMC simulations for the
system in the temperature region lower than T = 1.5, the
dome-type coexistence curve may close. In order to compare
the result of the mean-field model with that of the GEMC
simulations in more detail, we show both closed binodal curves
for the system with |Q| = 4.32 × 10−2 in Fig. 11(b). The gray
area painted in Fig. 11(b) is a thermodynamically unstable
region, where the system causes spontaneous phase separation
known as spinodal decomposition [54], and its boundary
shown by the dashed line is the spinodal line. There are two
significant differences between the two closed curves due to
the different methods: (i) Both upper and lower critical points
in GEMC belong to the three-dimensional Ising universality
class (β � 1

3 ), while those in the lattice model of solutions
to the usual mean-field universality class (β = 1

2 ). (ii) The
two-phase coexistence region in GEMC is smaller than that
in the mean-field model. We conclude that these differences
mainly come from the correlation between the constituent
molecules and the thermal fluctuation in the whole system
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FIG. 11. (a) Phase diagrams of our binary quadrupolar mixtures
calculated with the lattice model of solutions, where the effective
parameter χeff (T ) shown in Fig. 10 is applied to the free energy of
mixing, Eq. (18). Solid curves are the phase coexistence curves, i.e.,
binodal curves, for different values of |Q| and the critical points
are indicated by the open circles on the curves. (b) Comparison of
the phase diagram of the binary mixtures with |Q| = 4.32 × 10−2

obtained from GEMC simulations (Fig. 7) with that of the identical
system calculated with the lattice model. The binodal curve from
the GEMC simulations is drawn with the red line. On the other
hand, the binodal and the spinodal curves from the lattice model are
drawn with the black solid and dashed curves, respectively. In the
gray area inside the dashed curve, the system is thermodynamically
unstable. The coordination number z is assumed to be independent of
|Q| and determined from the critical relation χc = z/Tc = 2 for the
binary LJ fluids with |Q| = 0, where Tc = 4.88 (see also Table II in
Appendix C).

and that the appearance of the closed-loop immiscible region
itself is independent of the above correlation and fluctuation
and mainly determined by the magnitude of the quadrupole
moment |Q| as discussed in Sec. IV B.

V. RESULTS AND DISCUSSION FOR MD SIMULATIONS

In the previous section, the GEMC calculations of a
relatively small system size and the mean-field lattice model on
our binary quadrupolar mixtures showed us that the occurrence
of the closed-loop phase coexistence region in the binary fluids
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)d()b()a( T = 4.6 T = 1.8 T = 1.8 (s ≥ 15)(c) T = 4.6 (s ≥ 6)

FIG. 12. Snapshots of the MD simulations for the binary system with |Q| = 4.32 × 10−2, N = 16 384, and xA = 0.5. Red and blue particles
correspond to molecules A and B, respectively. Full images at two different homogeneous phases: (a) T = 4.6 (above the red curve in Fig. 7) and
(b) T = 1.8 (below). Aggregates with the sizes of (c) s � 6 and (d) s � 15 extracted from (a) and (b), respectively. In (c) and (d), characteristic
aggregates in each case are marked by red open circles, whose enlarged pictures are shown in the insets.

is not artificial but physically meaningful. However, we cannot
get sufficient information about the microscopic structures
existing in the binary fluids through these approaches. In order
to investigate these microscopic structures, we performed MD
simulations of a larger system size. In this section, we discuss
the results obtained from the MD simulations.

A. Structural properties

Figures 12(a) and 12(b) are typical snapshots of the binary
system with |Q| = 4.32 × 10−2, N = 16 384, and xA = 0.5
at T = 4.6 and 1.8 (outside the red closed curve in Fig. 7),
respectively. They are in a stable homogeneous phase and there
are no differences in appearance, although they are appreciably
different in the magnitude of the thermal fluctuation. In order
to discuss structural properties in the stable one-phase region
in more details, we define the short-ranged anisotropic bond
between different types of molecules: When the distance
between a pair of charges of different signs belonging to
different types of molecules is shorter than 0.60, we regard
that the anisotropic bond between these two charges is formed.
The threshold value is determined from the radial distribution
function at T = 1.5 (see Appendix E for details). Now, we
can define aggregates connected by the anisotropic bonds. Let
us denote the size of the aggregate (the number of constituent
molecules) by s. Figures 12(c) and 12(d) are characteristic
aggregates with more than a certain size [(c) s � 6 and (d)
s � 15] observed in Figs. 12(a) and 12(b), respectively. The
former aggregates have flexible structures with branch points,
while the latter have semiflexible linear stringlike structures
with random orientations. In both cases, the aggregates are
composed of alternating arrays of the two types of molecules.
We can qualitatively understand the preferred shape of the
aggregates in the stable one-phase region by considering
the rotational free energy of a pair of nearest-neighboring
molecules with the quadrupoles of the opposite signs. The
energy landscape in the upper panel of Fig. 3(b) shows that
the linear stringlike aggregates are stabilized by the strong
orientation between the axes in the adjacent molecules. On
the other hand, the branched aggregates have the bonding

energy eb and entropy sb larger than the stringlike ones (	eb >

0 and 	sb > 0). Thus, the rotational free energy change
	fb = 	eb − T 	sb tells us that linear stringlike aggregates
are preferred more at low temperatures, while branched one at
high temperatures, which is consistent with the shapes of the
aggregates in Figs. 12(c) and 12(d).

B. Cluster size distributions

Figure 13 shows the size distributions ns of the aggregates
existing in the equimolar binary system with |Q| = 4.32 ×
10−2 and N = 16 384 at several temperatures below LCST and
above UCST. Each distribution can be fitted with a function

f (s) = As−τ exp

[
− s

sξ

]
, (25)
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FIG. 13. Size distributions ns of the aggregates existing in the
equimolar binary system with |Q| = 4.32 × 10−2 and N = 16 384.
As the temperature changes from T = 1.5 to 2.0 (<LCST), the
distribution changes from blue points to red ones. On the other hand,
the size distributions at temperatures T = 4.4 to 4.9 (>UCST) are
almost overlapped. These data are plotted in semilogarithmic scales.
The inset shows three characteristic aggregate sizes sn, sw, and sξ as
functions of temperature.
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where A is a coefficient, τ is a critical exponent, which is
known as Fisher exponent, and sξ is a characteristic aggregate
size [55]. We obtain τ = 0.44 from the optimization with the
system at T = 1.5 and then adjust the other parameters A

and sξ according to each temperature. We observe that the
distributions below LCST are sensitive to temperature, while
those above UCST are almost independent of the temperature.
The inset of Fig. 13 shows the temperature dependence of three
characteristic aggregate sizes: the number-averaged aggregate
size sn, the weight-averaged one sw, and sξ . The former two
quantities are defined in the following way [50,51]:

sn =
N∑

s=1

s ns

/ N∑
s=1

ns, (26)

sw =
N∑

s=1

s2 ns

/ N∑
s=1

s ns, (27)

where the relation sw � sn is always satisfied. In the inset, we
cannot observe a sign of divergence of the characteristic sizes at
the two critical points, where the correlation lengths of the ther-
mal fluctuation of the composition diverge [44,54]. Therefore,
there are no tricritical points in our binary quadrupolar fluid,
where the thermodynamic critical point and the percolation
transition point are overlapped [51,56]. Judging from the
temperature dependence of three characteristic aggregate sizes
in the inset, we expect that the percolation transition point
should exist in the temperature region lower than T = 1.5,
if it exists. Here, we should notice that the transition is not
the real sol-gel transition because the aggregates below LCST
are mainly linear and do not have branch points, which are
essential elements in the gel (the network). Since we can
regard the characteristic size sξ of the aggregates as a kind
of correlation length [55], the monotonic increase of sξ with
decreasing temperature indicates an increase in the extent of
the correlation between the molecular clusters. Similarly, the
cagelike structures of water formed with hydrogen bonds,
i.e., the components of the hydrogen bond network in water,
become closely correlated with each other with a decrease
in temperature [57]. Hence, we conclude that the common
correlation behavior between the molecular clusters observed
in water and our binary fluid is one of the general properties of
the anisotropic interactions including the hydrogen bonding.

VI. SUMMARY AND OUTLOOK

We have clarified several macroscopic and microscopic
properties of the binary quadrupolar fluid using molecular
simulations. Main results are as follows:

(i) The binary mixture of the molecules with the
quadrupoles of the same (or comparable) magnitude but of the
opposite signs can possess a closed-loop immiscible region.
The closed-loop coexistence region shrinks gradually with an
increase in the magnitude of the quadrupole moment. On the
other hand, the dipole-dipole interaction does not cause the
closed-loop coexistence region, irrespective of the strength
of the dipole moment. Thus, we have succeeded in deriving
a condition for the occurrence of the lower critical point or
the closed-loop coexistence region of binary mixtures from
the point of view of multipole-multipole interaction between

the constituent molecules. It has not been reported that the
anisotropic interaction between the quadrupoles of the oppo-
site signs is a key element for the closed-loop phase diagram.

(ii) In terms of critical phenomena, there is no difference
between the upper critical point and the lower critical one.
Both critical points belong to the three-dimensional Ising
universality class regardless of the magnitude of quadrupole
moment, i.e., the strength of the anisotropic interaction due to
the quadrupoles.

(iii) In spatially homogeneous phases above and below
the closed coexistence curve, the aggregates composed of
alternating arrays of the two types of molecules are formed.
The shape of the aggregates is sensitive to the level of the ther-
mal fluctuation: the aggregates above UCST are flexible and
branched, while those below LCST are semiflexible and linear.

(iv) The size distributions of the aggregates in the equimo-
lar binary fluid at several temperatures outside the closed coex-
istence region are exponential in size. The distributions below
LCST are sensitive to temperature, while those above UCST
are almost the same regardless of temperature. In addition, the
characteristic sizes of the aggregates do not diverge at the upper
and lower critical points, where the characteristic sizes of the
thermal fluctuation of the composition diverge. The behavior
indicates that our binary quadrupolar fluids do not have any
tricritical points.

The quadrupolar model molecule that we have proposed in
this paper should be a minimal model which can reproduce the
closed-loop phase diagram in the binary system. Fortunately,
our model molecule is free from the artifact of the discreteness
in spatial arrangement and interaction that the usual lattice
models possess. From the computational point of view, the
molecule is also easy to treat. Hence, we expect that the
binary quadrupolar fluids can be a useful starting point to
study closed-loop phase diagrams. For example, it is very
interesting to examine the binary mixtures under an external
flow. When a shear flow is imposed on such a system, the closed
coexistence region will probably be shifted (or may disappear
or appear newly), which is known as shear-induced phase
transitions [58,59]. In our future publications, we will examine
both structural and rheological properties of the binary
quadrupolar mixtures under external flow by the nonequilib-
rium molecular dynamics (NEMD) simulations [60].
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APPENDIX A: POSSIBILITY OF ANISOTROPY INVOLVED
WITH THE LOCAL TRANSLATION OF

MOLECULES IN GEMC

As explained in the main text, we set the length of each
edge of a small cube used for the trial translational move
of the molecules [Fig. 6(a)] to l = 0.2. Since the mean
distance between the nearest-neighboring molecules in each
subsystem (∼1) is larger than the standard deviation of the
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FIG. 14. GEMC convergence of several states on the closed-loop phase diagram for the binary system with |Q| = 4.32 × 10−2 and
N = 16 384. The composition is equimolar (xA = 0.5) and the temperature is as follows: (a) T = 1.9, (b) 2.6, (c) 3.6, (d) 4.0, and (e) 4.5. The
correspondence between a pair of parameters (xA, T ) and the state is indicated with the red cross marks on the phase diagram in the upper left.
In each state, the temperature is set a desired value at 0 MCS and then we perform GEMC calculation during 2 × 104 MCSs. In (a)–(e), the red
line means the number fraction xA, I of molecule A in the subsystem I and the green one the number fraction xA, II in the subsystem II.

trial translational move of the molecules (0.1), the artifact due
to the anisotropy of the small cube may be worried. Actually,
however, the detailed-balance condition for the trial moves
is maintained and the radial distribution functions obtained
from GEMC calculations are quantitatively consistent with
those obtained from MD calculations (see also Appendix E).
Therefore, there is no problem.

APPENDIX B: EQUILIBRATION OF THE SYSTEM IN
GEMC AND THE LIQUID-LIQUID EQUILIBRIUM DATA

Figure 14 is the convergence of the states at several
temperatures of a binary mixture with |Q| = 4.32 × 10−2

in the GEMC simulations. We use the exchange procedure
explained in Sec. III B. For the temperatures simulated in this
work, the compositions in the subsystems I and II reach an
equilibrium value immediately after the temperature is set to a
desired value at 0 MCS as shown in Figs. 14(a)–14(e). Due to
this quick convergence, the system can reach the equilibrium
state within 104 MCSs. Thus, we use the data in the range of
104–2 × 104 MCSs to calculate the equilibrium quantities.

Here, we explain how to sample the number fractions of
the molecule A in the two subsystems [15]. First, when both
subsystems have almost the same number fraction as shown
in Figs. 14(a) and 14(e), in principle, we can treat the data
obtained from GEMC as the same as those from the usual
NVT ensemble Monte Carlo simulations. Next, when the
subsystems always correspond to either of two coexisting
phases as shown in Figs. 14(b) and 14(c), we can average
the number fraction in each subsystem separately to obtain
the averaged number fraction of the molecule A in each
phase. Finally, when the number fractions exchange frequently

between the two subsystems as shown in Fig. 14(d), we
construct a histogram of the probability density P (xA) from the
time sequence of the number fractions in the two subsystems.
In this case, the histogram has a symmetric double peak
structure and can be fitted well by the sum of two Gaussian
functions:

P (xA) = a exp

[
− (xA − 0.5 + c)2

b

]

+ a exp

[
− (xA − 0.5 − c)2

b

]
, (B1)

where a, b, and c are a set of positive parameters. Once we get
the parameters through the fitting procedure, we also obtain
the number fractions of the molecule A at equilibrium state
as xA, I = 0.5 − c and xA, II = 0.5 + c (xA, I < xA, II). Here,
xA, i (i = I, II) is the number fraction of the molecule A
in the subsystem i. In Table I, we present the liquid-liquid
equilibrium data (xA, I, T ) of the binary quadrupolar fluids
at several magnitudes of quadrupole moment obtained in the
manner described above.

APPENDIX C: APPROXIMATE ESTIMATE OF A
CRITICAL EXPONENT AND CRITICAL TEMPERATURES

In this appendix, we explain how to determine a critical
exponent and critical temperatures for our binary quadrupolar
mixtures. For these purposes, we introduce an order parameter
defined as � ≡ xA, II − xA, I. The theory of critical phenomena
tells us that the order parameter near the critical temperature
Tc shows the following behavior [44]:

� = B|T − Tc|β, (C1)
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TABLE I. Numerical data of the two-phase coexistence curve (xA, I, T ) of the binary quadrupolar mixtures at several magnitudes |Q|
obtained from GEMC simulations. The relation xA, I = 1 − xA, II is satisfied exactly because the constituent molecules of the binary system are
completely symmetric and equimolar. The estimated error of xA, I indicates the standard deviation.

xA, I

T |Q| = 0 3.96 × 10−2 4.10 × 10−2 4.32 × 10−2 4.41 × 10−2

1.5 0.0277 ± 0.0055
1.6 0.0004 ± 0.0008 0.0243 ± 0.0056 0.1316 ± 0.0157
1.8 0.0013 ± 0.0014 0.0200 ± 0.0050 0.0612 ± 0.0088
2.0 0.0035 ± 0.0021 0.0222 ± 0.0054 0.0460 ± 0.0078
2.2 0.0066 ± 0.0028 0.0253 ± 0.0054 0.0460 ± 0.0080 0.3071 ± 0.0420
2.3 0.2229 ± 0.0290
2.4 0.0109 ± 0.0037 0.0309 ± 0.0066 0.0474 ± 0.0087 0.1596 ± 0.0203
2.6 0.0161 ± 0.0044 0.0376 ± 0.0073 0.0530 ± 0.0089 0.1323 ± 0.0175 0.2981 ± 0.0388
2.7 0.2813 ± 0.0486
2.8 0.0234 ± 0.0057 0.0469 ± 0.0087 0.0623 ± 0.0098 0.1278 ± 0.0175 0.2337 ± 0.0357
2.9 0.2231 ± 0.0329
3.0 0.0319 ± 0.0067 0.0586 ± 0.0098 0.0740 ± 0.0114 0.1343 ± 0.0174 0.2136 ± 0.0349
3.1 0.2196 ± 0.0428
3.2 0.0432 ± 0.0081 0.0721 ± 0.0112 0.0879 ± 0.0134 0.1457 ± 0.0209 0.2125 ± 0.0310
3.3 0.2171 ± 0.0357
3.4 0.0565 ± 0.0091 0.0902 ± 0.0139 0.1079 ± 0.0165 0.1641 ± 0.0219 0.2333 ± 0.0380
3.5 0.2391 ± 0.0374
3.6 0.0728 ± 0.0111 0.1131 ± 0.0167 0.1295 ± 0.0183 0.1921 ± 0.0289 0.2523 ± 0.0367
3.7 0.1448 ± 0.0205 0.2743 ± 0.0480
3.8 0.0933 ± 0.0142 0.1377 ± 0.0197 0.1584 ± 0.0220 0.2275 ± 0.0362 0.3052 ± 0.0578
3.9 0.1772 ± 0.0254 0.2521 ± 0.0422 0.3396 ± 0.0754
4.0 0.1171 ± 0.0173 0.1723 ± 0.0247 0.1979 ± 0.0306 0.2849 ± 0.0507
4.1 0.1315 ± 0.0190 0.1919 ± 0.0297 0.2223 ± 0.0348 0.3160 ± 0.0673
4.2 0.1467 ± 0.0219 0.2161 ± 0.0366 0.2540 ± 0.0442 0.3723 ± 0.0768
4.3 0.1656 ± 0.0242 0.2383 ± 0.0363 0.2769 ± 0.0473
4.4 0.1877 ± 0.0289 0.2732 ± 0.0463 0.3205 ± 0.0610
4.5 0.2144 ± 0.0348 0.3200 ± 0.0684
4.6 0.2379 ± 0.0388
4.7 0.2699 ± 0.0456
4.8 0.3273 ± 0.0761

where B is a numerical coefficient and β is a critical exponent.
In binary symmetric mixtures, of course, the critical number
fraction xA, c is exactly 0.5. The relation (C1) is satisfied in
the region of T < Tc when Tc = UCST and in the region of
T > Tc when Tc = LCST. This also means that the (1/β)th

power of the order parameter, i.e., �1/β , changes linearly with
temperature around the critical point, when the exponent β is
chosen correctly. We show �1/β as a function of temperature
in Fig. 15, where (a) β = 1

3 (corresponding to 3D Ising
universality class), (b) β = 1

8 (2D Ising), and (c) β = 1
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TABLE II. Estimated critical temperatures of the binary
quadrupolar mixtures at several magnitudes |Q|.

|Q| LCST UCST

0 No 4.88
3.96 × 10−2 <1.5 or No 4.60
4.10 × 10−2 1.57 4.48
4.32 × 10−2 2.16 4.24
4.41 × 10−2 2.46 4.01

(mean-field theory). In Fig. 15(a), the parameter �3 (β = 1
3 )

approaches zero linearly around �3 � 0 as is expected from
the critical behavior. On the other hand, (b) �8 (β = 1

8 ) and
(c) �2 (β = 1

2 ) do not show linear decrease to zero. As a
result, the value β = 1

3 is closest to the critical exponent
for our binary mixtures, with which we conclude that our
system belongs to the three-dimensional Ising universality
class regardless of the magnitude of quadrupole moment.
Furthermore, we can determine the critical temperatures by
a linear extrapolation of �3 to zero. Table II shows the
estimated critical temperatures of the binary quadrupolar
fluids.

APPENDIX D: EFFECT OF THE TIME MESH WIDTH �t
ON THE DYNAMICS OF THE MOLECULES

In order to solve the equations of motion for the quadrupolar
molecules, we use the time mesh width 	t = 0.005. It is
necessary to check whether this time mesh width is sufficiently
small for the translational dynamics of the molecular centers
as well as the rotational dynamics of the molecular axes.
For this purpose, we calculated the mean-squared displace-
ment 〈|r(t) − r(0)|2〉 and the time-dependent orientational
correlation function 〈u(t) · u(0)〉 as functions of time t .
Here, r(t) is the position of the molecular center and u(t)
is the director, i.e., the normalized vector parallel to the
molecular axis embedded in the molecule. A pair of brackets
〈. . . 〉 means the ensemble average for all the molecules
A or B.

When the translational motions of the molecular centers are
described by the mutually uncorrelated Brownian dynamics,
we can get a simple expression for the mean-squared displace-
ment at long times [61]:

〈|r(t) − r(0)|2〉 = 2dsDt = 6Dt, (D1)

where D is the self-diffusion coefficient of the molecules and
ds is the space dimension (here, ds = 3). Let us define the
time required for the molecules to diffuse by their size as
the translational diffusion time τt = 1/6D [62]. We fitted the
mean-squared displacements for the molecules A and B with
Eq. (D1) to obtain the self-diffusion coefficients D and their
corresponding times τt. Figure 16 is the translational diffusion
times of the molecules A and B as functions of temperature.
The system is the homogeneous binary quadrupolar fluids with
|Q| = 4.32 × 10−2, N = 16 384, and xA = 0.5. We observe
that the characteristic times are always much larger than the
time mesh width 	t = 0.005.
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FIG. 16. Temperature dependence of translational diffusion times
τt of the molecular centers for the binary system with |Q| = 4.32 ×
10−2, N = 16 384, and xA = 0.5. Red filled circles and green filled
triangles correspond to the characteristic times of the molecules A
and B, respectively. These data are plotted in semilogarithmic scales.
The arrow indicates the time mesh width 	t = 0.005.

Similarly, when the rotational motions of the directors
are mutually uncorrelated and randomly fluctuated, we can
get a simple analytic expression for the time-correlation
function [61]:

〈u(t) · u(0)〉 = exp

[
− t

τr

]
, (D2)

where τr is the rotational correlation time. Figure 17 shows
the time-correlation functions for the molecules A and B in
the binary fluid with |Q| = 4.32 × 10−2. We set xA = 0.5 and
T = 1.8 (<LCST). Both curves show a monotonic decrease.
Although they do not show an exact single exponential decay
because of the many-body correlation between the directors,
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Δt τr

FIG. 17. Orientational correlation functions 〈u(t) · u(0)〉 of the
directors u(t) embedded in the molecules A (red curve) and B
(green one) for the equimolar binary mixture with |Q| = 4.32 × 10−2

and N = 16 384 at T = 1.8 (<LCST). These curves are plotted in
semilogarithmic scales. Two arrows indicate the time mesh width
	t = 0.005 and the time constant τr = 7.0.
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we tried to fit them with Eq. (D2) and we obtained the char-
acteristic time τr = 7.0, which is much larger than the time
mesh width 	t . As our choice 	t = 0.005 satisfies the
relations τt 	 	t and τr 	 	t , we conclude that our choice
of 	t is justified.

APPENDIX E: RADIAL DISTRIBUTION FUNCTION AND
THE COORDINATION NUMBER

We need to set a threshold value of the intercharge distance
in order to define the short-ranged anisotropic bond between
two electric charges with the opposite signs belonging to
different types of molecules. For that purpose, we make use of
the radial distribution function g(r) between the two electric
charges and its integral, i.e., the coordination number

N (r) ≡ ρe

∫ r

0
g(u) 4πu2 du. (E1)

Here, ρe is the number density of one species of the charge
pair. Figure 18 shows g(r) and N (r) between +q in a
molecule A and −q in a molecule B (see also Fig. 2), which
are obtained from MD simulations for the binary system
with |Q| = 4.32 × 10−2, N = 16 384, and xA = 0.5. The
temperature changes from T = 1.5 to 2.0 (<LCST) and from
T = 4.4 to 4.9 (>UCST). Both g(r) and N (r) are sensitive
to the temperature when T < LCST, while they are almost
independent of the temperature when T > UCST. We define
r = 0.60 as the threshold value based on the shapes of g(r) and
N (r) at T = 1.5 (solid blue curves). This value corresponds
to a point on a dip between the first and second peaks of
g(r) and a point on a flat region of N (r). The coordination
number N (r = 0.60) � 0.85 at T = 1.5 indicates that the
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FIG. 18. The radial distribution function g(r) and the coordi-
nation number N (r) as functions of a radial distance r between
two charges with the opposite signs belonging to different types of
molecules (+q in a molecule A and −q in a molecule B) for the binary
system with |Q| = 4.32 × 10−2 and N = 16 384. The composition
is equimolar (xA = 0.5). The temperature changes from T = 1.5 to
2.0 (<LCST) and from T = 4.4 to 4.9 (>UCST). In the former case,
several curves are expressed with colored solid ones. In the latter
case, on the other hand, all the curves are almost overlapped. Among
the overlapped curves, we draw g(r) and N (r) at T = 4.9 with the
black dashed curves. The distance r = 0.60 indicated by the arrows
are the threshold used in the definition of the short-ranged anisotropic
bonds.

short-ranged bonds are almost pairwise, which is reminiscent
of the hydrogen bond. The number of the charges +q in
the molecule A is two, so that we can interpret that the
functionality per quadrupolar molecule at low temperatures
is about two. Finally, we comment that the functions g(r) and
N (r) quantitatively coincide with those obtained from GEMC
simulations.
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