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Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops
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Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in
genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects
the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and
NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model.
The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The
amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude
oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no
delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism
for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm
for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL
with a properly long delay in the single-node system. This work presents an effective method for constructing
robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping
systems such as circadian clocks.
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I. INTRODUCTION

The design principle for genetic oscillators has been a focus
of research in the fields of systems and synthetic biology.
Robust oscillation is essential for accurate timing of cellular
periodic behaviors such as circadian rhythms [1] and the
cell cycle [2]. The understanding of those natural oscillating
systems has provided insights into the construction of robust
oscillators. For example, negative feedback is indispensable
for oscillation [3]; however, a negative feedback loop (NFL)
alone is often insufficient for reliable oscillation due to its
weak robustness against cellular noise [4,5]. In contrast,
interlinking a positive feedback loop (PFL) with an NFL
can contribute to the robustness and tunability of oscillation
[5–8].

Since feedback loops in biological systems usually in-
volve multiple intermediate processes such as transcription,
translation, transport between the nucleus and cytoplasm,
and posttranslational modifications [7,9], time delays are
inevitable in feedback regulation. The effect of delayed
negative feedback on oscillatory dynamics has been probed
widely [3]. Interlinking delayed NFLs allows for a variety of
behaviors including complex periodic, aperiodic, and chaotic
dynamics [10,11], as well as frequency locking, phase drift,
and amplitude death [12].

Time delays can remarkably affect the role for additional
PFLs in modulating oscillation. A PFL with no delay or a short
delay, separately called nPFL and sPFL for short, may facilitate
the induction of oscillation and increase its robustness [7,8,13].
Conversely, a PFL with a delay comparable to that of an NFL
may go against robust oscillation [7]. However, whether a
PFL with a long delay, called lPFL, plays a constructive role
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remains open, although it was briefly mentioned that an lPFL
can induce oscillations [14]. Strikingly, the PFLs in circadian
clocks of Neurospora crassa, Drosophila, and mammals seem
to involve more time-consuming processes like transcription
or translation than the accompanying NFLs [15–21]. Thus, it is
essential to unravel a full spectrum of influence of the delayed
PFL on oscillatory dynamics.

To this end, we systematically investigate the role for
delayed PFL in modulating oscillation and explore the un-
derlying mechanisms. This paper is organized as follows.
In Sec. II, we revisit a mathematical model of a synthetic
genetic circuit and show that the PFL with a properly long
delay can help induce larger-amplitude oscillations than the
nondelayed PFL, the generality of which is further tested
in a three-node dual-loop model and a simplified one-node
model. In Sec. III, we probe how delay time influences
Hopf bifurcation and the stability of steady states in the
simplified model with multiplicative coupling. In Sec. IV, we
systematically investigate the effects of delays on oscillatory
dynamics. In Sec. V, the dependence of oscillation amplitude
on the delay is analytically derived under a limiting condition.
In Sec. VI, we perform stochastic simulations to explore how
the robustness of oscillation depends on the delay time. We
summarize the main results and discuss their implications in
Sec. VII.

II. THREE MODELS AND AN OVERVIEW
OF CIRCUIT DYNAMICS

First, we revisit a mathematical model of a synthetic genetic
circuit constructed in Escherichia coli [5,22,23]. The circuit
comprises the genes of an activator (araC), a repressor (lacI),
and a reporter (yemGFP, denoted by X for short), which
are under the control of the same hybrid promoter plac/ara−1

[Fig. 1(a)]. The activator (repressor) can promote (inhibit) the
transcription of three genes by binding to the promoter. The
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FIG. 1. Schematic of three models and the model dynamics. (a)
The synthetic genetic circuit where the activator (araC), repressor
(lacI), and reporter (yemGFP) are under the control of the same hybrid
promoters plac/ara−1 (in two plasmids). τa and τr separately denote the
time delays in production of araC and lacI proteins. (b) Time courses
of the concentration of X for τr = 0.3 and τa = 0 (blue), 0.3 (green),
or 1.175 (red). (c) A three-node model. The transcription factor X
induces the production of Y1 and Y2. Y1 (Y2) activates (represses)
the production of X. τX, τY1 , and τY2 separately denote the delays
in production of X, Y1, and Y2. (d) Time courses of x for τY2 = 1
and τY1 = 0 (blue), 10 (green), or 99 (red). (e) A simplified model. X
regulates the production of itself via positive and negative feedback.
τp and τn denote the corresponding delays. [(f)–(h)] Time courses
of x. Two feedback loops are coupled multiplicatively (f), additively
(g), or competitively (h). τn = 1.8 and τM denotes the minimal τp

at which the largest amplitude is induced; τM = 6.4 (f), 5.025 (g),
or 4.6 (h).

kinetic equations are as follows [7]:

dYa

dt
= αa

1 + k Ya(t−τa)
C1[

1 + Ya(t−τa)
C1

][
1 + Yr(t−τa)

C0

]2 − γaYa

R0 + Ya
−βYa, (1)

dYr

dt
= αr

1 + k Ya(t−τr)
C1[

1 + Ya(t−τr)
C1

][
1 + Yr(t−τr)

C0

]2 − γrYr

R0 + Yr
− βYr, (2)

dx

dt
= αx

1 + k Ya
C1(

1 + Ya
C1

)(
1 + Yr

C0

)2 − γxx

R0 + x
− βx, (3)

where Ya, Yr, and x denote the concentrations of the activator,
repressor, and reporter, respectively, while τa and τr separately
denote the delays in the production of mature araC and

lacI proteins. On the right-hand side of each equation, the
first term denotes the production rate which is regulated
by both the activator and the repressor, the second denotes
the rate of enzymatic degradation by the protease, and
the third denotes the degradation rate due to dilution. The
functions for the production rates of proteins are taken based
on a rapid equilibrium assumption that the multimerization
and binding of proteins to the promoter are fast compared
with gene expression and protein degradation [22,23]. αa,
αr, and αx correspond to the basal production rate; k > 1
characterizes the strength of positive feedback. C1 and C0

are the concentration thresholds for feedback regulation
by the activator and repressor, respectively. The enzymatic
degradation is described by the Michaelis-Menten kinetics
with the maximal rate γi (i = {a,r,x}). The degradation due to
dilution is considered a first-order reaction with a rate constant
of β. Fixed parameters are set as follows: αa = αr = αx =
4, k = 50, C0 = C1 = 0.3, γa = γx = 10, γr = 6.5, R0 = 1,
β = 0.1, and τr = 0.3; τa is a control parameter.

We simulate the circuit dynamics for three values of τa.
Consistent with the previous results [7], the oscillation is
suppressed with τa = τr = 0.3 [Fig. 1(b)]. Unexpectedly, the
oscillation has a larger amplitude with τa = 1.175 > τr than
with τa = 0, suggesting that the PFL with a long delay may
facilitate large-amplitude oscillations.

Second, we probe a three-node model that represents a
large class of coupled PFL and NFL [24]. The transcription
factor X induces the production of Y1 and Y2, while Y1 and Y2

promote or repress, respectively, the induction of X [Fig. 1(c)].
The dynamics of the system are described by the following
delayed differential equations (DDEs) [24]:

dx

dt
= Vx

[
y1(t−τX)

Ky1x

]n

1 + [
y1(t−τX)

Ky1x

]n + [
y2(t−τX)

Ky2x

]n − dxx + bx, (4)

dy1

dt
= Vy1

[ x(t−τY1 )
Kxy1

]n

1 + [ x(t−τY1 )
Kxy1

]n
− dy1y1 + by1 , (5)

dy2

dt
= Vy2

[ x(t−τY2 )
Kxy2

]n

1 + [ x(t−τY2 )
Kxy2

]n
− dy2y2 + by2 , (6)

where x, y1, and y2 denote the concentrations of X, Y1, and Y2,
respectively. On the right-hand side of each equation, the first
term denotes the regulated production rate: The function for
X represents the competitive regulation by Y1 and Y2, while
those for Y1 and Y2 are standard Hill functions. Vy1 and Vy2

characterize the strength of positive and negative feedback,
respectively. τX, τY1 , and τY2 separately denote the delays in
production of X, Y1, and Y2. The first-order and constant terms
describe the degradation rate and the basal production rate,
respectively. Parameters are set as follows: Vx = 20, Kxy1 =
1, Kxy2 = 1, Ky1x = 1, Ky2x = 1, bx = 0.01, by1 = 0.1, by2 =
0.1, dx = 0.2, dy1 = 0.2, dy2 = 0.02, Vy1 = 0.7, Vy2 = 2, n =
2, and τX = τY2 = 1. We simulate the model dynamics under
three conditions with τY1 = 0, 10, or 99, and the phenomena
similar to those in Fig. 1(b) are observed [Fig. 1(d)].

To test the generality of these results, we build a sim-
plified model of the above synthetic circuit [Fig. 1(e)].
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The concentration of X, x, reflects the promoter activity. A
high promoter activity leads to high-level expression of the
activator and repressor, thereby resulting in strong positive
(negative) regulation of transcription. Thus, the feedback
regulation can be simply described by a monotonic function
of x with sufficient nonlinearity for the cooperativity and
saturation, and intermediate steps in the PFL and NFL are
replaced with a one-step process with a delay of τp and τn,
respectively. With these simplifications, the synthetic circuit
is modeled by a single-node system with two opposing
delayed autoregulations, which can also be considered as a
simplification of the above three-node model.

The deterministic dynamics of the simplified model are
governed by the following DDE:

dX

dt̃
= η̃0F̃0(Xt̃−τ̃p ,Xt̃−τ̃n ) − γX, (7)

with X = N/�, where N is the number of proteins, � is the
volume of the cell, Xt̃−τ̃p ≡ X(t̃ − τ̃p), and Xt̃−τ̃n ≡ X(t̃ − τ̃n).
On the right-hand side of Eq. (7), the first and second terms
denote the production and degradation rates, respectively. γ is
the degradation rate constant. The form of F̃0 depends on the
coupling manner of two feedback loops; here they are coupled
multiplicatively, additively, or competitively [24,25]. For
multiplicative coupling, F̃0(x,y) ≡ f̃0(x)g̃0(y), with f̃0(x) =
kp0+kp1(x/Kp)mp

1+(x/Kp)mp and g̃0(y) = kn0+kn1(y/Kn)mn

1+(y/Kn)mn . Parameters kp0, kp1,
kn0, and kn1 can take any value provided kp1 > kp0 > 0 and
0 � kn1 < kn0. mp and mn reflect the degree of nonlinearity;
Kp and Kn characterize the concentration thresholds asso-
ciated with feedback regulation. Notably, f̃0(x) ∈ [kp0,kp1)
and g̃0(y) ∈ (kn1,kn0] for x,y � 0, and they represent the
effects of positive and negative feedback, respectively, due
to d

dx
f̃0(x) > 0 and d

dy
g̃0(y) < 0. Given f̃0(0) = kp0 and

g̃0(0) = kn0, η̃0kp0kn0 is the production rate without any
regulation by the activator or repressor (i.e., x = y = 0). It
is worth noting that similar functions to f̃0(x) and g̃0(y) were
used to describe the nonlinear regulation with cooperativity
and saturation [26,27]. Furthermore, f̃0(x) can be rewritten
as f̃0(x) = kp0 + (kp1−kp0)(x/Kp)mp

1+(x/Kp)mp , equivalent to Eq. (3) in

Ref. [28], and for kn1 = 0, g̃0(y) = kn0
1+(y/Kn)mn , similar to

Eq. (1) in Ref. [29].
By setting αp = kp1/kp0, αn = kn1/kn0, and η̃ = η̃0kp0kn0,

we obtain a concise form of Eq. (7):

dX

dt̃
= η̃F̃ (Xt̃−τ̃p ,Xt̃−τ̃n ) − γX, (8)

where F̃ (x,y) ≡ f̃ (x)g̃(y) with f̃ (x) = 1+αp(x/Kp)mp

1+(x/Kp)mp (αp > 1)

and g̃(y) = 1+αn(y/Kn)mn

1+(y/Kn)mn (0 � αn < 1). Still, f̃ and g̃ separately
represent the effects of positive and negative feedback, thus
describing the promotion and inhibition of the production. αp

and αn denote the extent to which the production is modulated,
and η̃ represents the maximal or minimal production rate of X
for the NFL-only (with αp = 1) and PFL-only (with αn = 1)
systems, respectively.

Furthermore, the dimensionless variables and parameters
are defined as follows: x ≡ X/Kn, K ≡ Kp/Kn, t ≡ γ t̃ , τp ≡
γ τ̃p, τn ≡ γ τ̃n, and η ≡ η̃/(Knγ ), such that Eq. (8) is converted

into a dimensionless form

dx

dt
= ηF (xt−τp ,xt−τn ) − x, (9)

where xt−τp ≡ x(t − τp), xt−τn ≡ x(t − τn), and F (u,v) ≡
f (u)g(v) with f (u) = 1+αp(u/K)mp

1+(u/K)mp and g(v) = 1+αnv
mn

1+vmn . The
parameters are set as follows: mp = mn = 4, αp = 10, αn =
0.02, K = 3, η = 1.767, and τn = 1.8.

Equation (9) also holds true for additive coupling except a
different form of F :

F (xt−τp ,xt−τn ) = βf (xt−τp ) + g(xt−τn ), (10)

with β = 0.11 and η = 3 (the other parameters remain the
same). For competitive coupling,

F (xt−τp ,xt−τn ) = 1 + αp(xt−τp/K)mp

1 + (xt−τp/K)mp + �x
mn
t−τn

, (11)

with αp = 6, � = 1, and η = 1.5 (the other parameters are
unchanged). In each case, x remains constant with τp = τn;
x oscillates at a larger amplitude with τp > τn than with
τp = 0 [Figs. 1(f)–1(h)]. Together, these results consistently
show that a PFL with a long delay may evoke large-amplitude
oscillations.

III. INFLUENCE OF TIME DELAY ON THE STABILITY
OF STEADY STATES

To quantitatively characterize the role for delayed PFL
in modulating oscillation, we focus on the simplified model
with multiplicative coupling. We first explore how time delays
affect the stability of steady states. The steady-state equation
is obtained by setting dx/dt = 0 and x = xt−τp = xt−τn = xs

in Eq. (9):

η = xs

f (xs)g(xs)
, (12)

where xs is the steady-state level of x. For given η, the
stability of the steady state is determined by the roots of the
characteristic equation associated with Eq. (9):

λ + 1 − Gne
−τnλ − Gpe

−τpλ = 0, (13)

where λ = μ ± iω (ω > 0) is the characteristic root. Gp ≡
Gp(xs) = xs

f (xs)
df (x)
dx

|xs > 0 and Gn ≡ Gn(xs) = xs
g(xs)

dg(x)
dx

|xs <

0 are the logarithmic gains (called gain for short thereafter)
of the PFL and NFL, respectively (see Ref. [27] for details).
Notably, Eq. (13) has an infinite number of λ’s. A steady state
is stable if all λ’s have a negative real part or unstable if some
λ has a positive real part.

At λ = 0, the system may undergo saddle-node (SN)
bifurcation, via which two/multiple steady states may arise.
At the bifurcation point,

Gn + Gp = 1. (14)

If no xs obeys Eq. (14) for any η, the system never undergoes
SN bifurcation. Obviously, a stronger condition for that
is Gn(x) + Gp(x) < 1 over x ∈ [0, + ∞). In this case, the
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system always has only one steady state. For simplicity, we
only discuss this case in the following.

At λ = ±iω, the stability of this steady state may change
via Hopf bifurcation. Substituting λ = iω into Eq. (13) yields
pairs of τp and τn for Hopf bifurcation:

τ j,k,l
n = 1

ω

[
(−1)jHn(ω) + tan−1 1

ω

]
+ (2k + j )π

ω
, (15)

τ j,k,l
p = 1

ω

[
(−1)jHp(ω) + tan−1 1

ω

]
+ (2l + j )π

ω
, (16)

with

Hn(ω) = sin−1
G2

p − G2
n − 1 − ω2

2Gn

√
1 + ω2

, (17)

Hp(ω) = sin−1
G2

n − G2
p − 1 − ω2

2Gp

√
1 + ω2

, (18)

j = 0,1; k,l ∈ Z�0. For each set of (j , k, l), the points
(τ j,k,l

n ,τ
j,k,l
p ) varying with ω constitute a Hopf bifurcation

curve on the (τn,τp) plane. When τp or τn is varied to cross
these curves, Hopf bifurcation occurs. Meanwhile, if all the
other λ’s keep their real parts negative, the stability of the
steady state changes.

For comparison, we also analyze an NFL-only system with
αp = 1 [i.e., f (x) = 1]. η is adjusted such that the NFL-only
system has the same steady state xs as the coupled system.
The critical value of τn, at which the steady state changes its
stability, is

τn,NFL = cos−1 1
Gn√

G2
n − 1

, (19)

where Gn equals that of the coupled system. When Gn < −1
and τn > τn,NFL, the steady state becomes unstable.

We choose three specific sets of parameter values (see the
caption of Fig. 2), which result in different values of Gp + Gn,
to illustrate the influence of time delay on the stability of
steady states. For Gp + Gn < −1, the Hopf bifurcation curves
for different (j,k,l) are plotted on the (τn,τp) plane [Fig. 2(a),
solid curves]. The leftmost cluster of curves constitutes the
jagged boundary between the regions for stable and unstable
steady states. Compared with the NFL-only system, parts of the
boundary extend outward, whereas other parts hollow inward.
Thus, the addition of a delayed PFL can either promote or
inhibit the change of stability, which occurs repeatedly as
τp rises due to the recurrence of Hopf bifurcation—each ω

determines multiple pairs of τ
j,k,l
p and τ

j,k,l
n , with the nearest

pair separated by 2π/ω. Notably, the steady state can be
unstable for any τp if τn is large enough.

Especially, the critical value of τn for τp = 0, τn,0, is

τn,0 = cos−1
( 1−Gp

Gn

)
√

G2
n − (1 − Gp)2

, (20)

and that for τp = τn, τn,eq, is

τn,eq =
cos−1

(
1

Gn+Gp

)
√

(Gn + Gp)2 − 1
. (21)

FIG. 2. Effects of time delays on Hopf bifurcation and oscillation
amplitude. [(a)–(c)] Dependence of the stability of steady states on
τp and τn. The red and black curves denote Hopf bifurcation curves
determined by Eqs. (15) and (16), respectively. The curve marked by
(j,k,l) is composed of the points (τ j,k,l

n ,τ j,k,l
p ) with i = 0,1 and j,k =

0,1,2, . . . . The white and blue regions denote stable and unstable
steady states, respectively. The gray dashed vertical line separates
stable from unstable steady states for the NFL-only system. The
circles and arrows denote the pointwise periodicity in delays for Hopf
bifurcation. The magenta dashed curves in (b) denote the boundary
of oscillatory behavior. [(d)–(f)] Dependence of oscillation amplitude
on τn and τp. The amplitude is represented by the heat map. The
circles and arrows refer to the delays for the same oscillation with
period T . mp = 4, mn = 2, αn = 0.01, K = 2 and τn = 3; αp = 1.35
and η = 5.738 for Gp + Gn < −1 [(a) and (d)], αp = 1.57 and η =
5.376 for Gp + Gn = −1 [(b) and (e)], αp = 10 and η = 1.573 for
−1 < Gp + Gn < 1 [(c) and (f)], or αp = 1 and η = 6.427 for the
NFL-only system.

Given the same xs, τn,0 < τn,NFL < τn,eq. That is, compared
with the NFL-only system, adding a nondelayed PFL reduces
the critical value, facilitating the occurrence of Hopf bifurca-
tion, whereas adding a PFL with the same delay increases the
critical value, enhancing the stability.

As Gp is increased, τn,0 drops but τn,eq rises. For
−1 � Gp + Gn < 1 (acquired by increasing the strength of
the PFL, αp, while keeping xs and Gn unchanged by reducing
η), there is no definition for τn,eq. Thus, the steady states at
τp = τn are always stable [Figs. 2(b) and 2(c)], which was
also observed in Ref. [30]. Meanwhile, the regions of unstable
steady states at τp > τn tend to overlap and further enlarge,
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FIG. 3. Effects of time delays on the amplitude and period of
oscillation. (a) Dependence of the amplitude on τn. Black, red, and
blue curves correspond to the NFL-only system and the coupled
systems with τp = 0 and with τp = τn, respectively. (b) Dependence
of the amplitude on τp at τn = 3. The dashed horizontal line denotes
the amplitude for the NFL-only system. The dashed and dotted
vertical lines separately correspond to τp = 7.22 and 8.02. The other
parameter values are the same as in Fig. 2(a). [(c) and (d)] Dependence
of the period (c) and amplitude (d) on τp in a wide range [the same
parameters as in panel (b)]. The solid and dashed curves denote
the stable and unstable limit cycles, respectively. Red and black
dots denote the periodic solutions with the period of T0 = 8.02 and
T1 = 7.50, respectively.

indicating that an lPFL with large Gp can always facilitate the
induction of oscillation.

IV. EFFECT OF TIME DELAY ON THE
OSCILLATORY DYNAMICS

Here, we probe how time delays affect the limit-cycle
oscillation [Figs. 2(d)–2(f)]. Most oscillations occur within
the region of unstable steady states, but for some τp and τn,
oscillation may also coexist with a stable steady state (e.g.,
at τp = τn = 10). Remarkably, the amplitude A and period T

change with τp and τn in a pointwise periodic manner, due to
recurrence of periodic solutions [31]. If a limit cycle with pe-
riod T occurs at τp and τn, it reappears at τn + kT and τp + lT

with k,l ∈ Z (but its stability may change; see Appendix A for
proof). Thus, both A and T are pointwise periodic functions of
τn and τp, i.e., A[τn + kT (τn,τp),τp + lT (τn,τp)] = A(τn,τp)
and T [τn + kT (τn,τp),τp + lT (τn,τp)] = T (τn,τp) with k,l ∈
Z, in a range of delays.

Taking the system with Gp + Gn < −1 as an example,
we show how the oscillation amplitude is affected by τn

and τp. Compared with the NFL-only system, the coupled
system with τp = 0 has a larger amplitude, whereas that
with τp = τn has a smaller amplitude [Fig. 3(a)]. At τn = 3,

when τp rises from 0 to τn, the amplitude monotonically
drops until the oscillation disappears [Fig. 3(b)]. For τp > τn,
however, the oscillation can reappear, and the amplitude
rises to its maximum at τp = 7.22. The oscillation at τp = 0
has the period of T0 = 8.02; according to the recurrence of
periodic solution, the oscillation has the same amplitude at
τp = T0. In fact, periodic solutions with a period T0 can
appear at τp’s with the nearest interval being T0 [Figs. 3(c)
and 3(d)], and the above change in oscillation amplitude
repeats when τp continues rising from T0 over some range
[Fig. 3(d)]. For periodic solutions with a different period, e.g.,
T1 = 7.50, they appear periodically with the nearest interval
being T1. Thus, when τp is sufficiently large, parts of solution
branches overlap, and some oscillations may become unstable
or coexist with one another to generate bi- or multirhythmic
dynamics.

Notably, the maximal amplitude appears only when τp is
large enough given τp � T0. To test whether this phenomenon
is parameter specific, we sample 10 000 parameter sets for
K > 1 and K < 1, respectively (see Table I in Appendix B for
the ranges of parameter sampling), using the Latin hypercube
sampling method (MATLAB built-in function lhsdesign). For
each parameter set that satisfies Gn < −1 and Gp + Gn < 1,
we calculate the minimal positive τp, τpm, at which the
maximal amplitude is acquired. The histograms show that
τpm/τn is always greater than 1 [Figs. 4(a) and 4(b)],
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FIG. 4. Large-amplitude oscillations induced by the PFL with a
long delay. [(a) and (b)] Statistic distributions for the minimal τp at
which the maximal amplitude is acquired relative to τn. 1054 and
1030 sets of parameter values are sampled for K > 1 (a) and K < 1
(b), respectively. [(c)–(f)] Effects of τp on the oscillation amplitude
in the simplified model with additive (c) or competitive (d) coupling,
in the synthetic oscillator (e), and in the three-node model (f). The
solid and dashed curves denote the stable and unstable limit cycles,
respectively. The insets show the amplitude near τa = 0 (e) or τY1 = 0
(f). See Sec. II for parameter values.
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confirming that the above effect is robust against parameter
perturbations.

Similar phenomena are observed in the simplified model
with additive or competitive coupling [Figs. 4(c) and 4(d)], as
well as in the synthetic oscillator model [Fig. 4(e)] and the
three-node model [Fig. 4(f)], indicating that such an impact
of τp on oscillation amplitude is independent of the coupling
manner and details in the model. Collectively, the PFL with a
properly long delay can facilitate large-amplitude oscillations.

V. MODULATION OF OSCILLATION
BY THE DELAYED PFL

To unravel the essential mechanism for the regulation of
oscillation amplitude by the delayed PFL, we consider a
limiting case of mp,mn → +∞, in which sigmoid functions
f and g are replaced with step functions:

f (u) =
{

1, 0 � u < K,

αp, u � K,
(22)

and

g(v) =
{

1, 0 � v < 1,

αn, v � 1.
(23)

That is, each loop has only two states: activated (f = αp or
g = αn) and deactivated (f = 1 or g = 1).

To simplify analytical calculation, we assume that αp is
relatively small such that αpαn ≈ αn. Consequently, F is
denoted as follows:

F (u,v) =

⎧⎪⎨
⎪⎩

αn, v � 1,

1, 0 � u < K,0 � v < 1,

αp, u � K,0 � v < 1.

(24)

Thus, the activated PFL has no contribution to F if the NFL is
activated simultaneously. Without loss of generality, we only
discuss the case of 1 < K < η < 1

αn
and τn > ln 1−η

K−η
, where

the system with τp = 0 can undergo oscillations, during which
the PFL can be activated with a higher threshold than the NFL
(see Appendix C).

We calculate the oscillation trajectories of x(t) starting from
its minimum xmin at t = 0. The calculation shows

xmin = e−τn (1 − ηαn) + ηαn, (25)

which remains constant for any τp. In contrast, the maximum of
x(t) depends on τp. For τp ∈ [0,τn + ε1) with ε1 = ln K−η

1−η
< 0,

xmax,1 = [e−τn (K − η) + e−(τn−τp)η(1 − αp)]
1 − η

K − η
+ ηαp.

(26)

For τp ∈ [τn + ε1,τn + ε2] with ε2 = ln K−ηαn

1−ηαn
> 0,

xmax,2 = e−τn (1 − η) + η. (27)

Of note, dxmax,1

dτp
< 0 and xmax,1 � xmax,2 (see Appendix C 2).

Therefore, the amplitude, xmax − xmin, monotonically drops
with increasing τp over [0,τn + ε1) and remains unchanged
over [τn + ε1,τn + ε2].
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FIG. 5. Dynamics of the simplified model with mp,mn → +∞.
(a) Dependence of the amplitude on τp. The blue and red curves
denote the analytical and numerical results, respectively. The dashed
horizontal line marks the amplitude for τp = 0. The dot-dashed,
dashed, and dotted vertical lines correspond to τp = 0.8, 7.9, and
8.152, respectively. [(b)–(d)] Upper panels: The black, magenta, and
blue curves denote x(t), xt−τp , and xt−τn , respectively. Lower panels:
f ∗ ≡ f (xt−τp ) and g∗ ≡ g(xt−τn ). Parameter values are as follows:
K = 5; (b) τp = 0 and T = T0 = 8.152; (c) τp = 0.8 and T = 8.034;
(d) τp = 7.9 and T = 8.203. The other parameter values are the same
as in Fig. 2(a).

We can extend the above calculation to τp = τ ′
p < 0 (more

exactly, τ ′
p is marginally smaller than 0) and infer the amplitude

for τp = τ ′
p + kT (τn,τ

′
p) (k ∈ Z+). For a very small |τ ′

p| (see
Appendix C 3),

xmax,τ ′
p<0 = e−τ ′

p−τn (K − ηαp)(1 − η)

e−τ ′
p (K − ηαp) + η(αp − 1)

+ ηαp. (28)

Given xmax,τ ′
p<0 > xmax,1, there must be a τp = τ ′

p +
T (τn,τ

′
p) > 0 that allows for the oscillation amplitude greater

than xmax,τp=0.
For a specific set of parameters satisfying the above condi-

tions, the amplitude calculated numerically is well consistent
with the analytical result [Fig. 5(a)]. Both results show
low-amplitude oscillations at τp ≈ τn and larger-amplitude
oscillations when τp approaches T0.

To interpret the dependence of the amplitude on τp,
g∗ ≡ g(xt−τn ) and f ∗ ≡ f (xt−τp ) are plotted to show how the
NFL and PFL are activated along with xt−τn and xt−τp . For
τp = 0, x(t) and xt−τp coincide with each other [Fig. 5(b)].
In the ascending phase of x(t) from t = 0, x first rises with
the production rate η, until the PFL is activated at t = t1
[x(t1) = K], with

t1 = τp + ln
e−τn (1 − ηαn) − η(1 − αn)

K − η
. (29)

Then, the rise of x is accelerated by the PFL with the maximal
production rate ηαp. The acceleration stops on the activation
of the NFL at t = t2 [xt2−τn = 1], with

t2 = τn + ln
e−τn (1 − ηαn) − η(1 − αn)

1 − η
. (30)
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Afterwards, the production rate equals the minimum ηαn, and
the descending phase of x begins.

If τp is slightly larger than 0, then Eqs. (29) and (30)
still hold true (see Appendix C 2), indicating that t2 keeps
unchanged but t1 rises with τp. Thus, the rise of x(t) is
accelerated by the PFL over a shorter time period (i.e.,
t2 − t1), and the oscillation amplitude drops with increasing
τp [Fig. 5(c)]. If τ ′

p is marginally smaller than 0, then Eq. (30)
still holds true, but t1 becomes

t1 = ln
e−τn (1 − ηαn) − η(1 − αn)

e−τ ′
p (K − ηαp) + η(αp − 1)

, (31)

rising with increasing τ ′
p (see Appendix C 3). Consequently,

x(t) is driven to greater values over an extended time period
by the PFL, leading to a larger amplitude. According to
the recurrence of periodic solutions, the PFL with τp =
τ ′

p + kT (τn,τ
′
p) > 0 (k ∈ Z+) also induces a larger-amplitude

oscillation; in this case, the delayed PFL accelerates the rise
of x(t + kT ) over a longer time period [e.g., k = 1; Fig. 5(d)].
Taken together, we explain why the PFL with a properly long
delay has advantages over the nPFL and sPFL in terms of
activation dynamics of feedback loops.

VI. ROBUST OSCILLATION INDUCED BY A STRONG lPFL

As αp rises, the modulation of oscillation by the delayed
PFL can be much more complicated. For example, limit cycles
can coexist via the fold bifurcation of limit cycles when
τp > τn = 1.8 [Fig. 6(a); black dots]; one stable and one
unstable limit cycle appear together at τp = 6.245 or collide
to disappear at τp = 7.019. Notably, the delayed PFL can
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FIG. 6. Role for the strong PFL in modulating oscillatory dy-
namics. [(a) and (c)] Dependence of the oscillation amplitude and
its CV on τp. The dashed horizontal line marks the amplitude for
τp = 0. [(b) and (d)] The oscillation period and its CV versus τp.
The blue solid and dashed curves in [(a) and (b)] denote the stable
and unstable limit cycles, respectively, in the deterministic case. Black
dots at τp = 6.245 and 7.019 denote the fold bifurcation of limit cycle.
The circles and bars denote the mean and the standard deviation,
respectively, in the stochastic case. Each stochastic simulation is run
over [0,20000]. The amplitude is rescaled by Kn� = 10. mp = 4,
mn = 4, αp = 10, αn = 0.02, K = 3, η = 1.767, and τn = 1.8.
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FIG. 7. Stochastic simulation of the simplified model. Sample
trajectories of x for τp = 0 (a), 0.5 (b), or 6 (c). The amplitude
is rescaled by Kn� = 10. The other parameters are the same as
in Fig. 6.

facilitate larger-amplitude oscillations than the nondelayed
PFL in a wide range of τp (∈ [3.81,7.019]). Moreover, the
amplitudes of these oscillations are much greater compared
with the case of small αp.

It has been demonstrated that large amplitudes may be
associated with relatively small fluctuations in oscillation [7];
thus, the PFL with a properly long delay may be advantageous
over the nPFL and sPFL in ensuring the robustness of
oscillation. To validate this inference, we need to perform
stochastic simulations. There are two reactions in the sim-
plified model: One is a delayed production of proteins, and
the other is a nondelayed degradation of proteins. Whereas
several stochastic simulation algorithms for delayed reactions
were proposed [32–36], an algorithm for simulating a single
reaction with two time delays is lacking. We extend the original
Gillespie method to simulate this type of non-Markovian
reaction based on the standard Monte Carlo method (see
Appendix D).

We perform long-term stochastic simulations for different
τp in the case of strong lPFL and then calculate the mean,
standard deviation, and coefficient of variation (CV) of the
peak-to-trough amplitude and interpeak period. The minimum
of CV appears at the same τp as the maximal amplitude
does [Figs. 6(c) and 6(d)]; that is, the lPFL can facilitate
the oscillations with much smaller fluctuations in both the
amplitude and period than the nPFL or sPFL [Fig. 7]. Thus,
the PFL with a properly long delay can enhance the robustness
of oscillation and accuracy of timing.

VII. DISCUSSION

We systematically explore how time delays in feedback
regulation affect the dynamics of the systems of interlinked
PFL and NFL. Compared with the NFL-only system, the
delayed PFL can either promote or inhibit the occurrence
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of oscillation, depending on its delay relative to that of the
NFL. The PFL with a properly long delay can facilitate
larger-amplitude oscillations than the nondelayed PFL, in
contrast to the previous view that the shorter the delay, the more
effectively the PFL can promote amplitude increment. We
unravel two mechanisms for the realization of large-amplitude
oscillations: the lPFL with weak strength can accelerate the
accumulation of circuit components in an extended ascending
phase because of its advanced activation, or the fold bifurcation
of limit cycle can be induced in the presence of the lPFL
with strong strength, leading to stable limit cycles with large
amplitude.

To make full use of the PFL in promoting reliable oscil-
lation, the required conditions proposed previously include
faster dynamics of the activator than the repressor if no explicit
feedback delay exists [37,38], a long delay in the NFL [39], or
a short delay in the PFL [7], such that the activator can reach
a higher level and have a stronger contributory role before the
repressive effect from the repressor becomes too great [40].
Here, the PFL with a properly long delay can also contribute
to robust oscillation via the similar mechanism, even playing
a more marked role in driving large-amplitude oscillations.

Our results suggest an informative method for synthesizing
robust genetic oscillators, i.e., the PFL should have a properly
longer delay than the NFL. Such a design principle can
be tested in the synthetic circuits as in Ref. [5], which
include interlinked PFL and NFL with independently con-
trollable effective time delays. Another plausible system is a
recently developed synthetic genetic circuit involving efflux
pumps [41]. It was shown that efflux pumps can introduce
implicit negative feedback to the inducer (e.g., antibiotics)
that regulates the circuit, thereby markedly altering the dose-
response relationship. It seems possible to change the circuit
design by adding PFLs as well as interlinking PFL and NFL
with various time delays, so our conclusions can be justified
in this system.

The current work can account for the presence of long
delays in positive feedback in circadian clocks. Indeed, PER
(PER1–PER3) and CRY (CRY1 and CRY2) in mammals
form a dimer to repress the expression of their own genes,
constituting an NFL; CRY1 can inhibit the expression of
Rev-erbα, and Rev-erbα in turn represses the transcription
of cry1, enclosing a PFL. That is, the PFL involves one extra
process of Rev-erbα expression [21]. An earlier study on the
circadian clock in Neurospora crassa also introduced a PFL
with a long delay into the model [42]. WCC regulates the
transcription of frq, and FRQ in turn phosphorylates WCC
to inhibit its transcriptional activity, constituting an NFL;
meanwhile, FRQ can promote the production of WC-1 and
WC-2, which assemble into WCC, thereby constituting a
PFL. Of note, the PFL involves one more translation process
than the NFL [15], and thus the PFL has a longer effective
delay than the NFL. Based on our results, such topologies can
accommodate robust large-amplitude oscillations and precise
timing.

Besides coupled dual-loop systems, interlinked multiple
loops are also engaged in biological oscillating systems. For
example, the mammalian circadian clock includes at least two
more loops—the BMAL1-Rora PFL and BMAL1-Rev-Erbα

NFL [43,44], in addition to the NFL involving PER/CRY

self-repression and the PFL including REV-erbα. It is worth
exploring how these multiple delayed loops coordinate robust
oscillations. Moreover, several studies probed the synchro-
nization of coupled oscillators, each consisting of delayed
PFL and NFL [45–47]. The influence of PFLs with a long
delay in each oscillator on the global dynamics is an open
issue.
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APPENDIX A: PROOF OF THE PERIODICITY OF TIME
DELAY FOR THE SAME OSCILLATION

Lemma 1. If a delayed differential equation dx
dt

= F [x(t −
τ )] has a periodic solution x̂(t) with period T , then x̂(t) is also
the solution to dx

dt
= F {x[t − (τ + nT )]}, with n = 0,1,2, . . . .

Proof. Given x̂(t) is a periodic solution with period T , x̂(t −
nT ) is also a solution. Therefore, x̂(t − τ ) = x̂(t − τ − nT ) =
x̂[t − (τ + nT )]. So, we have dx̂

dt
= F [x̂(t − τ )] = F {x̂[t −

(τ + nT )]}, which shows that x̂(t) is also a solution to the
equation with delay τ + nT .

Lemma 2. If a delayed differential equation dx
dt

= F [x(t −
τ1),x(t − τ2), . . . ] has a periodic solution x̂(t) with period T ,
then x̂(t) is also a solution to dx

dt
= F {x[t − (τ1 + n1T )],x[t −

(τ2 + n2T )], . . .}, with ni = 1,2, . . . (i = 1,2, . . . ).
Proof. Given x̂(t) is a periodic solution with period T ,

x̂(t − niT ) is also a solution. Therefore, x̂(t − τi) = x̂(t −
τi − niT ) = x̂[t − (τi + niT )]. So, we have dx

dt
= F {x[t −

(τ1 + n1T )],x[t − (τ2 + n2T )], . . .}.

APPENDIX B: METHOD FOR PARAMETER SAMPLING

Ten thousand parameter sets are sampled uniformly on
a logarithmic scale in a seven-dimensional parameter space
using the Latin hypercube sampling method for K > 1 and
K < 1, respectively. For each set of parameters satisfying
Gn < −1 and maxx∈[0,+∞){Gn(x) + Gp(x)} < 1 (1054 sets
for K > 1 and 1030 sets for K < 1 in total), we calculate
the critical value of τn for τp = 0, τn,0, as follows:

τn,0 =
cos−1

(
1−Gp

Gn

)
√

G2
n − (1 − Gp)2

. (B1)

Then, τn is set to δτn,0; in this way, this set of parameters can
lead to oscillation at τp = 0.

TABLE I. Sampling ranges of the parameters.

η mp mn αp αn K δ

K > 1 0.1–10 1–10 1–10 1–100 0.01–1 1–10 1–4
K < 1 0.1–10 1–10 1–10 1–100 0.01–1 0.1–1 1–4
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APPENDIX C: THE CASE OF mp, mn → +∞
The deterministic dynamics of the simplified one-node

model are governed by the following equation:

dx

dt
= ηF (xt−τp ,xt−τn ) − x, (C1)

where xt−τp ≡ x(t − τp), xt−τn ≡ x(t − τn), and F (u,v) ≡
f (u)g(v) with f (u) = 1+αp(u/K)mp

1+(u/K)mp and g(v) = 1+αnv
mn

1+vmn . Here,
we discuss the scenario where mp,mn → +∞ such that
sigmoid functions f and g can be replaced with step functions:

f (u) =
{

1, 0 � u < K,

αp, u � K,
(C2)

and

g(v) =
{

1, 0 � v < 1,

αn, v � 1.
(C3)

For simplicity, we only discuss the case of a weak PFL, i.e.,
αpαn ≈ αn. Thus, F is simplified into

F (u,v) =

⎧⎪⎨
⎪⎩

αn, v � 1,

1, 0 � u < K,0 � v < 1,

αp, u � K,0 � v < 1.

(C4)

The PFL can exert an effect, i.e., F = αp, only if 0 � v < 1;
otherwise, F always equals αn. F reaches its maximum αp if
only the PFL is activated, while F equals its minimum αn as
long as the NFL is activated. Without loss of generality, here
we only discuss the case of K > 1, i.e., the PFL has a higher
activation threshold than the NFL.

Note that the activation threshold of the NFL is 1. If η < 1,
x(t) = η is a solution to Eq. (C1), and both feedback loops
cannot be activated; if ηαn > 1, then x(t) = ηαn is also a
solution, and the NFL is always activated. If τn = 0, then
x(t) = 1 is a solution. In these cases, there is no oscillation.
Only if ηαn < 1 < η, i.e., 1 < η < 1

αn
, and τn > 0, can the

system oscillate. On the other hand, if K > η, then x can only
approach η in the ascending phase, and x cannot exceed K . To
activate the PFL, one necessary condition is K < η. Together,
here we assume 1 < K < η < 1

αn
and τn > 0.

1. τp = 0

First, we analyze the scenario of τp = 0, i.e., x(t) = xt−τp .
Suppose that the ascending phase of x(t) starts from t = 0,
at which the NFL switches from the activated state to the
deactivated state, i.e., xt−τn = 1. x(t) then rises, whereas xt−τn

continues falling. Since the minimum of x(t), xmin, is the same
as the minimum of xt−τn , xmin must be less than 1. Due to
K > 1, the PFL is also deactivated at this stage. x(t) rises to
η asymptotically with F = η. When x(t) rises to K (K < η)
at t = t1 before xt−τn equals 1, the PFL is activated and then
accelerates the rise of x(t) to ηαp asymptotically with F =
ηαp. When xt−τn reaches 1 at t = t2, the NFL is activated.
The descending phase of x(t) then starts, and x(t) falls to ηαn

asymptotically with F = ηαn. When xt−τn = 1 again at t = T ,
the next round of ascending phase of x(t) begins.

Over one period of oscillation, x(t) goes through three
stages. In the first stage, i.e., from t = 0 to t = t1, x(t) rises

with t as follows:

x(t) = C1e
−t + η. (C5)

In the second stage, i.e., from t = t1 to t = t2, the rise of x(t)
is accelerated, and x(t) is

x(t) = C2e
−(t−t1) + ηαp. (C6)

In the third stage, i.e., from t = t2 to t = T , x(t) decreases
with t :

x(t) = C3e
−(t−t2) + ηαn. (C7)

Six parameters, C1, C2, C3, t1, t2, and T , are determined by
the following six conditions:

C1e
−t1 + η = C2 + ηαp,

C2e
−(t2−t1) + ηαp = C3 + ηαn,

C3e
−(T −t2) + ηαn = C1 + η,

C1e
−(t2−τn) + η = 1,

C2 + ηαp = K,

C3e
−(T −t2−τn) + ηαn = 1. (C8)

Six parameters can be solved:

C1 = e−τn (1 − ηαn) − η(1 − αn) < 0,

t1 = ln
C1

K − η
> 0,

t2 = τn + ln
C1

1 − η
> 0,

C2 = K − ηαp < 0,

C3 = C2e
−(t2−t1) + η(αp − αn) > 0,

T = t2 + ln
C3

C1 + η(1 − αn)
> 0. (C9)

If the NFL is activated in advance such that x(t) does not
rises to K yet, the descending phase of x(t) begins earlier, and
the PFL cannot be activated. This happens with t1 = t2, which
requires τn = ln 1−η

K−η
. Thus, for the PFL to be activated earlier

than the NFL,

τn > ln
1 − η

K − η
. (C10)

Then, we can calculate xmin

xmin = C1 + η = e−τn (1 − ηαn) + ηαn, (C11)

and the maximum of x(t) for τp = 0,

xmax,0 = C3 + ηαn

= e−τn
(K − ηαp)(1 − η)

K − η
+ ηαp. (C12)

2. τp > 0

For τn > ln 1−η

K−η
, the PFL with τp = 0 can be activated

before the NFL is activated at t = t1. If τp > 0, however,
the activation of the PFL is delayed and may be later than
the activation of the NFL. If t1 = t2, two feedback loops

052413-9



BO HUANG, XINYU TIAN, FENG LIU, AND WEI WANG PHYSICAL REVIEW E 94, 052413 (2016)

are activated simultaneously, and the PFL has no effects.
In this case, τp = τn + ln K−η

1−η
< τn. Denote ln K−η

1−η
by ε1.

If 0 � τp < τn + ε1, then x(t) goes through three states in
one period of oscillation as in the case of τp = 0 [see
Eqs. (C5)–(C7)]. The conditions for the undetermined param-
eters are

C1e
−t1 + η = C2 + ηαp,

C2e
−(t2−t1) + ηαp = C3 + ηαn,

C3e
−(T −t2) + ηαn = C1 + η,

C1e
−(t2−τn) + η = 1,

C1e
−(t1−τp) + η = K,

C3e
−(T −t2−τn) + ηαn = 1. (C13)

Six parameters can be solved subsequently:

C1 = e−τn (1 − ηαn) − η(1 − αn) < 0,

t1 = τp + ln
C1

K − η
,

t2 = τn + ln
C1

1 − η
,

C2 = e−τp (K − η) + η(1 − αp) < 0,

C3 = C2e
−(t2−t1) + η(αp − αn) > 0,

T = t2 + ln
C3

C1 + η(1 − αn)
. (C14)

Then, we have

xmin = C1 + η = e−τn (1 − ηαn) + ηαn, (C15)

xmax,1 = C3 + ηαn

= [e−τn (K − η) + e−(τn−τp)η(1 − αp)]
1 − η

K − η
+ ηαp.

(C16)

xmin is independent of τp, while xmax,1 depends on τp. Since
the derivative of xmax,1 with respect to τp,

dxmax,1

dτp
= e−(τn−τp) η(1 − αp)(1 − η)

K − η
< 0, (C17)

xmax,1 decreases with τp given 0 � τp < τn + ε1.
For τp � τn + ε1, the PFL may lose its effect due to the

activation of the NFL. Thus, the rise of x(t) is no longer
accelerated, and x(t) just goes through two stages in one period
of oscillation. In the first stage, i.e., from t = 0 to t = t1, x(t)
rises with F = η,

x(t) = C1e
−t + η. (C18)

In the second stage, i.e., from t = t1 to t = T , x(t) decreases
with F = ηαn,

x(t) = C2e
−(t−t1) + ηαn. (C19)

The conditions for the undetermined parameters are

C1e
−t1 + η = C2 + ηαn,

C2e
−(T −t1) + ηαn = C1 + η,

C1e
−(t1−τn) + η = 1,

C2e
−(T −t1−τn) + ηαn = 1. (C20)

Four parameters, C1, C2, t1, and T , are solved subsequently:

C1 = e−τn (1 − ηαn) − η(1 − αn) < 0,

C2 = e−τn (1 − η) − η(αn − 1) > 0,

t1 = τn + ln
C1

1 − η
,

T = t1 + ln
C2

C1 + η(1 − αn)
. (C21)

Then we have

xmin = C1 + η = e−τn (1 − ηαn) + ηαn, (C22)

xmax,2 = C2 + ηαn = e−τn (1 − η) + η. (C23)

If τp is large enough, then the PFL can be deactivated later
than the NFL. Thus, the PFL can still be activated when the
NFL is deactivated. Since the ascending phase of x(t) just
begins on the deactivation of the NFL, the ascending phase
must be accelerated by the PFL that is still activated. This
type of oscillation differs from the above two-stage oscillation
whose ascending phase has no acceleration. The minimum
τp for this new type oscillation can be determined when two
feedback loops are deactivated at t = T , i.e.,

C2e
−(T −t1−τp) + ηαn = K,

C2e
−(T −t1−τn) + ηαn = 1,

(C24)

which yields

τp = τn + ln
K − ηαn

1 − ηαn
> τn. (C25)

Denote ln K−ηαn

1−ηαn
by ε2. The above two-stage oscillation

exists for τn + ε1 � τp � τn + ε2. Notably, xmax,1|τp=τn+ε1 =
xmax,2|τp=τn+ε1 . With dxmax,1

dτp
< 0, xmax,1 � xmax,2. For larger

τp, i.e., τp ∈ (τn + ε2,+∞), it is impossible to analytically
calculate x(t), but it can be inferred from that for τp ∈
[0,τn + ε2] due to the recurrence of periodic solutions.

3. τp < 0

For τp < 0, the PFL can be activated in advance compared
with the case of τp = 0. For a small |τp|, x(t) still undergoes
three stages in one period, so the kinetic equations are the
same as Eqs. (C5)–(C7). The conditions for the undetermined
parameters are

C1e
−t1 + η = C2 + ηαp,

C2e
−(t2−t1) + ηαp = C3 + ηαn,

C3e
−(T −t2) + ηαn = C1 + η,

C1e
−(t2−τn) + η = 1,

C2e
τp + ηαp = K,

C3e
−(T −t2−τn) + ηαn = 1. (C26)
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Six parameters can be solved subsequently:

C1 = e−τn (1 − ηαn) − η(1 − αn) < 0,

C2 = e−τp (K − ηαp) < 0,

t1 = ln
C1

C2 + η(αp − 1)
,

t2 = τn + ln
C1

1 − η
,

C3 = C2e
−(t2−t1) + η(αp − αn) > 0,

T = t2 + ln
C3

C1 + η(1 − αn)
. (C27)

We have

xmin = C1 + η = e−τn (1 − ηαn) + ηαn,

xmax,τp<0 = C3 + ηαn

= e−(τn+τp)(K − ηαp)(1 − η)

e−τp (K − ηαp) + η(αp − 1)
+ ηαp. (C28)

It can be easily verified that xmax,τp<0 is larger than xmax,1

and xmax,2.

APPENDIX D: STOCHASTIC SIMULATION METHOD

Here we extend the original Gillespie method [48] to
simulate the stochastic dynamics of the simplified model.

Given the cellular volume �, the number of X is N = X� =
xKn�, where x is the dimensionless concentration of X and
Kn is the Michaelis constant. Suppose the current time point
is t0 and the number of X at t0 is Nt0 . The propensity function
(the firing rate for the reaction) of the production reaction at t ,
a1(t) = a1(Nt−τp

,Nt−τn
), depends on the states of the system at

t − τp and t − τn. The propensity function of the degradation,
a2(t) = a2(Nt ), is determined by the current state. Thus, the
sum of propensity function, a(t) = a1(t) + a2(t), depends on
the states of the system at three time points. Since the number
of X is discrete, a(t) keeps constant if no changes happen in
the system states at those three time points, i.e., Nt , Nt−τp ,
and Nt−τn . Denote by t0 < t1 < · · · < ti < . . . (i = 1,2, . . . )
the time points where any changes occur in the above three
variables. For ti < t < ti+1, the waiting time τ for either of
reactions to fire obeys the distribution

Pi(τ > t − t0)

= e−a(t0)(t1−t0)−a(t1)(t2−t1)−···−a(ti−1)(ti−ti−1)−a(ti )(t−ti ). (D1)

In each step of simulation, we sample two random numbers
r1 and r2, which are both uniformly distributed in [0,1]. There
must be an i such that Pi(τ > t − t0) = r1 can have a positive
solution of t . With this t , we obtain the waiting time τ = t − t0.
Then, if r2 < a1/a, the production reaction fires; otherwise, the
degradation reaction fires.
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