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Suppressing membrane height fluctuations leads to a membrane-mediated
interaction among proteins
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Membrane-induced interactions can play a significant role in the spatial distribution of membrane-bound
proteins. We develop a model that combines a continuum description of lipid bilayers with a discrete particle
model of proteins to probe the emerging structure of the combined membrane-protein system. Our model takes
into account the membrane’s elastic behavior, the steric repulsion between proteins, and the quenching of
membrane shape fluctuations due to the presence of the proteins. We employ coupled Langevin equations to
describe the dynamics of the system. We show that coupling to the membrane induces an attractive interaction
among proteins, which may contribute to the clustering of proteins in biological membranes. We investigate the
lateral protein diffusion and find that it is reduced due to transient fluctuations in membrane shape.
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I. INTRODUCTION

Cellular membranes, such as the plasma membrane, play
a critical role for the stability of a cell and the multitude
of biochemical processes that occur therein. Their principal
structure is a bilayer of phospholipid and sterol molecules
that hosts a large variety of integral and peripheral membrane
proteins. The spatial organization of these membranes has been
a topic of great interest because it determines which proteins
are in sufficiently close proximity to interact with one another,
which in turn is a prerequisite for cellular processes such as
signaling.

The structure of a membrane is determined by the interac-
tions between proteins and the lipid bilayer. While the specifics
of this interaction depend on molecular-level details of the
involved molecules, the principal effects of a broad range
of proteins on membrane organization can be understood by
considering how binding to a membrane affects its shape and
shape fluctuations. For example, earlier experimental work
shows protein crowding can lead to membrane bending [1,2].
It has also been shown both in experiment [3–6] and theory
[7–10] that scaffolding proteins, which induce and/or sense
local membrane curvature, can cause large-scale membrane
deformations with concomitant lateral organization of the
proteins. Similarly, actin filaments that exert a force on
the membrane due to polymerization can cause membrane
deformations, which in turn induce a compressive force on the
filaments that can lead to their bundling [11]. The dominant
physical features of these illustrative examples are due to a
coupling between protein degrees of freedom and the local
membrane shape in the vicinity of the proteins.

The nature of this coupling depends on the type of protein
under consideration. Important earlier work has focused on
modeling transmembrane proteins as disk-shaped inclusions
in elastic membranes, which impose geometric boundary
conditions at the protein-membrane interface or that locally
alter the membrane’s elastic constants. These couplings result
in an effective interaction between proteins that scales as 1/r4

where r is the distance between two such inclusions [12–14].
Others have considered adhesion sites that pin a membrane to
a surface [15], and found a pairwise interaction that depends
logarithmically on the separation between adhesion sites.

Typically these are many-body interactions; i.e., they cannot
be decomposed into a sum of pairwise contributions [16].

In this work we consider proteins that impose local
constraints on the position of the membrane. This scenario
arises, for example, when the membrane is coupled to other
components of the cellular environment. For example, actin
filaments that are anchored in the cytosolic actin network
and whose tips are in contact with the membrane effectively
suppress shape fluctuations of the membrane. In related work,
Speck and coworkers considered the effect of membrane
pinning to a solid substrate, and showed that the quenching
of membrane fluctuations gives rise to an attractive interaction
between adhesion sites [17,18].

Spatial organization of the combined membrane-protein
system can occur over length scales of hundreds of nanometers
to several micrometers. This makes modeling such processes
at atomistic resolution unfeasible, and therefore many coarse-
grained approaches have been suggested in the literature; see
for example Refs. [8–10,19–27]. Our approach combines a
continuum description of the membrane and a discrete particle
model for the proteins. The former is based on the classic de-
scription of membrane elasticity due to Canham and Helfrich
[28,29], which we simulate using the Fourier space Brow-
nian dynamics method developed by Brown and coworkers
[30–32]. Proteins are treated as spherical objects with nonspe-
cific repulsive interactions. The coupling between both subsys-
tems is a simple harmonic potential that centers the membrane
position to a constant value at the position of the proteins.
The model is described in detail in the following section. We
simulate the dynamics of our model, which is governed by
a set of coupled Langevin equations. In Sec. III we present
our findings for membrane fluctuation spectra, protein-protein
correlation functions, and protein diffusion constants. We show
that our model predicts the emergence of a fluctuation-induced,
membrane-mediated attraction between proteins that influ-
ences the spatial organization of the membrane-protein system.

II. THE MODEL

We construct our model by considering the effects
of membrane elasticity, protein-protein interactions, and
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membrane-protein coupling. The total energy E of the system
for a given configuration is the sum of these three contributions.

A. Membrane elasticity

We use the elastic model developed by Canham and
Helfrich to capture the effect of membrane shape defor-
mations [28,29,33]. This model views the membrane as a
two-dimensional surface whose energetics are determined by
its elastic material constants. We limit ourselves to membrane
shapes that can be parametrized by a single scalar function h(r)
that represents the height deviation of the membrane from a
flat reference plane. The membrane is located at the positions
(r,h(r)), where r = (x,y) ∈ [0,L]2, and L is the side length of
the simulation box. If membrane deformations are small one
can expand the Canham-Helfrich energy to quadratic order in
h and its derivatives, and obtains

Em[h(r)] =
∫

L2
d r

[
σ

2
[∇h(r)]2 + κ

2
[∇2h(r)]2

]
(1)

as the energy functional of a free membrane. The parameters
describing the elastic properties are the surface tension σ

and the bending rigidity κ . We assume that the membrane is
symmetric so that there is no spontaneous curvature. We have
omitted the contribution of Gaussian curvature to the energy,
which is a constant offset if the membrane topology is closed
and fixed, as is the case for our model.

Equation (1) can be simplified by expanding h(r) in a
plane wave basis, h(r) = L−2 ∑

k h̃ke
ik·r . The coefficients

h̃k = ∫∫
L2 d r h(r)e−ik·r are the Fourier transform of h(r), and

the wave vector is of the form k = (p 2π/L,q 2π/L) with
p,q ∈ Z. With these definitions we can express the membrane
energy as

Em({h̃k}) = 1

L2

∑
k

(
σ

2
k2 + κ

2
k4

)
|h̃k|2. (2)

The advantage of this representation is that different Fourier
modes are uncoupled, which allows us to derive several useful
results analytically.

In our simulations we treat the real and imaginary parts
of the Fourier coefficients h̃k as the dynamical variables
that evolve in time. To do that we have to consider two
modifications to this equation [34]. First, we must limit
ourselves to a finite basis set, which we do by considering
only wave vectors k with |p| � P and |q| � Q. The numbers
P and Q determine the magnitude of the largest wave vector
(or the smallest length scale) that our model can resolve.
Second, due to the symmetry relationship h̃k = h̃∗

−k only half
of those Fourier coefficients are independent. Ignoring the
k = (0,0) mode, we choose the Fourier coefficients with wave
vectors {(p2π/L,q2π/L) : (1 � p � P,q = 0) or (−P �
p � P,1 � q � Q)} as independent degrees of freedom, and
refer to this set as k > 0. Expressed in terms of these modes,
the membrane energy (2) becomes

Em({h̃k}) = 1

L2

∑
k>0

(σk2 + κk4)|h̃k|2. (3)

Unlike some previous work [30,31,35,36], our approach does
allow the imaginary part of the Fourier coefficients at the

Nyquist modes to be nonzero, thereby preserving translational
invariance even for those high-wave-vector modes [34].

B. Protein-protein interactions

The interaction among multiple proteins is a complicated
function that in principle depends on the type, molecular
structure, orientation, and conformation of the biomolecules.
Here we neglect nearly all this detail in order to construct
a simple model that captures the basic physical feature that
is independent of the specific nature of the proteins, which
is the steric repulsion that prevents multiple proteins from
occupying the same region in space. We consider a collection
of N proteins, each of which is completely defined by its
position r i in the xy plane (1 � i � N ). The potential energy
Epp of their interaction is pairwise additive,

Epp({r i}) =
∑

1�i<j�N

V (|r i − rj |), (4)

and we choose the purely repulsive Weeks-Chandler-Andersen
(WCA) potential [37]

V (r) =
{

4εp
[( σp

r

)12 − ( σp

r

)6] + εp, if r < 21/6σp,

0, if r � 21/6σp,
(5)

as the pair interaction. The parameters εp and σp denote the
energy and length scales of this interaction, the latter being
approximately the diameter of the proteins.

C. Membrane-protein interactions

There are multiple ways in which proteins can interact with
cellular membranes. Here we consider a potential energy term
that couples the protein position and the height field of the
membrane:

Emp({h̃k},{r i}) = ε

2

∑
i

[h(r i) − l]2. (6)

The physical meaning of this interaction is that the position
of the membrane above or below the proteins has to be close
to the constant value l relative to the z = 0 reference plane.
The parameter ε described the strength of this constraint. If it
is large, then the proteins effectively pin the membrane to the
specific height l.

It is instructive to rewrite this interaction in terms of a
potential energy surface in which the proteins diffuse: defining

φ(r) = ε

2
[h(r) − l]2, (7)

Eq. (6) becomes

Emp({r i}) =
∑

i

φ(r i), (8)

where the potential φ depends on the membrane configuration
and is therefore time-dependent.

D. Dynamics

Our goal is to study both dynamical and static equilibrium
properties of the model. To this end we introduce coupled
Langevin equations for both membrane and protein degrees of
freedom that describe the time evolution of the system, and
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that generate an ensemble of configurations according to the
canonical Boltzmann distribution.

The Langevin equation for the membrane Fourier modes
h̃k is based on the Fourier space Brownian dynamics model
[30–32]:

dh̃k

dt
=−�̃k

{
δE

δh(r)

}
k
+ ξ̃k(t) (9)

=−�̃k

[
(σk2 + κk4)h̃k + ε

∑
i

e−ik·r i [h(r i) − l]

]

+ ξ̃k(t). (10)

Here, E = Em + Epp + Emp is the total energy of the system,
δE/δh(r) is its functional derivative with respect to a mem-
brane height change at position r , and {.}k denotes the Fourier
transform. The mobility factor �̃k is the Oseen tensor [32],

�̃k = 1

4ηk
, (11)

which accounts for the hydrodynamic behavior of the aqueous
solvent with viscosity η. The last part of (10) is a stochastic
noise term. Its real and imaginary parts have mean zero and
satisfy the fluctuation-dissipation relationships [34]

〈Re (ξ̃k(t))Re (ξ̃k′(t ′))〉 = �̃kkBT L2δ(t − t ′)(δk,k′ + δ−k,k′),

(12)

〈Im (ξ̃k(t))Im (ξ̃k′(t ′))〉 = �̃kkBT L2δ(t − t ′)(δk,k′ − δ−k,k′),

(13)

〈Re (ξ̃k(t))Im (ξ̃k′(t ′))〉 = 0, (14)

which guarantee convergence to the correct equilibrium
distribution.

The Langevin equation for the position of the ith protein in
the (x,y) plane, r i , is

d r i

dt
=−γp∇iE + ζ i (15)

=−γp

[
ε
∑

i

[h(r i) − l]∇h(r i) + ∇iEpp({r i})
]

+ ζ i(t),

(16)

where ∇i is the gradient with respect to r i , γp is the mobility
of the protein, and the stochastic term ζ i(t) has mean zero and
variance

〈ζ i,α(t)ζ j,β(t ′)〉 = 2γpkBT δij δαβδ(t − t ′), (17)

where the subscripts α and β represent the Cartesian com-
ponents of the two-dimensional vector ζ i . As before, this
choice of the stochastic term ensures proper equilibration of
the system. For a free protein that does not interact with the
membrane (i.e., ε = 0), Eq. (15) generates a two-dimensional
Brownian motion with diffusion coefficient D0 = kBT γp.

E. Simulation scheme

Solving the coupled Langevin equations for membrane and
protein degrees of freedom allows us to study the equilibrium

behavior of our model system. We use the Euler-Maruyama
method to solve these equations numerically for small time
increments �t . In this discrete representations, Eqs. (10) and
(16) become

h̃k(t + �t)

= h̃k(t)−�t �̃k

[
(σk2+κk4)h̃k(t) + εp

∑
i

[h(r i)−l]e−ik·r i

]

+
√

2kBT L2�t�̃k r, (18)

r i(t + �t)

= r i(t) − �t γp

[
εp

∑
i

[h(r i) − l]∇h(r i) + ∇iEpp({r i})
]

+√
2kBT �tγp r, (19)

where r stands for independent, normally distributed random
numbers with zero mean and unit variance for both real and
imaginary parts of the membrane Fourier modes h̃k for k > 0
[Eq. (18)] and for each Cartesian component of the position r i

of each protein [Eq. (19)].
The choice of the time step �t is determined by the

requirement that it must be smaller than all relevant dynamical
processes in the system so that they can be resolved by the
numerical integration. Several such processes exist in our
model. The first is the dynamics of the membrane. In absence
of any proteins, each membrane mode relaxes on the wave
vector dependent time scale [35]

τm = 1

�̃k(σk2 + κk4)
, (20)

which together with (11) implies that

�t � 4η

σkmax + κk3
max

, (21)

where kmax = 2π
√

P 2 + Q2/L is the largest wave vector in
the system. Using a large number of wave vectors therefore
necessitates a very small time step if one wants to simulate the
membrane dynamics accurately. The equilibrium properties,
however, are independent of the choice of the mobility factor
�̃k, as long as the stochastic noise terms satisfy the fluctuation-
dissipation relationships (12)–(14). For our equilibrium studies
we choose

�̃k = τ−1

σk2 + κk4
, (22)

which makes the membrane relaxation times (20) wave vector
independent. The constant τ has dimensions of time and sets
the time scale for membrane dynamics. Its value does not
affect the equilibrium properties of the system, and we set
it to one second for convenience. In simulations that aim to
study dynamical properties, such as the diffusion of proteins
discussed in Sec. III C, we use the physical expression (11) for
the Oseen tensor.

The second constraint on �t limits protein motions to
distances less than their diameter per time step, �t � σ 2

p /4D0.
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FIG. 1. Snapshot of a simulation of the combined membrane-
protein system. The gray surface shows the current membrane con-
figuration; red dots illustrate protein positions. Simulation parameters
are P = Q = 32, σ = 0, βκ = 10, ε = 100kBT/σ 2

p , N = 100.

This condition ensures proper sampling of protein-protein
interactions. Finally, we impose that the typical protein
displacement in a single time step is small compared to the
shortest wavelength of the membrane, �t � π2/D0k

2
max.

F. Simulation parameters

Our model has a considerable number of parameters. Here
we limit ourselves to systems where both the membrane
surface tension σ and the preferred membrane height l

are chosen to be zero. The strength ε of the protein-membrane
interaction is set to 100 kBT/σ 2

P , where kB is Boltzmann’s
constant and T is the temperature. The energy scale εp of
the protein-protein interactions is set equal to kBT . The linear
dimension L of the simulation box is 50 times the diameter
σP of the proteins. When studying the equilibrium behavior
of our model we use a grid of P = Q = 32 Fourier modes
together with expression (22) for the mobility factor �̃k.
As discussed previously, studying the diffusive behavior of
the proteins requires the use of (11) for the Oseen tensor,
which leads to dramatically different relaxation time scales
for membrane modes with different wave vector magnitudes.
We therefore used a significantly reduced model system
with (P,Q) = (1,0) or (P,Q) = (1,1) wave vectors for those
simulations. The time step �t is set to 10−3π2/D0k

2
max for

simulations with N = 2 proteins, as well as for N = 100
proteins with bending rigidities βκ equal to 10 or 100
where β = 1/kBT . Simulations with N = 100,βκ = 1 and
N = 500,βκ ∈ {10,100} needed a 5 times smaller time step,
while those with N = 500,βκ = 1 required another tenfold
reduction in �t to reach proper equilibrium behavior.

III. RESULTS

A typical snapshot of our simulations is shown in Fig. 1.
The membrane exhibits undulations that are driven by thermal
fluctuations. Proteins diffuse in the (x,y) plane, effectively
pinning the membrane to the height l = 0 at their positions.

Figure 2 shows the effective potential energy surface φ(r)
in which the proteins diffuse. In this representation it becomes
apparent that there are regions of high potential that are

x/σp

0

50

y/σp

0

50

β
φ
(r

)

0

50

FIG. 2. Same snapshot as in Fig. 1, but showing in gray the
potential energy surface φ(r) instead of the membrane conformation.
Proteins remain in the low-energy regions of this potential, whereas
the membrane is free to fluctuate in protein-free regions.

effectively inaccessible to the proteins. These regions are
caused by fluctuations that move the membrane away from
the protein’s preferred height l. A protein entering such a
region would require either a rare fluctuation to overcome
this potential or waiting until the membrane has relaxed back
to its ground state. This exclusion of proteins from parts of
the membrane area leads to motion akin to diffusion in a
dynamically crowded environment.

We will study protein diffusion in detail in Sec. III C. First
we will focus on the equilibrium properties of the membrane
and protein subsystems. To this end we define the probability
distribution of a microstate, uniquely specified by the protein
positions {r i} and Fourier components {h̃k}, which is the
Boltzmann distribution

P ({r i},{h̃k}) = 1

Q
e−βE({r i },{h̃k}), (23)

where

Q =
∫

L2
d{r i}

∫
C

d{h̃k} e−βE({r i },{h̃k}) (24)

is the partition function. Here the first integral is taken over
all possible positions of each protein in the square [0,L]2. The
second integral is over all possible complex values for every
Fourier coefficient h̃k with k > 0.

A. Membrane fluctuations

The interaction between protein and membrane degrees of
freedom has a significant effect on the membrane fluctuation
spectrum. In the absence of proteins (N = 0) or if the coupling
strength ε is zero, the spectrum can be readily computed from
the equipartition theorem to be

〈|h̃k|2〉0 = kBT L2

σk2 + κk4
. (25)

If proteins at static positions ({r i}) interact with the membrane,
the variance of the Fourier modes changes to

〈|h̃k|2〉({r i }) =
∫
C d{h̃k} |h̃k|2 e−β[Em+Emp]∫

C d{h̃k} e−β[Em+Emp]
. (26)
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βκ = 10
ρ∗ = 0.0
ρ∗ = 0.0008
ρ∗ = 0.04

ρ∗ = 0.04, βκ = 100
ρ∗ = 0.04, βκ = 10
ρ∗ = 0.04, βκ = 1
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FIG. 3. (a) Dependence of membrane fluctuations on protein
density. If no proteins are present the spectra are given by the free
membrane result (25). As the protein density increases, the variance
of membrane modes with small wave vectors is significantly reduced.
Dashed lines represent numerical solutions of (26); points were
obtained from simulations. (b) Dependence of membrane fluctuations
on bending rigidity. The reduction of membrane fluctuations (relative
to the free membrane result) is largest for flexible membranes that
have low bending rigidity.

Because the coupling term (6) is quadratic in the membrane
height, this expression is the variance of a multivariate Gaus-
sian probability distribution, which we compute numerically
using matrix inversion (see Appendix A for details).

Finally, if the proteins are mobile, the variance of a
membrane Fourier amplitude h̃k is

〈|h̃k|2〉 =
∫

L2
d{r i}

∫
C

d{h̃k} |h̃k|2P ({r i},{h̃k}), (27)

and we compute this quantity as the time-average of trajecto-
ries generated by the Langevin equations (18) and (19).

Results for calculated membrane fluctuation spectra are
shown in Fig. 3. The top panel shows the effect of protein den-
sity, specified by the dimensionless quantity ρ∗ = Nσ 2

p /L2.
As expected, both the numerical calculation (26) and the
simulation result yield the analytical free membrane result
(25) if no proteins are present (ρ∗ = 0), which serves as a

useful test to validate the respective computer codes. As the
protein density increases, the variance of membrane Fourier
modes with small wave vectors, corresponding to large length
scales, is significantly suppressed, while modes with high wave
vectors are not affected by the interaction with the proteins.
Membrane spectra computed with static proteins at randomly
chosen positions are indistinguishable from those obtained
from simulations in which proteins were freely diffusing.

The bottom panel of Fig. 3 illustrates how bending
rigidity affects membrane spectra at fixed protein density.
The relative reduction in variance of Fourier amplitude at
small wave vectors is largest for flexible membranes with
low bending rigidities. A natural interpretation of this result
is that membranes with high bending rigidities already have
smaller fluctuations, and are therefore less affected by the
additional pinning to a specific height imposed by the
proteins.

B. Membrane-induced protein interactions

From the proteins’ perspective the membrane acts like a
time-dependent external potential φ(r,t). Because all proteins
are embedded in the same membrane, its elastic behavior me-
diates an effective interaction among the proteins. To quantify
this coupling, we compute the free energy for a configuration
with proteins at positions r1, . . . ,rN by performing a partial
trace over membrane degrees of freedom:

F ({r i}) =−kBT ln
∫
C

d{h̃k} e−βE({r i},{h̃k}) (28)

= Epp({r i}) + Fmm({r i}), (29)

where

Fmm({r i}) = −kBT ln
∫
C

d{h̃k} e−β(Em+Emp) (30)

is the membrane-mediated interaction between the proteins. It
is in general a complicated function of the protein positions that
is not pairwise additive. However, due to the Gaussian nature
of the protein-membrane coupling it can be easily computed
numerically (see Appendix B for details).

From our simulations we obtain the radial distribution
function (RDF) [38]

g(r) = L2

N2

∑
i �=j

〈δ(r − (rj − r i))〉. (31)

This function is a measure for density correlations between
two points in space that are separated by the distance vector r .

If there are only two proteins in the system, then the RDF
is related to the effective free energy of the protein subsystem
as

g(r) ∝ e−βF (r1,r2), (32)

where r = r2 − r1 is the separation of the proteins. Even
though our model is not fully isotropic due to the square shape
of the reference domain, we typically consider rotationally
averaged quantities g(r) and F (r).

Protein density correlation functions obtained from simu-
lations are shown in Fig. 4 for different values of membrane
bending rigidities and protein densities. If the membrane
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ρ∗ = 0.0008
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FIG. 4. Effect of membrane rigidity on protein pair correlation functions at different densities. (a) At low densities (N = 2) the RDF is
essentially flat outside the protein diameter if the membrane is rigid, and develops a significant peak as the bending rigidity is reduced. (b) At
intermediate densities (N = 100) this effect is less pronounced. (c) At high densities (N = 500) there is a peak in the pair correlation function,
but it is due to packing and nearly independent of the membrane bending rigidity. (d) Free energy of the protein-protein interaction, Eq. (32), and
membrane-mediated interaction, Eq. (30). Dashed lines are obtained from simulations; solid lines in panels (a) and (d) are obtained numerically
as described in Appendix B.

is completely rigid (κ = ∞) proteins behave like a two-
dimensional WCA fluid: the pair correlation function is equal
to one at distances larger than the protein diameter if the density
is low [Fig. 4(a)]. Softening the membrane (i.e., reducing the
value of κ) has a large effect on the RDF in this case: a
significant peak forms right at the contact distance σp with
a broad shoulder that extends to distances about five times
the protein diameter [Fig. 4(a)]. This emergence of protein
density correlations is a consequence of their coupling to
the membrane, which mediates an attractive interaction. The
magnitude of this effect decreases with increasing protein
density [Figs. 4(b) and 4(c)]. In this case we observe a
peak in g(r) even for rigid membranes, which is due to the
steric repulsion between proteins and their resulting packing
structure. Decreasing κ enhances this peak to a lesser extent
than in the case of low protein density.

In the low-density limit the RDF is directly related to the
free energy of the protein subsystem, Eq. (32). In Fig. 4(d) we
show the free energy surface F (r) as obtained from the simula-
tions of N = 2 proteins, together with numerical calculations
of the membrane-mediated interaction Fmm(r). We find that

for physically relevant membrane bending energies (βκ ≈ 10)
the membrane-mediated attraction contributes approximately
1.3 kBT , or 3 kJ/mol, to the protein-protein interaction at
contact.

C. Protein diffusion

The diffusion constant D of proteins moving in the (x,y)
plane is a quantity of great interest [35,39–43]. Due to the
coupling between protein and membrane degrees of freedom
this constant can differ from the bare diffusion constant D0 that
the Langevin equation (16) would generate if no such coupling
existed, or if the membrane was infinitely rigid.

In this section we report simulation results that were
obtained using a single protein. This allows us to isolate
the effect of membrane fluctuations on the diffusion constant
from that due to protein crowding. For the reasons stated in
Sec. II F we chose an artificially small number of wave vectors,
(P,Q) = (1,0) or (P,Q) = (1,1). In the former case we only
study the protein motion along the x axis (d = 1), while in the
latter we consider both the x and the y direction (d = 2).
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FIG. 5. Determination of the diffusion constant from mean-
squared displacements. The time step �t must be chosen sufficiently
small so that observed MSDs do not depend on its value. The lag time
τ must be large enough so that the dynamics reaches the diffusive
regime, indicated by a constant value of D as computed by (33).
Uncertainties increase significantly with τ if the total length of
the simulation data is fixed. Simulation parameters: L = 250 nm,
P = 1, Q = 0, N = 1, D0 = 5 × 109 nm2/s, βκ = 10, σ = 0,
η = 10−29 J s/nm3, ε = 100 kBT/σ 2

P .

The diffusion constant can be obtained from the mean-
squared displacement (MSD) at sufficiently long times through
the relationship

D = 〈[�r(τ )]2〉
2dτ

, (33)

where the numerator is the variance of the protein displacement
over a time period τ .

If there are no interactions, the discretized Langevin
equation (19) generates a stochastic process that has the
diffusion constant D0 independent of the chosen values for
the lag time τ or the time step �t . This is no longer the
case if the diffusing protein interacts with the membrane, as
illustrated in Fig. 5. First, we find that one must use a very
small time step to obtain MSDs that are independent of �t ,
and that therefore correspond to the continuum limit �t → 0.
Second, even with a properly chosen time step the apparent
diffusion constant depends on the lag time if the latter is not
sufficiently large. The likely cause for this behavior is the finite
relaxation time of the membrane whose dynamics affects the
motion of the proteins. This problem can be avoided by making
τ larger than the time scale of all other dynamical processes
in the system. This approach, however, has the disadvantage
that for a fixed trajectory length one has fewer independent
data points to estimate the MSD if τ is large. This leads to
large uncertainties in the estimate of 〈[�r(τ )]2〉, and therefore
of D. To quantify the uncertainty in our estimate of the MSD
we use the fact that the variance estimator for an underlying
Gaussian process follows the χ2 distribution, and compute the
confidence interval[

(n − 1)S2

χ2
α/2

,
(n − 1)S2

χ2
1−α/2

]
. (34)

Here S2 is the sample variance, which is an unbiased estimate
for the population variance 〈[�r(τ )]2〉, n is the number of
independent observations of displacements with lag time τ ,
and the parameter α is set to 0.05, which corresponds to a
95% confidence level. This interval is typically not symmetric
around the estimated MSD.

Figure 5 illustrates how we calculate the diffusion constant
for a typical choice of system parameters. First, we succes-
sively decrease the time step �t in our simulations until the
observed MSD, and therefore the apparent diffusion constant
(33), becomes independent of the time step. We then identify
the lag time τ at which the estimate for D is within the
confidence intervals of all subsequent estimates using longer
lag times. This estimate of the diffusion constant, together with
its uncertainties, is then used in further analysis.

The ratio of the actual diffusion constant D and the bare
diffusion constant D0 in principle depends on all parameters in
the model, in particular the solvent viscosity η, the membrane
bending rigidity κ , and D0 itself. This behavior can be seen
in Fig. 6, which shows results for D/D0 obtained from
simulations using P = 1,Q = 0 (a) and P = 1,Q = 1 (b)
Fourier modes and a wide range of parameter values. We find
that in general the relative diffusion constant decreases with
increasing solvent viscosity, decreasing membrane rigidity, or
increasing D0. In no case did we observe an increase of the
diffusion constant above the bare value D0.

The interaction between the proteins and the membrane
couples the diffusive dynamics of the former to the relaxation
dynamics of the latter. Protein diffusion throughout the system
occurs on a time scale τdiff ∝ L2/D0. According to (21) the
membrane relaxation time is τm ∝ ηL3/κ for the longest
wave vector mode if the surface tension vanishes. Plotting
the effective diffusion constant D/D0 as a function of the
ratio τm/τdiff of these two time scales, we find that all data
points collapse onto a single curve [Figs. 6(c) and 6(d)]. This
fact illustrates that the competition between planar diffusion
and membrane relaxation determines the actual diffusion
constant of the proteins. For biologically realistic values of
the parameters involved (D0 = 10−13 m2/s, η = 10−3 J s/m3,
κ = 10 kBT , T = 310 K) the ratio LD0η/κ is approximately
6×10−4, at which D/D0 ≈ 1. In this case the coupling
between the membrane and the proteins therefore does not have
a significant effect on the effective protein diffusion constant.

IV. DISCUSSION

Our model is based on a continuum description of a cellular
membrane and a simple particle representation of periph-
eral proteins. Both components interact through a harmonic
interaction that suppresses membrane height fluctuations at
the protein locations. Our results show that this interaction
gives rise to multiple observable changes in the behavior
of both subsystems. First, membrane fluctuations over long
length scales are depressed, the extent of which increases with
protein density and decreasing membrane rigidity. Second,
the coupling to the membrane induces an effective attraction
between proteins. Third, the apparent diffusion constant of the
proteins decreases if the bending rigidity is low. This effect,
however, is likely negligible for typical biological membranes.
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FIG. 6. Renormalization of protein diffusion as a function of membrane bending rigidity κ and solvent viscosity η. The ratio of actual to
bare diffusion constant, D/D0, varies strongly with system parameters both in the one-dimensional case [P = 1,Q = 0, panel (a)] and the
most basic two-dimensional case [P = 1,Q = 1, panel (b)]. When plotted as a function of D0η/κ the data points collapse onto a single curve
in both cases [panels (c) and (d), respectively].

The emergence of a membrane-mediated interaction be-
tween proteins has been previously established for different
types of couplings between the two subsystems. Early work
in this field established an effective interaction that scales
with 1/r4 for membrane inclusion [12–14]. The same de-
pendence has been calculated for the interaction between
rods absorbed to membranes [44,45]. Theoretical studies of
the distance-dependent free energy of membrane adhesion
sites have different functional forms [15,17,18]. In all cases
the interaction is induced by the thermal fluctuations of the
membrane, and therefore entropic in origin.

We find that the induced attraction contributes on the order
of 3 kJ/mol to the interaction energy between two proteins
for biologically relevant values of the involved parameters.
This contribution decreases at higher protein densities. In
particular, in no case did we observe a condensation of
proteins into a high-density droplet, as one observes in systems
with sufficiently attractive pairwise interactions that exhibit a
liquid-vapor transition.

In this work we focused on a specific coupling between
the membrane and the proteins, namely a quadratic interaction
that depends on the membrane height at the positions of the

proteins. This model is appropriate for proteins that suppress
membrane height fluctuations. There are other classes of
proteins that couple differently to the membrane. For example,
some membrane scaffolding proteins sense and induce local
curvature upon membrane binding [46–48]. To study these
systems our model can be modified by replacing the coupling
to the membrane height h(r i) in Eq. (6) by one to the local mean
curvature ∇2h(r i)/2. Related models have been proposed in
the literature [8,40,42,43,49,50]. Higher resolution models
that take into account the nonisotropic shape of specific
proteins have shown that the combination of membrane-
mediated and direct protein-protein interactions can give rise
to orientationally ordered aggregates [10,51–53]. Together,
these studies highlight the variety and complexity of structures
that can emerge from seemingly simple membrane-protein
interactions.
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APPENDIX A: CALCULATION OF MEMBRANE
FLUCTUATION SPECTRA

In Sec. III A we derived Eq. (26) for the membrane
fluctuation spectrum in the presence of N static proteins
at positions r1, . . . ,rN . This expression is the variance of
a multivariate Gaussian probability distribution. Here we
explain in detail how we computed this variance numerically.

We begin by enumerating the independent real-valued
degrees of freedom [34]. We do so by choosing the following
ordering of the real and imaginary parts of the membrane
Fourier modes: Re h̃1,0, Im h̃1,0, . . . , Re h̃P,0, Im h̃P,0,
Re h̃−P,1, Im h̃−P,1, . . . , Re h̃P,1, Im h̃P,1, . . . , Re h̃−P,Q,
Im h̃−P,Q, . . . , Re h̃P,Q, Im h̃P,Q. The total number of
real-valued degrees of freedom is M = 2P + 2Q + 4PQ.
For notational convenience we relabel this sequence as
d1, . . . ,dM such that

Re h̃p,q = d2[p+q(2P+1)], (A1)

Im h̃p,q = d2[p+q(2P+1)+1]. (A2)

This allows us to rewrite the exponent in (26) as

−β[Em({r i}) + Emp({r i})] = − 1
2 dᵀ Xd, (A3)

where d is the M-dimensional column vector containing the
variables di , dᵀ is its transpose, and the coupling matrix X is
of the form

X =

⎡
⎢⎣

C1,1 · · · C1,M/2
...

. . .
...

CM/2,1 · · · CM/2,M/2

⎤
⎥⎦. (A4)

Here Cn,m is a 2×2 submatrix that couples the real and
imaginary part of a single Fourier mode h̃k. Its components are

(Cn,m)0,0 = 2β

L2

(
σ k2

n + κk4
n

)
δn,m

+ 4εβ

L4

N∑
i=1

cos(kn · r i) cos(km · r i), (A5)

(Cn,m)1,0 = 4εβ

L4

N∑
i=1

cos(kn · r i) sin(km · r i), (A6)

(Cn,m)0,1 = −4εβ

L4

N∑
i=1

sin(km · r i) cos(kn · r i), (A7)

(Cn,m)1,1 = 2β

L2

(
σ k2

n + κk4
n

)
δn,m

+ 4εβ

L4

N∑
i=1

sin(kn · r i) sin(km · r i). (A8)

The coefficients (p,q) of the wave vector kn are p= (n−P −1)
mod (2P + 1) − P , q = �(n − P − 1)/(2P + 1)� + 1.

With the exponent written in the form (A3) we can compute
the covariances as elements of the inverse of X ,

〈djdj ′ 〉 = [X−1]jj ′ , (A9)

with 1 � j,j ′ � M .
The variance of a single membrane mode can then be

computed as the sum of the variances of its real and imaginary
parts,

〈|h̃p,q |2〉 = 〈(Re h̃pq)2〉 + 〈(Im h̃pq)2〉 (A10)

= 〈
d2

2[p+q(2P+1)]

〉 + 〈
d2

2[p+q(2P+1)+1]

〉
. (A11)

APPENDIX B: CALCULATION OF PROTEIN DENSITY
CORRELATION FUNCTIONS

To calculate the membrane-mediated interaction Fmm for a
static collection of proteins at positions ({r i}) we proceed as in
Appendix A and rewrite the Boltzmann factor in the form (A3).
The integration in Eq. (30) can then be performed analytically
and yields

Fmm({r i}) = 1
2kBT ln det X . (B1)

Here we have suppressed constants independent of the protein
positions that cause an overall shift in the free energy. Instead,
we normalize the free energy such that it is zero at the largest
possible distance within our simulation box.

In the special case of only N = 2 proteins we can then
directly calculate the pair correlation function from this energy
using Eq. (32).
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