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Extended Vicsek fractals (EVF) are the structures constructed by introducing linear spacers into traditional
Vicsek fractals. Here we study the Laplacian spectra of the EVF. In particularly, the recurrence relations for the
Laplacian spectra allow us to obtain an analytic expression for the sum of all inverse nonvanishing Laplacian
eigenvalues. This quantity characterizes the large-scale properties, such as the gyration radius of the polymeric
structures, or the global mean-first passage time for the random walk processes. Introduction of the linear spacers
leads to local heterogeneities, which reveal themselves, for example, in the dynamics of EVF under external
forces.
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I. INTRODUCTION

The concept of fractals provides a broadly accepted frame-
work for the modeling of natural phenomena in various fields
[1–3]. Among different fractal models, the Vicsek fractals
(VF) [4] are a very reliable workhorse for the last few decades
[5–17]. The popularity of VF is caused by their full reducibility
[5,7] and also because the VF allow to study different systems
obeying distinct scaling laws [7,8,12–16]. The latter feature
is simply achieved based on the same mathematical footing
through variation only of the functionality f of branching
nodes [i.e., the number of nearest neighbors, see Fig. 1(b)
for a VF of f = 4 and of generation g = 2]. In particular,
the VF become very popular in the field of hyperbranched
macromolecules, since their Laplacian spectra can be obtained
analytically [5,7]: In fact, the Laplacian matrix represents the
potential energy of the polymers viewed as beads connected by
springs [the so-called generalized Gaussian structures (GGS)]
and hence it describes for GGS a set of equations of motion
[18]. Therefore, the Laplacian spectra carry fundamental
information about polymer dynamics [18].

Nowadays, the advanced synthetic techniques allow to
introduce linear spacers into hyperbranched polymers [19–22].
Therefore it is of great interest to investigate how such spacers
influence the properties of the hyperbranched structures. There
are a series of theoretical works that have looked at the
spacers’ role and the respective analytical treatment of the
corresponding Laplacian spectra [23–26]. However, to the best
of our knowledge, this question has not been addressed so far
to the polymeric fractals. For a theoretical scope such extended
fractals provide a special interest [27–29], given that they show
heterogeneity at different scales.

Let us briefly introduce the structures, on which we focus
here, that we call “extended Vicsek Fractals” (EVF) in the
following. EVF are characterized by three parameters, the
generation g, the functionality f , and the spacers’ length k.
Figure 1 illustrates the construction scheme of EVF [parts
(c) and (d)] from the conventional VF [parts (a) and (b)].
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The conventional VF of generation g is constructed from
the VF of generation g − 1 by replacing each bead of VF
of g − 1 through a star-graph of f + 1 beads, see the red
beads on Fig. 1(b) that have the same structure as all beads of
Fig. 1(a). In order to obtain EVF of generation g and spacer
parameter k, one has to replace all non-branching beads of VF
of generation g through linear spacers each of the length k.
Figure 1 exemplifies the procedure for EVF of functionality
f = 4 and spacer parameter k = 2 for g = 1 and 2, where each
of the VF’s nonbranching beads (blue) gets replaced through a
chain of k = 2 beads (yellow). In this way the (f + 1)g beads
of a conventional VF yield N = (kf + 1)(f + 1)g−1 beads of
EVF.

In this paper we analyze the Laplacian spectra of EVF
following the general scheme of Refs. [25,26]. This scheme
allows us to analyze the spectra in depth, by looking at
static and dynamic properties of the structures in the GGS
framework. In particular, we find an analytic expression for
a sum of all inverse non-zero Laplacian eigenvalues, which
is a fundamental quantity for the gyration radius [18,30–33],
zero-shear viscosity [18,34], Wiener index [35], and global
mean-first passage time [8,36–39]. The dynamics is considered
by looking at the response to external forces.

The paper is structured as follows. In Sec. II we apply the
methods of Refs. [25,26] to the Laplacian spectra of EVF. In
Sec. III we use these results for the calculation of the sum of
all inverse nonvanishing eigenvalues of EVF. The properties of
the Laplacian spectra are exemplified on the gyration radius at
the end of Sec. III and on the dynamics of EVF under external
forces in Sec. IV. Finally, Sec. V closes the paper with our
conclusions.

II. RECURSION FORMULAS FOR
THE LAPLACIAN SPECTRUM

The fundamental object on which we focus here is the
Laplacian matrix L. The matrix L = (Lij ) characterizes the
connectivity of a network by having degrees (in other words,
functionalities or number of nearest neighbors) of nodes on the
diagonal, (Lii) = fi ; for two directly connected nodes (say, i

and j ) its elements are (Lij ) = (Lji) = −1; all other elements
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FIG. 1. A schematic representation of the construction procedure
for extended Vicsek fractals (EVF). An EVF of generation g is
constructed from the normal Vicsek fractal (VF) of generation g

by replacing each nonbranching node [see blue beads on (a) for VF
of g = 1 and on (b) for VF of g = 2] through a linear chain of k

nodes [see yellow beads on (c) and (d), here k = 2]. Both for VF and
EVF the functionality parameter f denotes the number of nearest
neighbors of branching nodes (red beads, here f = 4).

are zero. We note that the Laplacian matrix L provides a basic
means for modeling polymers: In the GGS framework [18],
where the polymeric structure is represented just by beads
connected by harmonic springs, the matrix L describes the
potential energy of the polymer. With this the dynamics of a
GGS polymer can be described by a set of linear Langevin
equations, that are coupled by L, see Sec. IV. In this basic
description, however, the effects of hydrodynamics, excluded
volume, and bending rigidity are not included.

In order to determine the Laplacian spectra of an EVF,
we follow here a general scheme of Refs. [25,26]. This
renormalization scheme allows to calculate the Laplacian
spectrum of any network that was obtained by replacing
each node (having, say, functionality f ) of the base structure
through a symmetric star (having f arms of the same length).
The only restriction of the scheme is that the base structure
should not possess double bonds. For treelike structures
(i.e., without loops), the Laplacian spectrum of the resulting
structure is split on three classes [25,26]. The first class reflects
nontrivial motion of the base structure; hence the calculation
of the eigenvalues of the resulting structure requires those of
the base one. The second class describes only the motion of
terminal linear spacers, while all other beads remain immobile;
the resulting eigenvalues describe the motion of a linear chain
fixed at one of its ends. In the third class the motion of all
branching nodes is characterized by the same direction and
amplitude; thus, in the coordinate system associated with the
branching nodes (i.e., the center of mass of the base structure)

one will observe standing waves in the network. The rigorous
procedure leading to these three classes is described elsewhere
[25], here we apply it to EVF. Thus, for the Laplacian
eigenvalues {λ(g)} of an EVF of generation g:

(1) The eigenvalues following from the polynomial equa-
tion Pf,k(λ(g)) = λ

(g−1)
base , where Pf,k is a (2k + 1)-degree

polynomial (vide infra) and {λ(g−1)
base } are all nonvanishing

eigenvalues of the base VF (i.e., normal VF of the same
functionality f ) of generation g − 1;

(2) Roots of the polynomial equation Vk(1 − λ/2) = 0,
where Vk is the kth degree Chebyshev polynomial of the third
kind;

(3) Solutions of the equation Qf,k(λ) = 0, where Qf,k is a
(k + 1)-degree polynomial whose structure is discussed below.

We now turn to consider the three classes listed above.
The first class of eigenvalues is generated from its ancestor.
As shown in Fig. 1, all branching beads (red) of an EVF of
generation g form a normal VF of generation g − 1. Denoting
by {λ(g−1)

base } the (f + 1)g−1 − 1 nonvanishing eigenvalues of
the anterior VF of generation g − 1, the eigenvalues of the
first class are obtained from [25,26]

Pf,k(λ) ≡ f + f U2k−1

(
1 − λ

2

)
− (f − λ)U2k

(
1 − λ

2

)

= λ
(g−1)
base , (1)

where Ui is the ith degree Chebyshev polynomial of the second
kind, for which the following recursive relations hold [40]:

U0(x) = 1,

U1(x) = 2x, (2)

Ui(x) = 2xUi−1(x) − Ui−2(x).

Thus, Pf,k is a (2k + 1)-degree polynomial which leads to
(2k + 1) eigenvalues for each λ

(g−1)
base . Hence the number of

eigenvalues in the first class is given by

N1 = (2k + 1)[(f + 1)g−1 − 1]. (3)

The second class is purely related to the motion of dangling
spacers [those linear spacers originating from all Nterm =
2 + (f − 2)(f + 1)g−1 terminal beads of functionality one of
the normal VF of generation g]. Thus, the equation for the
eigenvalues of this class does not depend on the fractal nature
of EVF and is given by

Vk

(
1 − λ

2

)
= Uk

(
1 − λ

2

)
− Uk−1

(
1 − λ

2

)
= 0, (4)

where Vk(x) is the Chebyshev polynomial of the third kind.
Based on the roots of Vk(x), xi = cos (i−1/2)π

k+1/2 (see, e.g., Table
B.2 of Ref. [40]), we obtain then all eigenvalues belonging to
the second class:

λi = 4 sin2

(
(i − 1

2 )π

2k + 1

)
, i = 1 . . . k. (5)

The multiplicity �g of these eigenvalues comes from the
number of linearly independent modes related to the motion
of dangling chains,

�g = Nterm − 1 = (f − 2)(f + 1)g−1 + 1. (6)
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TABLE I. The minimal nonvanishing eigenvalue for EVF of generation g = 10 and different f and k obtained from the numerical
calculations based on Eq. (1) and from approximate analytic Eq. (17).

k f = 3, Eq. (17) f = 3, Eq. (1) difference f = 4, Eq. (17) f = 4, Eq. (1) difference

5 1.3928×10−11 1.3983×10−11 0.40% 1.7539×10−12 1.7579×10−12 0.23%
10 3.7654×10−12 3.7804×10−12 0.40% 4.7055×10−13 4.7163×10−13 0.23%
20 9.8012×10−13 9.8401×10−13 0.40% 1.2199×10−13 1.2227×10−13 0.23%

Equation (4) yields k solutions, each with multiplicity �g .
Thus, the total number of the eigenvalues appearing in the
second class reads

N2 = [(f − 2)(f + 1)g−1 + 1]k. (7)

The third class represents the situation, when all branching
nodes (colored red in Fig. 1) move in the same direction leading
to [25,26]

Qf,k(λ) ≡ λ

[
(f − 1)Uk−1

(
1 − λ

2

)
+ Uk

(
1 − λ

2

)]

= 0. (8)

There are k + 1 solutions arising from the equation above,
including the root 0, i.e.,

N3 = k + 1. (9)

Let us check the total number of eigenvalues that we get
from the three classes:

N1 + N2 + N3 = (kf + 1)(f + 1)g−1 = N. (10)

Thus, the total number of eigenmodes (including the transla-
tional eigenmode related to the eigenvalue 0) is exactly equal
to the number of beads N , i.e., the obtained set of the Laplacian
eigenvalues is full.

We note that the polynomial equation on the eigenvalues of
the first class, Eq. (1), enables one to find an approximate
expression for the minimal nonvanishing eigenvalue (this
eigenvalue describes a global antiphase motion of two largest
branches connected to the core, see Ref. [12], and therefore
it is (f − 1)-fold degenerate). Indeed, writing the involved
Chebyshev polynomials as

Un

(
1 − λ

2

)
= αn + βnλ + · · · , (11)

from the recursion relations for Un’s, Eq. (2), we have

α0 = 1, α1 = 2, αn = 2αn−1 − αn−2, (12)

and

β0 = 0, β1 = −1, βn = 2βn−1 − αn−1 − βn−2. (13)

These recursive equations yield

αn = n + 1, βn = − 1
6 (n3 + 3n2 + 2n). (14)

Inserting Eqs. (11) and (14) into Eq. (1) and looking at the first
order in λ we obtain

λmin � λ
(g−1)
base,min

(2k + 1)(kf + 1)
. (15)

Here λbase,min is the minimal nonvanishing Laplacian of the
conventional VF, which can be approximated by

λ
(g−1)
base,min � 3(f + 1) −

√
9f 2 + 14f − 7

2(f + 4)
[3(f + 1)]3−g,

(16)

see Ref. [16] for details. Thus, the (f − 1)-fold degenerate
minimal nonvanishing Laplacian eigenvalue of EVF follows
for g � 3 and k � 1 the approximate expression

λmin � 3(f + 1) −
√

9f 2 + 14f − 7

2(f + 4)(2k + 1)(kf + 1)
[3(f + 1)]3−g. (17)

Let us now check the performance of the approximate
Eq. (17). In Table I we compare the values of the minimal
nonvanishing eigenvalue for EVF of generation g = 10 and
different f and k computed based on Eq. (17) with those
coming from the numerical solution of Eq. (1). As can be
inferred from the table, Eq. (17) works very well.

III. THE SUM OF THE INVERSE EIGENVALUES

The sum of all inverse, nonvanishing Laplacian eigenvalues
Sg ,

Sg ≡
N∑

i=2

1

λ
(g)
i

, (18)

where the eigenvalue λ
(g)
1 = 0 is excluded form the summation,

is a key quantity for many fields. The well-known examples
are the gyration radius [18,30–33]

〈
R2

g

〉 = �2

N
Sg, (19)

where �2 is the mean-square distance between neighboring
nodes; the zero-shear viscosity [18,34],

η0 = νζ�2

6N
Sg, (20)

where ν is the monomer density and ζ is the monomeric
friction coefficient; the Wiener index [35],

W = NSg, (21)

and the global mean-first passage time [8,36–39]

〈Tg〉 = 2Sg. (22)

Summation of the inverse eigenvalues can be performed,
based on the Vieta’s formulas. Assume that a polynomial

n∑
i=0

A(i)xi (23)
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has n roots x1, x2, . . . , xn, so that
n∏

i=1

xi = (−1)n
A(0)

A(n)
,

n∑
i=1

∏n
j=1 xj

xi

= (−1)n−1 A(1)

A(n)
. (24)

Combining the above expressions leads to
n∑

i=1

1

xi

= −A(1)

A(0)
. (25)

Since the eigenvalues are divided on three classes, the sum
of their inverse will be performed in three steps. First, we
examine the first class, by considering the polynomial

Pf,k(λ) − λ
(g−1)
base , (26)

see Eq. (1). Using the expansion of Eq. (11) and denoting the
kth degree coefficients of the λk in the polynomial of Eq. (26)
by A(1)(k), we have

A(1)(0) = −λ
(g−1)
base , A(1)(1) = (2k + 1)(kf + 1), (27)

from which, based on Eq. (25), the sum of the inverse roots
for the first class is given by

2k+1∑
i=1

1

λi

= (2k + 1)(kf + 1)

λ
(g−1)
base

. (28)

The sum of the inverse eigenvalues in normal VF has been
obtained in Ref. [8],

�g ≡
(f +1)g∑

i=2

1(
λ

(g)
base

)
i

= (f − 2)(f + 1)g−1(3g − 1)

2

+ f + 2

f + 1

3g(f + 1)g − 1

3f + 2
. (29)

Then, for EVF, the sum of the inverse eigenvalues belonging
to the first class turns out to be

S(1)
g = (2k + 1)(kf + 1)�g−1. (30)

The procedure is straightforwardly extended to the other
two cases. From the relations of coefficients in Chebyshev
polynomials obtained in Eq. (14), we get the A(2)(0) and A(2)(1)
coefficients for the polynomial of Eq. (4) for the second class:

A(2)(0) = αk − αk−1 = 1,

A(2)(1) = βk − βk−1 = − 1
2 (k2 + k). (31)

Accounting for the multiplicity �g [Eq. (6)] of Eq. (4) the sum
of all inverse eigenvalues in the the second class reads

S(2)
g = 1

2 (k2 + k)�g = 1
2 (k2 + k)[(f − 2)(f + 1)g−1 + 1].

(32)

Finally, in the third class, the first two coefficients of
Qf,k(λ)/λ are

A(3)(0) = (f − 1)k + k + 1 = f k + 1,

A(3)(1) = 1
6 (f − 1)(k − k3) − 1

6 (k3 + 3k2 + 2k), (33)

and the sum all inverse nonvanishing eigenvalues correspond-
ing to the third class turns to be

S(3)
g = −A(3)(1)

A(3)(0)
= f k3 + 3k2 + (3 − f )k

6(f k + 1)
. (34)

Summarizing all three classes, the sum of all inverse
nonvanishing eigenvalues for EVF is given by (g � 2)

Sg = S(1)
g + S(2)

g + S(3)
g

= (f + 1)g−2

2

{
f (2k + 1)(kf + 1)(3f − 2)

(3f + 2)
3g−1

− [(f − 1)k2 + k + 1](f − 2)

}

+ k(k + 1)[(4k − 1)f + 6]

6(f k + 1)

− (2k + 1)(kf + 1)(f + 2)

(f + 1)(3f + 2)
. (35)

Let us now exemplify the fundamental result of Eq. (35) by
looking at the radius of gyration 〈R2

g〉 [Eq. (19)]. To analyze
the asymptotic behavior of 〈R2

g〉, we look at very high g, so
that the first term on the right-hand side (RHS) of Eq. (35)
dominates. With this, the 〈R2

g〉 behaves approximately as

〈
R2

g

〉
�2

= Sg

N
� f (3f − 2)(2k + 1)

6(3f + 2)(f + 1)
3g. (36)

We note that for f = 2 the RHS of Eq. (36) leads to the well-
known value N/6 for a linear chain [41] and for k=1 and f > 2
it yields the asymptotic 〈R2

g〉 of a normal VF. Furthermore,
we can rewrite 3g = (f + 1)g ln(3)/ ln(f +1), so that the behavior
〈R2

g〉 ∼ N ln(3)/ ln(f +1) readily follows, in accordance with the
fractal dimension of the VF in three-dimensional space under
the θ -condition, d 3D

F = 2 ln(f + 1)/ ln 3 [7]. Thus, for f = 3
and f = 4 one has d 3D

F = 4 ln(2)/ ln 3 ≈ 2.52372 and d 3D
F =

2 ln(5)/ ln 3 ≈ 2.92995, respectively, making the structures
of f � 4 to be readily embeddable in the three-dimensional
space.

In Fig. 2 we compare the exact calculations of 〈R2
g〉 for

EVF with the asymptotic Eq. (36). As can be inferred from the
figure, Eq. (36) performs well for large N . Moreover, one can
readily recognize the scaling 〈R2

g〉 ∼ N ln(3)/ ln(f +1).
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FIG. 2. Gyration radius of EVF as a function of total number of
beads N for different values of the parameters f and k. Filled symbols
represent the results based on the exact calculations and open symbols
show the result of the approximate Eq. (36). See text for details.
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IV. DYNAMICS OF EVF UNDER EXTERNAL FORCES

In the GGS formalism [18], the Laplacian matrix L = (Lij )
is directly related to the polymer dynamics. Here the motion
of a bead (say, mth) located at Rm(t) = [Xm(t),Ym(t),Zm(t)]
under an external force Fm(t) obeys a set of Langevin
equations:

ζ
dRm(t)

dt
+ K

N∑
i=1

LmiRi(t) = wm(t) + Fm(t) , (37)

where ζ it the friction coefficient (i.e., the related term
represents dumping), K = 3kBT /�2 is the spring constant,
and wm(t) is a fluctuating force obeying white noise relations
〈wm(t)〉 = 0 and 〈wmα(t)wnβ(t ′)〉 = 2kBT ζδαβδmnδ(t − t ′) (α
and β denote Cartesian components). We note that formally
in Eq. (37) the vector Rm(t) can be of any dimension (only
the spring constant K should be then rescaled from 3kBT /�2

to dkBT /�2 for dimension d). However, in dimension d = 2
the excluded volume interactions are very strong, so that EVF
modelled in the GGS framework get embedding problems even
for f = 3. On the other hand, for higher d the embedding of
Gaussian EVF could be readily realized.

Depending on the choice of the external force Fm(t) in
Eq. (37), different physical situations can be considered. We
start by looking at the microrheological behavior of EVF,
in which the Fm(t) is applied on a single bead [42]. Let
Fm(t) = F�(t)δmkey , i.e., the force acts constantly on kth
bead in the y direction starting at time t = 0. The experiment
is performed many times by picking randomly EVF’s bead.
Averaging over all realizations and over the random forces,
the bead displacement in the y-direction is given by [32,43]

〈Y (t)〉 = F t

Nζ
+ Fτ0

Nζ

N∑
i=2

1 − exp
(−λ

(g)
i t

/
τ0

)
λ

(g)
i

, (38)

where τ0 = ζ/K is the monomeric relaxation time and {λ(g)
i }

are the nonvanishing eigenvalues of the Laplacian matrix L
(i.e., all eigenvalues excluding the eigenvalue λ

(g)
1 = 0).

In Fig. 3 we plot the bead displacements 〈Y (t)〉 for EVF
of different functionalities f . As can be observed, for short
times there is no difference between the 〈Y (t)〉. In this time
domain the intrachain part of spectra becomes apparent (in
analogy with the intrachain spectrum in networks [44]), which
is partly represented by the second class of eigenvalues, see
Eq. (5). Hence we see the chain motion, which possesses a
typical Rouse behavior t1/2 [43], and does not feel the fractal
structure yet. Going to higher times the fractal structure of
EVF becomes evident, we observe a subdiffusive motion t1− ds

2

with the distinct spectral dimension ds of normal VF, which
for different functionalities f is given by ds = 2 ln(f + 1)/
ln(3f + 3) [7].

Next, we look at the macroscopic rheological properties
of EVF. In this case the external force is applied to the
whole sample in an oscillating way (with the frequency ω),
Fm(t) = γ0e

iωtYm(t)ex . The response to such a mechanical
impact is represented by the dynamical shear modulus G(t)
[18,41], whose normalized form [G(t)] ≡ G(t)/G(0) is given
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FIG. 3. Structure-averaged bead displacement 〈Y (t)〉 under a
constantly acting force for EVF of generation g = 10, spacer
parameter k = 20, and different functionalities f . The inset represents
the curves for different values of the spacer length k. The ratio between
parameters F and ζ is F/ζ = 1. See text for details.

by [18,45]

[G(t)] = 1

N

N∑
i=2

exp
(−λ

(g)
i t

/
τ0

)
. (39)

In Fig. 4 we plot the dynamical modulus [G(t)] for EVF
considered in Fig. 3. Also here, for short times one observes
intrachain behavior [G(t)] ∼ t−1/2 [44,45], which does not
reflect the fractal structure of EVF. The situation changes
for higher times, where the scaling [G(t)] ∼ t−ds/2 clearly
distinguishes between EVF of different functionalities f .

Finally, we make a remark on the role of spacer length k,
see the insets to Figs. 3 and 4. As can be inferred from the
insets, the variation of k (here for k � 5) does not change
the characteristic scalings. However, as discussed in Sec. II
and shown in Table I, increasing the spacer length leads to a
decrease of the minimal nonvanishing eigenvalue. Thus, the
corresponding maximal relaxation time of the system gets
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FIG. 4. Dynamical shear modulus [G(t)] for EVF of generation
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longer and the crossover to the terminal regime takes place
at longer times for longer k.

V. CONCLUSIONS

Summarizing, in this paper we have studied the Laplacian
spectra of the extended Vicsek fractals (EVF). The analytic
recursion relations for the spectra allowed us to obtain
for EVF an exact analytic expression for the sum of all
nonvanishing eigenvalues. This quantity is fundamental for
many characteristics: for polymers it describes the gyration
radius, the zero shear viscosity, or the Wiener index; for the
theory of random walks it is very important for the mean-first
passage problems [8,39,46].

Introduction of the linear spacers leads to heterogeneities
in the fractal behavior, which clearly manifest themselves
in the dynamical properties, as we have shown for the
structure-averaged bead displacement and for the dynamic
shear modulus. With this, our study provides a useful model
system for studying heterogeneous fractals or multifractals.
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[28] P. Polińska, C. Gillig, J. P. Wittmer, and J. Baschnagel,
Hyperbranched polymer stars with Gaussian chain statistics
revisited, Eur. Phys. J. E 37, 12 (2014).

[29] I. M. Sokolov, What is the alternative to the Alexander–Orbach
relation? J. Phys. A 49, 095003 (2016).

[30] W. C. Forsman, Graph theory and the statistics and dynamics of
polymer chains, J. Chem. Phys. 65, 4111 (1976).

[31] J.-U. Sommer and A. Blumen, On the statistics of generalized
Gaussian structures: Collapse and random external fields,
J. Phys. A: Math. Gen. 28, 6669 (1995).

[32] H. Schiessel, Unfold dynamics of generalized Gaussian struc-
tures, Phys. Rev. E 57, 5775 (1998).

[33] A. Jurjiu, R. Dockhorn, O. Mironova, and J.-U. Sommer,
Two universality classes for random hyperbranched polymers,
Soft Matter 10, 4935 (2014).

[34] J. D. Ferry, Viscoelastic Properties of Polymers (John Wiley &
Sons, New York, 1980).

[35] K.-h. Nitta, A topological approach to statistics and dynamics
of chain molecules, J. Chem. Phys. 101, 4222 (1994).

[36] E. W. Montroll, Random walks on lattices. III. Calculation
of first-passage times with application to exciton trapping on
photosynthetic units, J. Math. Phys. 10, 753 (1969).

[37] J. J. Kozak and V. Balakrishnan, Analytic expression for the
mean time to absorption for a random walker on the Sierpinski
gasket, Phys. Rev. E 65, 021105 (2002).

[38] E. Agliari, Exact mean first-passage time on the T-graph,
Phys. Rev. E 77, 011128 (2008).

[39] O. Bénichou and R. Voituriez, From first-passage times of
random walks in confinement to geometry-controlled kinetics,
Phys. Rep. 539, 225 (2014).

[40] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials
(Chapman & Hall/CRC, Boca Raton, FL, 2003).

[41] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
(Clarendon Press, Oxford, 1988).

[42] F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis, and S.
Leibler, Subdiffusion and Anomalous Local Viscoelasticity in
Actin Networks, Phys. Rev. Lett. 77, 4470 (1996).

[43] P. Biswas, R. Kant, and A. Blumen, Polymer dynamics and
topology: Extension of stars and dendrimers in external fields,
Macromol. Theory Simul. 9, 56 (2000); R. Kant, P. Biswas, and
A. Blumen, Hydrodynamic effects on the extension of stars and
dendrimers in external fields, ibid. 9, 608 (2000); P. Biswas,
R. Kant, and A. Blumen, Stretch dynamics of flexible dendritic
polymers in solution, J. Chem. Phys. 114, 2430 (2001); D. Katyal
and R. Kant, Dynamics of generalized Gaussian polymeric
structures in random layered flows, Phys. Rev. E 91, 042602
(2015).

[44] A. A. Gurtovenko and Y. Y. Gotlib, Intra- and interchain relax-
ation processes in meshlike polymer networks, Macromolecules
31, 5756 (1998).

[45] A. A. Gurtovenko and A. Blumen, Response of disordered
polymer networks to external fields: Regular lattices built from
complex subunits, Macromolecules 35, 3288 (2002).

[46] M. Chupeau, O. Bénichou, and R. Voituriez, Cover times of
random searches, Nat. Phys. 11, 844 (2015).

052501-7

https://doi.org/10.1021/ma00193a071
https://doi.org/10.1021/ma00193a071
https://doi.org/10.1021/ma00193a071
https://doi.org/10.1021/ma00193a071
https://doi.org/10.1021/ma00216a016
https://doi.org/10.1021/ma00216a016
https://doi.org/10.1021/ma00216a016
https://doi.org/10.1021/ma00216a016
https://doi.org/10.1016/S0032-3861(01)00588-2
https://doi.org/10.1016/S0032-3861(01)00588-2
https://doi.org/10.1016/S0032-3861(01)00588-2
https://doi.org/10.1016/S0032-3861(01)00588-2
https://doi.org/10.1063/1.1942490
https://doi.org/10.1063/1.1942490
https://doi.org/10.1063/1.1942490
https://doi.org/10.1063/1.1942490
https://doi.org/10.1063/1.2193510
https://doi.org/10.1063/1.2193510
https://doi.org/10.1063/1.2193510
https://doi.org/10.1063/1.2193510
https://doi.org/10.1103/PhysRevE.84.011801
https://doi.org/10.1103/PhysRevE.84.011801
https://doi.org/10.1103/PhysRevE.84.011801
https://doi.org/10.1103/PhysRevE.84.011801
https://doi.org/10.1140/epje/i2014-14012-7
https://doi.org/10.1140/epje/i2014-14012-7
https://doi.org/10.1140/epje/i2014-14012-7
https://doi.org/10.1140/epje/i2014-14012-7
https://doi.org/10.1088/1751-8113/49/9/095003
https://doi.org/10.1088/1751-8113/49/9/095003
https://doi.org/10.1088/1751-8113/49/9/095003
https://doi.org/10.1088/1751-8113/49/9/095003
https://doi.org/10.1063/1.432866
https://doi.org/10.1063/1.432866
https://doi.org/10.1063/1.432866
https://doi.org/10.1063/1.432866
https://doi.org/10.1088/0305-4470/28/23/018
https://doi.org/10.1088/0305-4470/28/23/018
https://doi.org/10.1088/0305-4470/28/23/018
https://doi.org/10.1088/0305-4470/28/23/018
https://doi.org/10.1103/PhysRevE.57.5775
https://doi.org/10.1103/PhysRevE.57.5775
https://doi.org/10.1103/PhysRevE.57.5775
https://doi.org/10.1103/PhysRevE.57.5775
https://doi.org/10.1039/c4sm00711e
https://doi.org/10.1039/c4sm00711e
https://doi.org/10.1039/c4sm00711e
https://doi.org/10.1039/c4sm00711e
https://doi.org/10.1063/1.467472
https://doi.org/10.1063/1.467472
https://doi.org/10.1063/1.467472
https://doi.org/10.1063/1.467472
https://doi.org/10.1063/1.1664902
https://doi.org/10.1063/1.1664902
https://doi.org/10.1063/1.1664902
https://doi.org/10.1063/1.1664902
https://doi.org/10.1103/PhysRevE.65.021105
https://doi.org/10.1103/PhysRevE.65.021105
https://doi.org/10.1103/PhysRevE.65.021105
https://doi.org/10.1103/PhysRevE.65.021105
https://doi.org/10.1103/PhysRevE.77.011128
https://doi.org/10.1103/PhysRevE.77.011128
https://doi.org/10.1103/PhysRevE.77.011128
https://doi.org/10.1103/PhysRevE.77.011128
https://doi.org/10.1016/j.physrep.2014.02.003
https://doi.org/10.1016/j.physrep.2014.02.003
https://doi.org/10.1016/j.physrep.2014.02.003
https://doi.org/10.1016/j.physrep.2014.02.003
https://doi.org/10.1103/PhysRevLett.77.4470
https://doi.org/10.1103/PhysRevLett.77.4470
https://doi.org/10.1103/PhysRevLett.77.4470
https://doi.org/10.1103/PhysRevLett.77.4470
https://doi.org/10.1002/(SICI)1521-3919(20000101)9:1<56::AID-MATS56>3.0.CO;2-N
https://doi.org/10.1002/(SICI)1521-3919(20000101)9:1<56::AID-MATS56>3.0.CO;2-N
https://doi.org/10.1002/(SICI)1521-3919(20000101)9:1<56::AID-MATS56>3.0.CO;2-N
https://doi.org/10.1002/(SICI)1521-3919(20000101)9:1<56::AID-MATS56>3.0.CO;2-N
https://doi.org/10.1002/1521-3919(20001101)9:8<608::AID-MATS608>3.0.CO;2-2
https://doi.org/10.1002/1521-3919(20001101)9:8<608::AID-MATS608>3.0.CO;2-2
https://doi.org/10.1002/1521-3919(20001101)9:8<608::AID-MATS608>3.0.CO;2-2
https://doi.org/10.1002/1521-3919(20001101)9:8<608::AID-MATS608>3.0.CO;2-2
https://doi.org/10.1063/1.1334660
https://doi.org/10.1063/1.1334660
https://doi.org/10.1063/1.1334660
https://doi.org/10.1063/1.1334660
https://doi.org/10.1103/PhysRevE.91.042602
https://doi.org/10.1103/PhysRevE.91.042602
https://doi.org/10.1103/PhysRevE.91.042602
https://doi.org/10.1103/PhysRevE.91.042602
https://doi.org/10.1021/ma980030a
https://doi.org/10.1021/ma980030a
https://doi.org/10.1021/ma980030a
https://doi.org/10.1021/ma980030a
https://doi.org/10.1021/ma011851
https://doi.org/10.1021/ma011851
https://doi.org/10.1021/ma011851
https://doi.org/10.1021/ma011851
https://doi.org/10.1038/nphys3413
https://doi.org/10.1038/nphys3413
https://doi.org/10.1038/nphys3413
https://doi.org/10.1038/nphys3413



