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Cooperativity at the glass transition: A perspective from
facilitation on the analysis of relaxation in modulated calorimetry
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The glass transition region in nonconfined polymeric and low-molecular-weight supercooled liquids is probed
by temperature-modulated calorimetry at a frequency of 3.3 mHz. From the distribution of relaxation times
derived by analyzing the complex heat capacity, the number Nα of cooperatively rearranging units is estimated.
This is done by resorting to a method in which cooperative motion is viewed as a result of a spontaneous regression
of energy fluctuations. After a first, local, structural transition occurs, the energy threshold for the rearrangement
of adjacent molecular units decreases progressively. This facilitation process is associated to a corresponding
evolution of the density of states in a canonical representation and may be considered as a continuous spanning
through different dynamic states toward a condition in which configurational constraints disappear. A good
agreement is found with the Nα values obtained from the same calorimetric data within the framework of Donth’s
fluctuation theory. It is shown that, at variance from previous treatments, Nα can be estimated from just the
relaxation function, without resorting to the knowledge of the configurational entropy. Examples point to a
modest dependence of the Nα estimates on the experimental method used to derive the relaxation function.
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I. INTRODUCTION

The super-arrhenian behavior characterizing the viscosity
of liquids approaching the glass transition temperature inspired
the idea that, upon cooling, structural rearrangements (the
so-called α-process) would take place cooperatively within
domains of progressively increasing size. Together with the
general interest for the understanding of the glass transition
process itself, such an hypothesis motivated the efforts devoted
to the experimental determination of the extension of these
domains.

At present such measurements cannot be done directly;
instead, models were developed with the aim of finding support
to this concept through a coherent analysis of calorimetric
or relaxation data. In this sense, recent literature provided
evidences of a growing cooperativity length scale on cooling,
the significance of these results resting also upon the mutual
consistency of the conclusions drawn from seemingly different
data analyses. Donth’s fluctuation theory [1,2] has been
applied to calorimetric or dielectric relaxation data, e.g., in
Refs. [3,4], while a four-point correlation function approach
[5] was considered in Refs. [6,7]. A thorough comparison
between Donth’s and four-point based estimates of the number
of units (e.g., monomers in the case of polymers) forming
the cooperatively rearranging regions (CRRs), has been also
provided by Rijal et al. for a number of systems [8].

Besides the above-mentioned methods a further one has
been proposed, in which the structural relaxation is viewed as
an effect of a spontaneous regression of energy fluctuations
[9,10]. A central point in this description is that the structural
change in a CRR initiates from the rearrangement of a
few units; then, after this small scale process has started,
part of the energy initially gained by these units flows into
the configurational degrees of freedom of the surrounding
region during the fluctuation regression, this way inducing a

cooperative configurational change over a larger domain (the
whole CRR indeed).

More explicitly, based on a statistical mechanical descrip-
tion of the small-scale process, a relaxation function was
derived [Eq. (7) below] in order to fit the data and extract
relevant parameters, such as the number z of units initiating
the structural change and the average energy threshold these
units had to overcome for a rearrangement [11]. The size of
the region where the subsequent large scale rearrangement
takes place was then estimated via the specific configurational
entropy, sc, known from the experiment [Eq. (12) below]
[9,10].

Of course, a crucial hypothesis in that method is that
the energy transfer between the small-scale region and the
configurational degrees of freedom of the large-scale domain
be efficient. For this reason, polymers were considered for a
first test of the model and, indeed, the agreement with the
literature results obtained in the light of Donth’s theory was
satisfactory [10].

There are, however, at least two points deserving further
consideration. The first, which may appear rather technical,
relates to the fact that, irrespective of the spectroscopic
technique that is used to get the relaxation function, the
CRR size could not be calculated without knowing sc. On the
other hand, the possibility to perform such estimates without
the need to rely upon calorimetric data anyway would be
advantageous, also because all issues relating to interpretations
of the actual form of sc would be bypassed.

The other point has to do with the possibility of extend-
ing the application of the method to low-molecular-weight
systems. In this case, chain connectivity is lacking and the
mechanism of energy transfer from small- to large-scale do-
mains, envisaged in the former version of the theory, cannot be
expected to hold anymore. An alternative picture could be that
large-scale diffusional motion may result from a progressive

2470-0045/2016/94(5)/052504(11) 052504-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.052504


ELPIDIO TOMBARI AND MARCO PIERUCCINI PHYSICAL REVIEW E 94, 052504 (2016)

weakening of the configurational constraints, triggered by the
initial small-scale rearrangement in a sort of avalanche process.
This reductive pictorial description nevertheless represents the
rather nontrivial concept of facilitation, which is actually given
quite a role in recent studies on the glass transition [12,13].

It is the aim of this paper to provide a unique thermo-
dynamic, semiphenomenological description for large-scale
modes excitation suited for both polymeric and low-molecular-
weight liquids. This will be done in a form consistent
with the idea of facilitation. It will be also shown that all
information relevant to the determination of the cooperativity
in nonconfined systems, at least in proximity of the glass
transition, is already present in the relaxation function itself,
thus relieving sc from the central role it had before.

The analysis of experimental data is of course not only
the final practical motivation for the development of our
arguments but also a way for assessing their significance.
In this respect, reference to Donth’s fluctuation approach is
particularly important because the present treatment focuses
on fluctuations as well. For this reason we derive the number
Nα of cooperatively rearranging units (shortly cooperativity)
with both Donth’s method and the present one from the same
set of data, namely from the heat capacity of polymeric and
low molecular weight liquids probed at a very low frequency
around their glass transition temperature. One may object that
it wouldn’t be worth making an effort to avoid the use of
calorimetric data for the calculation of sc, if at the end of
the story the relaxation function is derived from the complex
heat capacity itself. The aspect we wish to point out here,
though, is that the cooperativity can be estimated from the
analysis of the relaxation function only, be it obtained from
dielectric, mechanical, NMR [9,10,14–17], or other kinds of
experimental techniques.

II. THEORY

In analogy with the picture given by Adam and Gibbs [18],
a configurational transition in the whole CRR may take place
after an energy fluctuation overcomes a certain threshold. In
our scheme this threshold is not unique: it does have a nonzero
mean indeed (see below), but it otherwise depends on the
local constraints characterizing the small-scale region where a
rearrangement happens to initiate. Since these constraints are
related to the actual configuration, the rearrangement barrier
of any small scale domain changes with time as well. The
characteristic lifetime of a structural state whatsoever is thus
distributed and changes during the relaxation process. Below,
when experimental data will be analyzed, we shall assume that
the observed spectrum is in fact determined by the lifetime
distribution of the structural states.

Following the general theory of thermodynamic fluctua-
tions [19], we consider the CRRs as subsystems maintaining
an internal equilibrium even during (small) deviations from
equilibrium with respect to the environment; internal fluctua-
tions are of course allowed.

Within a CRR there are units with an associated energy
ε larger than the local threshold ζ established by the actual
constraints (a well of depth ζ , in fact) and units for which this is
not the case; the former are in a condition of mobility while the
others are considered in a frozen metastable state with respect

FIG. 1. Mobility and metastability regions to which a unit with
energy ε may belong when the rearrangement threshold energy is ζ .
If the latter is fixed, that is, when no rearrangement occurring in the
surroundings of the unit is able to change it, a state characterized by
a different threshold can only be reached after a passage through the
mobility region; so, the paths labeled with an “a” are allowed while
the others are not. After a unit has left its frozen state “F ” to reach
the mobility state “M” with an energy fluctuation, the subsequent
value of the rearrangement threshold is random.

to the diffusional motion. Figure 1 shows schematically this
distinction, together with some of the paths allowing for local
rearrangements. Trajectories labeled with an “a” are always
permitted, while those labeled with “b” are prohibited unless
the well depth ζ changes as an effect of local rearrangements
taking place in the close surroundings. In the latter case, the
occurrence of a decrease in the threshold height corresponds
to facilitation.

The ensemble of CRRs is distributed around averages with
respect to both size and deviation from the minimum value
of the free energy. Deferring to future work a more detailed
treatment, we shall consider for simplicity a CRR ensemble
in which all the elements are characterized by the same
size and deviation from equilibrium (eventually, the model
will be used to fit experimental data and the size and free
energy ascribed to a CRR will be considered as the averages
characterizing the ensemble at the temperature at which the
measurements were done). Internal CRR fluctuations may
cause local rearrangements triggering the large-scale config-
urational changes and will not be neglected; they describe a
complex dynamics whereby the mobile units restlessly change
their local environment, probing in the course of time different
values of the energy threshold ζ . In steady conditions the en-
semble of mobile units is described by a stationary distribution
that extremizes a suitable thermodynamic potential explicitly
derived below.

We start with assigning a partition function to a single unit
in the mobility state:

Zζ,n ≡
∫ ∞

ζ

dε εn e−ε/kBT

= (kBT )n+1�(n + 1,ζ/kBT ), (1)
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with kBT the thermal energy and n an integer parametrizing the
density of states. The integrand in Zζ,n is the same one would
find for an ensemble of n + 1 thermalized independent oscil-
lators. This assumption is suggested by the results of neutron
scattering experiments that, for liquids in physical conditions
similar to those considered here, indicate in a wandering about
fixed sites the main character of the units’ motion, a change
of mean position taking place only occasionally [20,21]. From
the above partition function, the excess chemical potential with
respect to the equilibrium state can be readily given in terms
of the probability w(ζ,n) ≡ Zζ,n/Z0,n:

�μ(ζ,n) ≡ −kBT ln w. (2)

This quantity is involved in the condition that the CRR ensem-
ble be characterized by a fixed deviation from equilibrium [cf.
Eq. (5) below].

For the construction of our thermodynamic potential we
have to take into account that the ζ value of a unit undergoes
random changes. The occurrence of nearby local readjust-
ments is a possible cause of this randomization; however, as
illustrated above, re-entering from the mobility region into a
metastable state is assumed to be a relevant mechanism too
in this sense, and indeed, the really important one in local
rearrangements or at the beginning of large-scale structural
transitions (cf. Fig. 1), when facilitation is not yet active. This
loss of information is expressed through the entropy associated
to the distribution of mobile units, p(ζ,n), characterizing the
stationary state of the CRR ensemble:

S = −kB

∫ +∞

0
dζ p(ζ,n) ln p(ζ,n). (3)

On the other hand, taking the average energy of a unit in the
form w〈E〉ζ,n, with

〈E〉ζ,n ≡ Zζ,n+1/Zζ,n (4)

(i.e., a mean calculated over energy levels ε � ζ ), we arrive at
the “constrained” potential,

A[p] ≡ U − T S + λ�μ , (5)

where U = ∫ +∞
0 dζ p〈E〉ζ,nw and �μ = ∫ +∞

0 dζ p �μ; λ,
instead, is the Lagrange multiplier associated to the condition
that the deviation from equilibrium of the CRR ensemble is
fixed [11]. Extremizing A with respect to p one finds the
distribution of a thermalized population of mobile units; a
straightforward procedure yields

p(ζ,n) ∼ wλ e−w〈E〉ζ,n/kBT . (6)

The factor wλ in Eq. (6) indicates that a unit may reach the
mobility region (by absorbing on average the energy w〈E〉ζ,n)
provided λ more units in close vicinity occupy, each of them,
energy levels ε � ζ . These units do not need be actually
rearranging; one can imagine, for instance, that they participate
to a sort of collective oscillatory motion precursory to, or
supporting, the small-scale readjustment. As shown explicitly
with Eq. (15) below, the term wλ describes a “free energy”
cost to be paid for a unit to reach mobility and possibly
rearrange. An analogous circumstance is found in first-order
phase transitions, where a positive free energy necessarily sets
in at the surface of the nuclei of a stable phase, forming in

the parent metastable phase. In the present case, the specific
value of this free energy is �μ(ζ,n). The dynamic regime of
the units supporting local rearrangement contributes to what
will be called “dynamic interfacial free energy” throughout.
We want to recommend not to associate it to the ordinary
geometrical idea of a surface separating two substances or
two phases of the same material. Here indeed, this interface is
meant as a dynamic condition separating in a certain sense a
state of frozen configurational degrees of freedom from a state
where no such constraints exist at all.

Once the distribution p(ζ,n) is obtained, the relaxation
function can be expressed as a superposition of single-time
contributions [11]:

φ(t) ∼
∫ ∞

0
dζ p(ζ,n) exp{−t ν∗e−z �μ(ζ,n)/kBT }, (7)

where t is the time, ν∗ is a characteristic attempt rate, and z is
the average number of units initiating the rearrangement.

Data analysis consists in fitting the experimental relaxation
function associated to the α process with the above one; this
yields λ, n, z and ν∗. Past work carried out on a variety of
systems in different conditions (see Ref. [10] and literature
cited therein) point out that the average energy barrier 〈ζ 〉
increases on cooling; furthermore, the actual fitting values of
λ are

(1) often larger than the corresponding values found for z

(or equal just by chance),
(2) monotonically increasing with n (and usually close to

it),
(3) increasing on cooling.
These points indicate that z and λ refer to distinct objects

and suggest that, in fact, zλ units support a dynamic interface
(with respect to the dynamic state of the almost frozen rest of
the system) for the z units initiating the rearrangement. The
above items also indicate that, upon cooling, the formation of
critical mobile nuclei require crossing progressively higher
free energy barriers [e.g., data analysis hints at a growth
in λ �μ]. An increase of λ (and thus n) on lowering T

indicates that the density of high-energy states grows upon
cooling; this mechanism enhances the efficiency to gain energy
by fluctuation, because the number of available states gets
larger (similar arguments can be found in Ref. [22]). So,
the possibility of local small-scale transitions for the z units
requires that a sufficient (dynamic) interfacial free energy is
established in advance. Finally, the above listed observations
also point to the relation ∂λ/∂〈ζ 〉 > 0, linking average barrier
height 〈ζ 〉 and number λ of supporting units at the beginning
of a structural transition.

Within a regime of constant n, that is, before a large-scale
structural transition initiates at a given T , the presence of
the dynamic interface allows z units to explore the space of
all available threshold values without undergoing significant
diffusive motion, thus keeping in a restricted spatial region
(path “a” in Fig. 2). A transition to a new “dynamic phase”
where large-scale configurational motion sets in, would require
that the density of states increases at low energies and
decreases at high energies. This is because in a regime where
diffusional motion dominates, the occurrence of high-energy
barriers is rare. A suitable decrease in n describes this dynamic
change (cf. the inset of Fig. 2). On the other hand [10], the
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FIG. 2. Along the n = const. line (labeled with a), the z units
span the available ζ domain while remaining in the small-scale
rearrangement regime. A dynamic transition may only start for ζ

larger than ζ0, that is, the threshold value for which the equality holds
in Eq. (8) of the text; ζ ∗ is one such value at which the transition toward
a large scale rearrangement happens to start, with the representative
point of the local rearranging set of units following the downward
curved �μ(n,ζ ) = const. line (labeled with b). The curves of the
inset represent examples of the normalized integrand of the partition
function Zζ,n for different values of n, namely 20, 10, 5, and 2, which
are labeled as α, β, γ , and δ, respectively. The labels on lines a and
b highlight a correspondence of different dynamic regimes with the
probability profiles of the inset.

transition from a confined to a diffusive dynamics may take
place spontaneously for all ζ ’s, such that

�μ(ζ,n) � T sc (8)

(whatever the value or form of the entropy sc), i.e., when the
probability associated to a final configurational state, e−sc/kB ,
is larger than the probability Zζ,n/Z0,n for a unit to be in a
high-energy state. This condition is fulfilled whenever ζ �
ζ0,n, where ζ0,n is the solution of Eq. (8) set as an equality.

One may wonder whether it is possible that n decreases
while maintaining the inequality of Eq. (8). In fact, from the
definitions of Eqs. (1) and (2) it follows that(

∂�μ

∂n

)
T ,ζ

< 0(
∂�μ

∂ζ

)
T ,n

> 0
dζ

dn

∣∣
�μ

≡ −(
∂�μ

∂ζ

)−1
T

(
∂�μ

∂n

)
T

> 0

. (9)

These equations show that ζ and n may simultaneously
decrease while leaving �μ(ζ,n) constant, as schematized
by the transition line “b” in Fig. 2. This line stands for a
change in the dynamics and, considering that in the final parts
of the transformation the diffusional regime is approached,
one may associate the dynamic transition to the onset of
configurational transitions, i.e., to the actual increase of the
configurational entropy. One in general expects that �μ

fluctuates along this regression path; however, assuming a
constant �μ suffices for the following arguments [note that
this condition is also compatible with the constraint �μ =
const. imposed above for the derivation of p(ζ,n)].

As illustrated above, small-scale relaxation starts when λ

is large enough to promote local rearrangements involving the
first z units. When the actual threshold energy has reached
values ζ ∗ verifying Eq. (8), these units have the possibility
to either follow back the original n = const. line of a steady
rearrangement regime (a in Fig. 2), or take a path in which
both n and ζ decrease while keeping �μ constant (line b in
Fig. 2). In other words, a progressive lowering of ζ along path
b is associated to a corresponding decrease of the minimum
number λ̃ of units, which are necessary to maintain a sufficient
dynamic interface to keep following the transition. Since the
configurational entropy is independent of n and ζ , Eq. (8)
keeps holding throughout and the value n = 0 is eventually
reached.

Let m be the number of units that have undergone the
transition from high to low ζ states at some stage of the
regression path. At the beginning of the transition m = 0
and λ̃ = λ, while at the end λ̃ = 0; we then consider λ̃

to be a function of m, and the derivative dλ̃/dm indicates
to what extent the minimum number of interfacial units
may decrease while still allowing for a further increase of
m. This derivative is (on average) negative and we seek a
reasonable guess for it, since the cooperativity would be
given by Nα = z[1 + ∫ 0

λ
(dm/dx) dx]. To this aim, one has

to consider that the condition �μ = const. implies that any
small-scale rearrangement within a subsystem whatsoever,
consisting of, e.g., N units, takes place under the condition
that the excess free energy N�μ is a constant. The occurrence
of a structural transition must not change this free energy,
so the equality λ�μ(ζ ∗,n) = mmax�μ(ζfin,0) holds (ζfin being
the value of the energy threshold at the end of the regression
path). Hence, mmax = λ and dm/dλ̃ = −1, on average. The
large-scale cooperativity would thus be given by

Nα ≈ z(λ + 1). (10)

Before comparing this expression with the other proposed in
Ref. [10] [Eq. (12) below], it may be worth some consideration.

The decrease of energy threshold envisaged in the regres-
sion mechanism described above requires that the dynamic
interface units deliver energy to the heat bath (which en-
compasses also the vibrational degrees of freedom) efficiently
enough. Indeed, the average energy of these units follows the
same evolution of n and ζ . The hypothesis of such an efficient
energy exchange underlies also the expression of the average
square temperature fluctuations δT 2 central to Donth’s theory
[2,10]:

δT 2 = kBT 2

Nα

�

(
1

cp

)
, (11)

where �(1/cp) stands for the change of inverse specific heat
across the glass transition temperature Tg . Indeed, the specific
heat of the glass encompasses the contributions of both the
local vibrations and the configurational degrees of freedom,
which are nondiffusive. This means implicitly that the heat
exchange between vibrational and nondiffusive degrees of
freedom is much faster than between the diffusional and
nondiffusional ones. Such slow energy exchanges occur within
a subsystem of finite size, the CRR, without inducing any
structural change outside. The same picture underlies the
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condition dm/dλ̃ = −1: the number λ of units that were
initially wandering about fixed positions prior to the transition
is on average equal to the number of units that will eventually
participate to the large-scale rearrangement.

It now remains to show how Eq. (10) compares with the
cooperativity derived in Ref. [10], i.e.,

Nα ≈ z[1 + ζ ∗/T sc], (12)

where the effective energy barrier ζ ∗ is defined by

�μ(ζ ∗,n) ≡
[∫ +∞

ζ0

dζ p

]−1 ∫ +∞

ζ0

dζ p �μ, (13)

and the configurational entropy at the temperature T is
expressed by sc ≡ �cp ln(T/TK ), being TK the Kauzmann
temperature and �cp the specific heat step at Tg . (In Ref. [10]

a factor κ ≡ [
∫ ∞

0 dζ p ]
−1 ∫ ∞

ζ0
dζ p multiplies ζ ∗/T sc in order

to average over the whole relaxing system; its effect was
marginal in the examples of application considered in that
paper, and it is omitted here because we are now focusing on
a selected rearranging CRR.)

It will be shown below that the cooperativities given by
Eqs. (10) and (12) are approximately the same, since the
relationship

λ ≈ ζ ∗

T sc

(14)

holds. Equation (14) says that the energy ζ ∗ lost upon
fluctuation regression by each of the units initiating the
rearrangement feeds the configurational entropy of λ units,
which were in an interfacial dynamic state at the beginning of
the transition; the physical origin of this relationship is clarified
below. (Before proceeding further, it is important to note that
strict equalities in Eqs. (10), (12), and (14) are not necessary,
owing to both the approximate character of the theory and the
actual impossibility of direct experimental measurements of
Nα .)

To arrive at Eq. (14), we consider the contribution A∗ ≡∫ +∞
ζ0

p a∗dζ to the potential of Eq. (5), from states that may
lead to large-scale rearrangements, with

a∗ ≈ w〈E〉ζ0,n
− kBT ln[�wλ], (15)

w standing for w(ζ ∗,n) and � ≡ 1/p(ζ ∗,n), that is, � is
the inverse of a typical value of the probability density in
the interval [ ζ0, + ∞ [. Just to illustrate the meaning of the
entropy contribution in Eq. (15), we assume for the moment
that all states are equally likely and consider the dynamic
states contributing to A∗ as merged into one, in a sort of
discretization of the whole ζ space; then, the set of remaining
possible values the well depth may take (i.e., those for which
ζ � ζ ∗) is discretized too, and � − 1 is their number. Close
to the glass transition, � is very large and �wλ is the number
of states, which are made accessible owing to the presence of
λ units in an interfacial dynamic state.

The chemical potential associated to the clusters of units
initiating the rearrangements is zA∗. Since the number of these
clusters is a nonconserved quantity, the condition A∗ 	 0 holds
(the approximate equality is motivated by the basic character
of our theory), in analogy with a gas of photons [19]. Then,

interpreting the term proportional to ln wλ in Eq. (15) as a
missing energy, i.e., λ�μ ≡ (1 − w)〈E〉ζ0,n

, we find

〈E〉ζ0,n
= kBT ln �. (16)

This is to say that we are considering the “interfacial”
neighboring units as virtually dampening the barrier ζ0 through
the term λ �μ. Equation (16) refers to a conceptually new
rearranging unit, which has lost its original individuality
because it now encompasses the effects of other units as parts
of the dynamic interface allowing mobility overall. Once this
new entity has gained an energy 〈E〉ζ0,n

, it maintains mobility
irrespective of the structural changes that may take place
locally, provided no wells of depth ζ > ζ ∗ form nor the initial
fluctuation energy regresses. The variety of conditions (i.e.,
local well depths in our picture) compatible with the energy of
the left-hand side of Eq. (16) is accounted for in the entropy
kBT ln � and the Boltzmann hypothesis is recovered once
more.

This description certainly applies to path a in Fig. 2; but
also in the case path b is taken, any of the possible ζ � ζ ∗
barriers may immediately follow in time the initial one (ζ ∗)
and this lack of information is accounted for in the entropy of
Eq. (16). On average, however, moving along the regression
path b the mean threshold 〈ζ 〉 decreases together with the
entropy kB ln �.

We are now in the condition to arrive at Eq. (14). In fact,
the average rearranging energy 〈E〉ζ0,n

is comparable with ζ ∗,
particularly when T ∼ Tg; on the other hand, adapting to the
present context the general case of a fluctuating subsystem
(cf. Eq. (8) above and Sect. 20 in Ref. [19]), one finds that
�μ(ζ ∗,n) 	 T sc. Thus, the assumption that λ�μ be a missing
energy yields

λ 	 (1 − w)ζ ∗/T sc. (17)

This is indeed Eq. (14) because 1 − w is usually O(1),
especially in proximity of Tg .

Equation (17), which will be verified to approximately
hold in the following analysis, is by no means important
because it implies that, at least for nonconfined systems, the
cooperativity Nα can be estimated from just the relaxation
function without relying upon additional information [note
indeed that the left-hand side of Eq. (17) is one of the fitting
parameters of the relaxation function, while the quantities
on the right hand side require the knowledge of the specific
entropy sc to be calculated]. Moreover, Eq. (17) holds for both
polymeric and low molecular weight liquids and suggests that
the assumptions of Ref. [10] resumed in Sec. I are more than
just a model.

III. EXPERIMENTAL RESULTS

Polystyrene (PS), Poly(vinyl acetate) (PVAc), Ac-
etaminophen (Ac), and Griseofulvin (Gr) were all purchased
by Sigma Aldrich; no particular further treatment was done
before use. For the sample preparation and the methodology
of the measurements, one can refer to the literature, i.e.,
Refs. [23–26] for PS, PVAc, Ac, and Gr, respectively. Co-
operativities will be estimated from calorimetric data obtained
under cooling rates of either 0.5 (PVAc) or 1 K/h (PS, Ac, and
Gr), with a superposed peak-to-peak temperature modulation

052504-5



ELPIDIO TOMBARI AND MARCO PIERUCCINI PHYSICAL REVIEW E 94, 052504 (2016)

FIG. 3. Real and imaginary parts of the complex heat capacity (in
J/gK) of PVAc on cooling, under the experimental conditions illus-
trated in the main text. Cp,liq(T ) and Cp,glass(T ) are the equilibrium and
unrelaxed heat capacities, respectively. The normalized components
of the heat capacity are shown in the inset.

of 1 K at a frequency ω = 20.9 mrad/s, thus selecting a central
relaxation time τ0 = 47.8 s for a symmetric process. As an
example, Fig. 3 shows the real and imaginary parts of the
complex heat capacity C∗

p ≡ C ′
p − iC ′′

p in PVAc obtained with
a cooling rate of 0.5 K/h.

In the following, we chose to carry out our analyses on
normalized data:

C∗
p,norm ≡ C∗

p − Cp,glass

Cp,liq − Cp,glass

, (18)

Cp,glass and Cp,liq being the unrelaxed and relaxed heat capacity
components, respectively (cf. Fig. 3 in the case of PVAc), ex-
trapolated over the T -domain spanned by the whole relaxation
process.

Figure 4 shows the imaginary part of the PVAc heat
capacity, C ′′

p , collected at different scanning rates (cf. Ref. [27]
for the corresponding C ′

p patterns). On decreasing the latter,
the cooling and heating profiles get closer to one another,
thus approaching ever more a regime of quasiequilibrium
transformation. The dashed line in Fig. 4 refers to a cooling
rate of 0.5 K/h and practically coincides with the heating
profile (not shown); this indicates that at such a low rate, for
a temperature modulation period of 300 s, the system can
be considered in equilibrium with good approximation in the
temperature region where the peak of the imaginary part of the
heat capacity appears.

A. Data analysis

The complex heat capacity C∗
p characterizes the response

of a system with respect to (small) temperature changes
δT ; Ref. [28] provides a simple derivation of a fluctuation-
dissipation relation for this quantity, which reads

C∗
p(ω) = − 1

kBT 2

∫ +∞

0
dt e−i ωt ∂φH

∂t
, (19)

φH ≡ 〈�H (0)�H (t)〉eq being the correlation function of the
equilibrium enthalpy fluctuations.

FIG. 4. Imaginary part of the heat capacity C ′′
p (in J/gK) for

PVAc at different heating/cooling rates. The solid and dashed lines
are Gaussian fits (the data points for the cooling rate of 0.5 K/h are
not shown for clarity of the figure). The 0.5 K/h heating profile is not
reported because it almost completely superposes with the cooling
one.

From measurements performed in isothermal conditions
(on average) over a sufficiently broad frequency range, φH (t)
can be derived by inversion of Eq. (19); the cooperativity then
follows by fitting first the result with Eq. (7) and using Eq. (10)
afterwards.

On the other hand, in our experimental setup the modulation
period is fixed, although a relatively broad temperature interval
can be spanned. In order to apply Eq. (7) also in this case, we
need to estimate from these data the relevant part of the spectral
distribution of φH (t) and associate it with a temperature. This
is done by assuming that the time-temperature superposition
principle applies [29], i.e., that on changing T the central
correlation time of the enthalpy fluctuations rescales by an
appropriate shift factor, while the shape of the spectral density
remains unchanged. Upon fitting the data using a suitably
general analytical expression for φH , both the distribution of
relaxation times and the temperature dependence of the shift
factor can be estimated.

Following the customary approaches to the analysis of
relaxation data in dielectric or mechanical spectroscopy,
φH will be taken as either a Kohlrausch-Williams-Watts
(KWW) stretched exponential, or a function characterized
by an Havriliak-Negami (HN) spectral density. One has
to be cautious with this kind of assumption; referring for
instance to the construction of a master curve via time-
temperature superposition from the mechanical response of
polycarbonate, O’Connell and McKenna have shown indeed
that the stretched exponential may not adequately describe
the relaxation features of a system over time domains ranging
more than 3–4 decades [30]. In the present case, however,
temperature intervals not exceeding 10 K will be explored
(see, e.g., Table I) and the spanned range of relaxation times is
relatively limited (cf. insets “a” in Fig. 5). Similar conditions
were encountered in dielectric studies on PVAc, and indeed
a KWW function was found to describe well the relaxation
contribution to the response [31].
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TABLE I. VFT and shape parameters of the correlation time distributions obtained from data analysis as explained in the text. For PVAc
and PS the results were derived from the fittings of Fig. 5 in the indicated T range. For Ac and Gr the results of Refs. [25,26] are reported.

T range TVFT B τ∞ Shape parameters
System [K] [K] [K] [s]

PVAc 300.5–310 275.1 ± 0.6 669 ± 28 (1.3 ± 0.6) × 10−8 β = 0.49 ± 0.03

PS 366.5–376 332 ± 0.2 1095 ± 50 (1.9 ± 1.3) × 10−10

{
a = 0.95 ± 0.01
b = 0.42 ± 0.01[

334.1diel

341.5cal

][4]

Ac[25] – 240.5 1813 1.1 × 10−13 β = 0.65
Gr[26] – 289.5 2292 5 × 10−14 β = 0.67

FIG. 5. Cole-Cole representations of C∗
p,norm for PVAc (upper

panel) and PS (lower panel). The solid lines, which best fit the
data, correspond to a KWW relaxation in the case of PVAc and
to an HN distribution for PS. The dashed lines represent the lower-
quality fits obtained with a HN and a KWW distribution for PVAc
and PS, respectively. The C ′

p,norm intervals in which the analyses
have been performed are [0.1,0.97] and [0.08,0.97] for PVAc and
PS, respectively. Insets “a” show, each one, the T -dependence
of the characteristic relaxation time associated to the solid line
of the corresponding main frame (i.e., τHN for PS and τKWW for
PVAc), together with the best VFT approximations. The highlighted
temperatures Tpeak are found by fitting C ′′

p,norm(T ) with a Gaussian (cf.
the main text and Fig. 6). Insets “b” explicitly report the dependencies
of C ′′

HN and C ′′
KWW on τ , after Eqs. (20) and (22), respectively, for the

value of ω set by the experimental conditions and the best-fitting
shape parameters.

In the case that φH has an HN spectral density, from Eq. (19)
one finds the following expression of the normalized heat
capacity:

C∗
HN = 1

[1 + (iωτHN)a]b
, (20)

where a and b, both ranging within the ]0,1] interval, are the
width and asymmetry shape parameters, respectively, and τHN

is the central relaxation time.
If, on the other hand, the enthalpy correlation is expressed

as a stretched exponential, i.e.,

φH ≡ φKWW(t) = exp

{
−

(
t

τKWW

)β}
, (21)

with β the stretching parameter and τKWW a characteristic time,
one finds

C ′
KWW = 1 − ωτKWW

∫ ∞

0
du e−uβ

sin(ωτKWWu)

C ′′
KWW = ωτKWW

∫ ∞

0
du e−uβ

cos(ωτKWWu). (22)

Of course, C ′
HN is an invertible function with respect

to ωτHN relative to the co-domain ]0, 1[, so the function
C ′′

HN ≡ C ′′
HN( C ′

HN ) can be numerically constructed to fit the data
represented in a Cole-Cole plot; the same holds for the KWW
case. The fits of both the HN and KWW composite functions
to the PVAc and PS data are shown in Fig. 5. The cases of
Ac and Gr have been already analyzed along similar lines
assuming a stretched exponential decay [25,26] and will not
be reconsidered here.

The enthalpy relaxation in PS is described very well by the
HN spectral density. In PVAc, fittings of such a quality are not
obtained; however, the KWW distribution performs slightly
better in this case.

The temperature dependence of the τHN relaxation time
is obtained from the composite function [C ′

HN(ωτHN)]−1 ◦
C ′

p,norm(T ), where C ′
p,norm(T ) is defined by the data (cf. the inset

of Fig. 3 in the case of PVAc) and the inverse function of C ′
HN

is numerically calculated from Eq. (20) using the best fitting
shape parameters. For τKWW(T ) the procedure is analogous.
The insets labeled with “a” in Fig. 5 show these functions. No
evident transition from super-Arrhenius to linear dependence
at low temperatures, as observed in other studies in proximity
of the glass transition temperature [31,32], is perceivable;
we recall, however, that the T -range explored here is rather
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limited and any such change in T -dependence would hardly
be observable (cf., e.g., Fig. 8 in Ref. [31]).

The solid lines in insets “a” of Fig. 5 have been obtained by
fitting with the Vogel-Fulcher-Tammann (VFT) expression,

τ = τ∞ eB/(T −TVFT), (23)

where B is a constant and TVFT is the Vogel temperature.
Knowing about the possibility that an Arrhenian dependence
might be recovered at low temperatures, we consider Eq. (23)
as just a convenient parametrization of the time-temperature
dependence: the use of Eq. (23) itself is not presently meant to
support, more or less implicitly, any idea about the existence of
a hidden phase transition around TVFT. This attitude conforms
to the spirit of Eq. (10), which, like Donth’s Eq. (11), avoids
any reference to TK (or to TVFT), in contrast with Eq. (12).

For both the polymer species, all the VFT parameters (i.e.,
τ∞,B and TVFT) have been left free to adjust; the results are
reported in Table I and refer, of course, to the temperature
interval in which the analysis has been performed.

In the case of PVAc the fitting procedure yields, as shown in
Table I, a Vogel temperature close to that (∼279 K) found for
the softening process in recovery compliance measurements
[33] (the value TVFT 	 248 K, characterizing the terminal
process in the same mechanical experiment, is similar to that
obtained by dielectrics, i.e., TVFT 	 255 K [8]). With regards
to τ∞, our analysis yields a rather large value (∼10−8 s).
However, if τ∞ ≡ 10−14 s is imposed (cf. Ref. [34] for a
collection of data consistent with this constraint), the resulting
Vogel temperature turns out to be very close to that of
dielectrics, namely TVFT = 256.4 K; the fitting line obtained
under this constraint deviates so little from that of Fig. 5, that
it is not worth being shown. Of course, one has to keep in
mind that, as noticed already, neither of the two forms adopted
for the enthalpy correlation function describes the relaxation
pattern of Fig. 5 in a completely satisfactory way.

With regards to PS, the HN distribution clearly provides
a good description of the process, thus conferring a certain
reliability to the fitting results reported in Table I. The Vogel
temperature in this case falls in between the values obtained
by Plazek for the softening process and the recoverable
component of the transition to viscous flow (∼343 and
∼323 K, respectively) in creep compliance measurements
[35]. Our result is close to that found from dielectric response,
differing by ≈10 K from other calorimetric estimates [4].

As a final step, we associate to the peak temperature
of the loss component C ′′

p,norm(T ) the relaxation function

FIG. 6. Imaginary part of the normalized heat capacity of PS
(upper panel) and PVAc (lower panel) on cooling. The dashed lines
are Gaussian fittings for the estimates of the mean temperature
fluctuations.

characterized by the shape parameters worked out in the above
analysis (cf. insets “a” and “b” in Fig. 5); this function is then
fitted with Eq. (7) and the cooperativity follows after Eq. (10),
as stated previously.

In the case that Donth’s approach is adopted, the C ′′
p (T )

data are simply fitted with a Gaussian [4], i.e.,

f ∼ e−(T −Tpeak)2/2δT 2
, (24)

with Tpeak and δT as adjustable parameters. The resulting val-
ues are then used together with Cp,liq(Tpeak) and Cp,glass(Tpeak)
to calculate the cooperativity via Eq. (11). Figure 6 shows the
cases of PVAc and PS; for Ac and Gr the same has been done
on the data reported in Refs. [25,26].

TABLE II. Peak temperature Tpeak and half width of the Gaussian δT (K), as obtained by fitting the C ′′
p,norm(T ) data with Eq. (24) (for Tpeak

the error is always in the order of 10−3 K); equilibrium and unrelaxed (approximate) heat capacities, Cp,liq(Tpeak) and Cp,glass(Tpeak), respectively,
are in J/gK units [for easy reference: molecular weights of 86, 104, 151, and 353 are appropriate for PVAc, PS, Ac, and Gr, respectively, when
converting to J/mol · K units] and specific heat step �cp in units of kB at Tpeak. The (approximate) cooperativity Nα , after Eq. (11), is reported
in last column.

Cp,liq Cp,glass �cp/kB Tpeak δT Nα

System [J(gK)−1] [J(gK)−1] [K] [K] [Eq. (11)]

PVAc [24] 1.8 1.29 5.21 305.62 2.93 ± .01 240
PS [23] 1.85 1.56 3.75 372.15 2.57 ± .02 170
Ac [25] 1.97 1.31 12 294.35 2.57 ± .03 185
Gr [26] 1.74 1.35 16.8 356.22 2.61 ± .06 75
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TABLE III. Fitting parameters (n, λ, z, and τ ∗ ≡ 1/ν∗) and relevant outcomes for the thermodynamic variables [�μ, �μ(ζ ∗,n), and
ζ ∗, all in kJ/mol]. The specific configurational entropy times the temperature, T sc (also in kJ/mol), together with the probability w =
exp{−�μ(ζ ∗,n)/kBT }, is used to estimate the ratio (1 − w)ζ ∗/T sc relating to Eq. (17). The resulting cooperativity Nα as from Eq. (10) is
reported in last column.

kBT T sc τ ∗ tmin ζ ∗ �μ �μ(ζ ∗,n)
System [ kJ

mol ] [ kJ
mol ] n λ z [s] [s] [ kJ

mol ] [ kJ
mol ] [ kJ

mol ] (1 − w)ζ ∗/T sc Nα

PVAc 2.51 1.23 43 38.7 5.2 4.5 10 111 1.11 1.89 42.4 205
PS 3.1 1.37 42 31.4 3.6 6.6 20 109 1.25 2.1 47.1 115
Ac 2.13 6.15 43 39.1 3.4 7.5 15 129 1.24 5.87 20.5 135
Gr 3.01 11.3 43 31 3.2 7 5 177 1.58 11.7 15 105

B. Cooperativity estimates

We first derive Nα after Eq. (11); Table II reports the results
together with the relevant calorimetric data.

In order to estimate the cooperativities with the relaxation
method, we fit the correlation functions within the broadest
possible time domains for which φH � 0.1. Convergence is
approached by progressively increasing the exponent n of the
density of states until a minimum of the residual variance is
achieved [10]. The fitting results are reported in Table III,
while Fig. 7 shows some examples.

By comparison with Table II we can see that the two
methods provide rather similar values for the cooperativity.
On the other hand, the mismatchings between the two sides of
Eq. (17) do not exceed a factor of 2, which can be considered
acceptable, after the arguments of the theory section. These

FIG. 7. HN relaxation function (dashed line) and fitting curve
(solid line) for PS at T = 372.2 K (the shape parameters are reported
in Table I). The arrows labeled with “a” and “b” highlight the fitting
interval; τ0 ≡ ω−1 	 48 s is defined by the experimental conditions
for a symmetric relaxation. Given ω, the HN shape parameters yield a
central relaxation time of ∼100 s (highlighted by the vertical dashed
line), consistently with inset “b” of the lower panel in Fig. 5. For
a comparison, the dotted line refers to a simple exponential decay
exp{−t/τ0}, while the dash-dotted one is the relaxation function
of a Cole-Cole process, [1 + (i ωτ0)a]−1, with a = 0.46. The inset
compares the PVAc relaxation (dashed) and fitting (solid) at T =
305.6 K, with the corresponding ones for Ac (dash-dot-dot and solid,
respectively) at T = 294.3 K; again the dotted line indicates the
single-time exponential decay of the main frame.

discrepancies might be mitigated by an improved version
of the theory, for instance by allowing a variable number
of rearranging units whose average is eventually z. Also a
better approximation of A∗ could help to resolve this apparent
marginal violation of the nonconservation of CRRs number.
An improved version of the theory would also allow us to
adopt more strict cross-checks of the fitting results. From the
latter and the knowledge of �cp, for instance, TK could be
derived; however, this requires the inversion of a logarithm in
the configurational entropy and error propagation would affect
the outcome significantly, so we found this test premature.

IV. INFLUENCE OF THE PROBING METHOD

It has been shown above that once the relaxation function
associated to the α process is known, the cooperativity in
nonconfined systems, close to the glass transition, can be
estimated without resorting to additional information. This
raises the question about the possible dependence of these
estimates on the spectroscopic method used to extract the
distribution of the configurational modes. In other words, we
are now concerned with the dependence of the Nα estimates
on the parameters characterizing the relaxation function. In
the present context we shall limit ourselves to a few examples
only.

We start considering the results of an extensive analysis
carried out by Colmenero et al. [36] on the α-relaxation in
poly(vinyl ethylene) (PVE). The frequency- or time-resolved
mechanical and dielectric responses of a PVE sample were
recorded in isothermal conditions and described by KWW
functions associated to the temperatures of the measurements.
With respect to the case of the previous section, this way of
collecting data has the advantage to avoid the assumption of the
time-temperature superposition and to allow following with
better resolution the T -dependence of the relaxation function
shape parameters.

The stretching exponents in PVE were found to depend on
T and to be insensitive (within errors) to the probing technique.
However, the characteristic relaxation times observed by
mechanical spectroscopy were always about one order of
magnitude smaller than those of dielectrics. For a temperature
T = 267 K, as an example, βmech 	 0.38 and βdiel 	 0.4, with
characteristic times of ∼2.5 s and ∼50 s, respectively.

We estimated the cooperativity at 267 K assuming a mean
β = 0.39 (deviations of order 0.01 about this value only affect
the final result by less than 10% in the present conditions). As
shown in Table IV, Nα is almost insensitive to the characteristic
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TABLE IV. Results of the relaxation analysis for a sample of PVE at T = 267 K. Refer to the caption of Table III for the listed quantities. A
β = 0.39 stretching exponent has been adopted for the relaxation functions in both cases (see main text); for the calculation of the configurational
entropy sc we assumed a Vogel temperature TVFT = 239.4 K [36] and a normalized specific heat step at Tg of �cp/kB 	 3.38 [37].

Probing kBT T sc τ ∗ tmin ζ ∗ �μ �μ(ζ ∗,n)
method [ kJ

mol ] [ kJ
mol ] n λ z [s] [s] [ kJ

mol ] [ kJ
mol ] [ kJ

mol ] (1 − w)ζ ∗/T sc Nα

Diel 2.22 0.82 42 43.9 6.6 2.4 5 92.2 0.89 1.41 53.6 300
Mech 2.22 0.82 43 44.3 7.1 6.9 × 10−2 0.1 94.7 0.97 1.43 55.6 320

relaxation time and information on the cooperativity seems to
be mainly conveyed by the shape (β) of the relaxation function.

This observation finds support when analyzing relaxation
functions of different shapes, extracted with different probes
from the same system at a given temperature. We chose the
α-relaxation in poly(butadiene) (PB) as an example.

On the basis of dielectric measurements, Colmenero et al.
described the relaxation behavior in this system by means of
a stretched exponential with β = 0.41 or, equivalently, using
an HN function with shape parameters a = 0.72 and b = 0.5
[38,39]. On the other hand, Rössler et al. characterized the
segmental motion of PB through the reorientational relaxation
dynamics observable in 2H-NMR measurements [40]; also
in this case a KWW function was used, but the value of
the stretching exponent was β = 0.37. The central relaxation
times found with these two methods, though, are similar [9]
except for T � 180 K (Tg falls around 170–175 K in the PB
samples considered).

More recently, 1H-NMR measurements on PB were ana-
lyzed in terms of a rotational diffusion model describing the
dynamics of a population of effective spin-pairs [9,14]. In this
case the distribution of the configurational modes could be
described by means of an HN function with shape parameters
a = 0.55 and b = 0.45, corresponding approximately to a
stretching exponent β 	 0.32 after Ref. [39]. The VFT curve
(τ∞ ≡ 10−14 s, B = 1566 K, and TVFT = 130 K) was derived
assuming the validity of time-temperature superposition in
the interval 193 K � T � 273 K; the central relaxation times
obtained by dielectrics remain close to this line down to 174 K.

We consider first the temperature T = 193 K (correspond-
ing to a central relaxation time τ0 ∼ 10−3 s) because it is the
lowest one at which 1H-NMR data were effectively used to
derive both the VFT line and the shape parameters of the HN
distribution (cf., e.g., Fig. 2 in Ref. [14]). [As recalled at the
end of the previous section, best fitting is approached by steps
with increasing n. However, at variance from past analyses

(see, e.g., Ref. [10]), after a rapid decrease of the residual
variance we found in all cases very slow convergence toward
the optimal fitting (in other words, the minimum with respect
to n was rather shallow); furthermore, the final cooperativities
were too large. For this reason we imposed Eq. (17), i.e., the
nonconservation of CRR number, as a prevailing condition
with respect to the criterion of minimum variance and stopped
increasing n accordingly (of course, reference to sc cannot be
avoided in this situation).] Table V shows that Nα increases
with decreasing β.

Approaching Tg more closely, Nα grows. In Table V we
compare dielectric and extrapolated 1H-NMR results at T 	
174 K, corresponding to a central relaxation time of τ0 	 30 s
(the case of 2H-NMR is not considered because a value as
high as ∼103 s was found at this temperature [14,40]). The
cooperativities are worked out again as before, i.e., without
relying upon Eq. (17) to put a limit to n. Table V still shows
that a larger value of Nα is obtained form the analysis of the
1H-NMR relaxation function. This cannot be considered more
than an indication, since it is not possible to derive directly the
shape parameters and the central relaxation time at so low a
temperature by means of the 1H-NMR technique of Ref. [14].

Overall, we find Nα deviations of no more than 30% from
the mean, with respect to the different probes considered.

V. CONCLUDING REMARKS

The approach outlined above for the analysis of the α-
process in supercooled liquids finds its roots in a statistical
mechanical description of energy fluctuations leading to large
scale rearrangements. The role of fluctuations, indeed, is
central in Donth’s theory too; this circumstance possibly
motivates, to a large extent, the mutual agreement found in
calculating Nα with the two methods.

From the practical point of view, Donth’s estimates are
based on the direct measurement of the temperature fluc-

TABLE V. Results of the relaxation analysis for PB (data from Refs. [14,38,40]). Refer to the caption of Table III for the listed quantities.
In order to estimate sc, TVFT = 130 K (cf. Ref. [14] and references cited therein) and �cp/kB 	 3.4 [41]. The sets of data at the top of the table
refer to T = 193 K (in which case T sc = 2.15 kJ/mol), while those in the lower part have been derived at a temperature T = 174 K (where
T sc = 1.43 kJ/mol), close to the glass transition of PB (the relaxation function associated to 1H-NMR is an extrapolation at that temperature).

Probing τ0 τ ∗ tmin ζ ∗ �μ �μ(ζ ∗,n)
method [s] n λ z [s] [s] [ kJ

mol ] [ kJ
mol ] [ kJ

mol ] (1 − w)ζ ∗/T sc Nα

Diel 3.1 × 10−4 9 8.2 2.5 4.5 × 10−6 7 × 10−6 21.2 1.8 3.06 8.4 25
2H-NMR 2.2 × 10−3 9 8.3 2.9 2 × 10−5 3 × 10−5 21.1 1.73 3.04 8.4 30
1H-NMR 6.3 × 10−4 9 8.2 4.1 6.9 × 10−7 9 × 10−7 21.2 1.8 3.06 8.4 40
Diel 30 42 67.6 6.2 1.8 4 65.4 0.57 1.57 30.6 430
1H-NMR 30 35 52.3 9.7 1.8 × 10−2 5 × 10−2 42.7 0.73 1.63 26.4 510
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tuations accompanying the energy exchanges between the
diffusional and nondiffusional degrees of freedom in a CRR;
the present method, instead, mainly focuses on the number of
units involved in a pre-transitional state, that is, on the dynamic
interface.

The concept of a dynamic regime that is intermediate, in a
sense, between a condition of frozen configurations and a state
where diffusional motion is unconstrained, is fundamental in
the present treatment. The establishing of this dynamic state
represents at the same time an energy cost to be paid, for a
local rearrangement to be possible (this is reminiscent of first
order phase transitions), and a means to increase the available
number of states in order that appropriate amounts of energy
can be attracted from the heat bath.

With regards to the possibility of estimating the cooper-
ativity from just the relaxation function, we may expect the
dependence on the probing method as essentially modest.
Different experimental techniques, though, provide in general
different spectral densities associated with the structural
relaxation modes; for this reason one may be induced to
consider the cooperativity, i.e., the formation of the dynamic
interface, as a common character underlying a variety of
observations.

In conclusion, a semiphenomenological approach like the
present one has to be considered just a step toward the
formulation of a more profound and self-consistent theory.
We hope that the issues pointed out so far may be of interest
for further advances in this field.
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