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Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and
affects approximately 6–7% of children worldwide. Here, we investigate the statistical properties of undirected
and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the
undirected functional connectivity is constructed based on correlation coefficient and the directed functional
connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the
functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have
increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions,
and increased directed functional connectivity, indicating stronger causality and more transmission of information
among brain regions. More importantly, we explore the randomness of the undirected and directed functional
networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than
that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition,
we find that the directed functional networks are more random, which reveals greater disorder in causality and
more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the
efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights
into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.
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I. INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one of
the most commonly diagnosed neuropsychiatric disorders in
children [1]. Clinical diagnosis is based on the fact that children
with ADHD exhibit abnormal behaviors of inattention, hy-
peractivity, and impulsivity [2]. These symptoms cause these
children to be more easily distracted, less able to focus on
a single task, and constantly in motion and impatient; this
not only affects their academic performance and social lives
but also places a heavy burden on their families and society
[3]. However, the etiology of ADHD is thus far unclear and
requires further study.

Recently, a number of studies have focused on investiga-
tions of brain functional connectivity based on neuroimag-
ing technologies, such as electroencephalography (EEG),
magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI) [4–6]. Many groups have explored
the changes in brain functional connectivity between different
brain states, such as the ongoing cognition process [7], the
learning experiences [8], and ADHD [9–11]. However, most
analyses of functional connectivity in ADHD patients have
been based on the Pearson correlation coefficient (CF) between
different brain regions [12]. This kind of functional connec-
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tivity is linearly dependent and undirected; the advantage
of this approach is that it is effective for measuring the
synchronization among brain activity signals captured from
different brain regions, but it also has the disadvantages
that it is not robust to outliers and is unable to reflect
any information regarding causality [12,13]. By contrast, the
directed functional connectivity is useful for characterizing
causality or information transmission between different brain
regions. For example, the cross-correlation coefficient (CC)
measures linear dependence and causality [14,15], and the
mutual information (MI) reflects both linear and nonlin-
ear dependencies and characterizes information transmission
across brain regions [13,16]. Both CC and MI reflect directed
functional connectivity and take high values when information
regarding one region can be used to predict the characteristics
of other regions [13]; therefore, these measures better describe
the functional causal relationships between brain regions and
are more beneficial for further revealing the mechanism of
ADHD.

The brain functional network consists of the brain regions
and the functional connectivity between them, and this concept
has been widely used to explore the various mental states
of the brain [3,17–20]. The complex network method is the
most commonly used method of characterizing the topological
properties of complex networks and has also been proved
to be sensitive to the brain functional network in ADHD
patients [3,12,20–23]. However, the complex network method
cannot capture the intrinsic properties of complex systems,
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such as the universal and system-independent behaviors, that
are considered to most efficiently reflect the changes in
such systems. By contrast, an eigenvalue-based approach can
address this limitation, and many studies have demonstrated
that the properties of complex networks can be well charac-
terized in terms of the eigenvalues of the associated adjacency
matrix [24]. The eigenvalues of a complex system indicate
several basic topological properties of that system [25], and
eigenvalue-based approaches have been widely used to explore
various complex systems, such as the financial crisis [26,27],
the housing market [28], the brain functional network [29],
and others [30,31]. More recently, the eigenvalue fluctuations
in a complex network that are determined according to
random matrix theory (RMT) have received considerable
attention because of their efficacy in characterizing the intrinsic
behavior of complex networks [24,32,33]. RMT was originally
proposed for characterizing the statistical properties of the
energy spectrum in a nuclear system [34], and subsequently,
it has been widely applied to various real systems, such as the
stock market [15,26,28], the atmosphere [35], the biological
networks [36–38], the quantum graphs [39], and various other
model networks [24,32,40,41]. Recent studies have reported
the application of RMT in characterizing brain cognitive states
[29,42]. For example, RMT has been used to explore the
spectral properties of brain functional networks and has been
proved to be effective in detecting the differences between
brain systems in the resting state and the visual stimulation
state [29,42]. More importantly, it has been demonstrated that
RMT not only predicts the universal behavior of the brain
functional network but also effectively captures the intrinsic
changes in the brain functional network [29,42]. Therefore,
using RMT to characterize the spectral properties of the brain
functional network in ADHD patients will be beneficial for
further revealing the relevant intrinsic abnormalities in the
brain.

In this paper, we use CF, CC, and MI to construct the
undirected and directed brain functional connectivity based
on human fMRI data collected from ADHD patients and
normal subjects. First, we explore the functional connectivity
distribution and find that ADHD patients have increased
undirected and directed functional connectivity among brain
regions. Second, we study the global properties of the brain
functional network, including the eigenvalue distribution and
the largest eigenvalue, and suggest that the value of the
largest eigenvalue is greater for ADHD patients. Finally,
using RMT, we not only predict the universal behavior of
the brain functional network but also provide that ADHD
patients exhibit a more orderly undirected brain functional
network and a more random directed brain functional
network.

II. MATERIALS AND METHODS

A. Subjects and MRI acquisition

fMRI data are collected from the open-access “1000
Functional Connectomes Project” [43] in which resting-state
fMRI scans have been released by Milham and Castellanos
in December, 2009. These data are acquired at resting state

FIG. 1. Flowchart of the methods pipeline: overview of the data
processing and analysis pipeline. Resting-state fMRI data were
acquired from 24 individual subjects in an ADHD group and a
group of 24 healthy controls. Time courses were extracted from
the 444 cerebral regions comprising the Multiscale Functional Brain
Parcellations template, and the 444 × 444 connectivity matrices were
built using CF, CC, and MI. The resulting connectivity matrices were
then investigated to identify between-group differences by analyzing
the functional connectivity distribution as well as the global and local
eigenvalue properties.

by a 3T Siemens scanner. There are 24 ADHD patients
in ADHD group, and 24 normal subjects in control group.
The voluntary patients in this dataset were evaluated with
the clinical interview DSM-IV (SCID), Checklist-90-Revised
(SCL-90-R) and Adult ADHD Clinical Diagnostic Scale
(ACDS). Image scans contain 39 slices and 192 time points,
TR = 2 s, TE = 25 ms, flip angle = 90, matrix = 64 × 64,
FOV = 192 mm2, voxel size = 3 × 3 × 3 mm3, and the last
time is 390 s.

B. fMRI data preprocessing

The AFNI [44,45] and FSL software Library [46] are
used to preprocess the functional images, and the first four
volumes are excluded from analysis to ensure the initial
stabilization of the fMRI signal. For each subject, motion
correction is executed through a 3D image realignment with
the AFNI program 3dvolreg function, which uses a weighted
least squares rigid-body registration algorithm.

Echo planar imaging (EPI) images were motion and slice-
time corrected, and spatially smoothed using a Gaussian kernel
of 6 mm full width at half maximum (FWHM). The temporal
band-pass filtering (0.005 Hz < f < 0.1 Hz) is performed in
order to reduce the effects of low-frequency drift and high-
frequency physiological noise. After eliminating redundant
information of cerebral spinal fluid (CSF) and white matter,
fMRI data are further spatially normalized to the Montreal
Neurological Institute (MNI) EPI template and resampled to a
3-mm cubic voxel.

C. Construction of the brain functional network

The brain was divided into 444 regions of interest (ROIs)
according to the Multiscale Functional Brain Parcellations
atlas [47], and the time series for each ROI was obtained by
averaging the voxel time series within each ROI. Each brain
functional network is represented by a functional connectivity
matrix, where the functional connectivity among ROIs was
constructed using various methods (see Fig. 1).
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1. Pearson’s correlation coefficient

The CF serves as the basis of the simplest method of
constructing the brain functional connectivity [48], and it is
calculated as follows:

ρX,Y =

N∑
t=1

(X(t) − X)(Y (t) − Y )√
N∑

t=1
(X(t) − X)2

N∑
t=1

(Y (t) − Y )2

, (1)

where t stands for the time point, N represents the total number
of time points, X and Y are the fMRI time series for different
ROIs, and X and Y are the average values corresponding to
these time series. The CF characterizes the linear correlation
between different brain regions and reflects the undirected
functional connectivity.

2. Cross-correlation coefficient

The CC is used to characterize the directed functional
connectivity and measures the causality between different
brain regions. A CC is defined as follows [17]:

ρm
X,Y = maxτ

{∣∣∣∣ ξ (X,Y )(τ )√
ξ (X,X)(0)ξ (Y,Y )(0)

∣∣∣∣
}
, (2)

with

ξ (X,Y )(τ ) =
{∑N−τ

t=1 X(t + τ )Y (t) for τ > 0,

ξ (Y,X)(−τ ) for τ � 0,
(3)

where τ is the lag of time point and satisfies τ = 0, ± 1,
±2, . . . , ± (N − 1). This algorithm always ensures the
strongest directed causality from brain region X to brain region
Y or from Y to X with the optimal time lag. The CC-based
functional connectivity is linearly dependent but directed, and
it measures how one brain region induces changes in the brain
activity in another region.

3. Mutual information

The MI also can be used to construct a measure of the
functional connectivity. Unlike CF and CC, MI is not limited
to real-valued random variables and is a more general means
of characterizing the communication of information among
brain regions [13]. The normalized MI is calculated as follows
[49]:

U (X,Y ) = 2
I (X,Y )

I (X) + I (Y )
, (4)

with

I (X) = −
∑
x∈X

p(x)lnp(x),

I (Y ) = −
∑
y∈Y

p(y)lnp(y), (5)

I (X,Y ) =
∑
x∈X

∑
y∈Y

p(x,y)ln
p(x,y)

p(x)p(y)
,

where x and y are the random events of X and Y , the p(x)
and p(y) are the corresponding probability functions, and the
p(x,y) is the joint probability distribution. The MI reflects how

the information flows from one brain region to another, and the
corresponding MI functional connectivity contains directional
information.

After the CF, CC, and MI functional connectivity matrices
were constructed, the diagonal elements were all set to zero to
eliminate the self-correlation for each ROI, and then a Fisher’s
r-to-z transformation was applied to improve the normalities
of CF, CC, and MI [50]. It should be noted that the CF, CC,
and MI functional networks are all undirected even though the
CC and MI functional connectivities contain the directional
information, which is essential to the application of RMT
underlying the real eigenvalues.

D. Random matrix theory

Random matrix theory (RMT) studies the spectral fluc-
tuations in a complex system by separating the system-
dependent properties from the random universal component
[15,32,41,42]. To analyze the functional networks using RMT,
we first need to define a network ensemble. Here, we assume
the statistically insignificant difference between the functional
networks in each group, and these similar functional networks
will represent the network ensemble that we will discuss below.

In RMT, the eigenvalues λi(i = 1,2, . . . ,M) must first be
unfolded through a transformation ηi = F (λi), where F (λi) =∫ λi

λmin
ρ(λ′)dλ′ is the average integrated eigenvalue density of

the eigenvalues λi and ηi is the unfolded eigenvalue. Because
the analytical form of function F is unknown, the unfolding
process is performed with the assistance of numerical curve
fitting [24,51]. After the unfolding process, the probability
density of the unfolded eigenvalues is ρ(ηi) = 1, which
ensures that all eigenvalues are on the same footing and
independent of the system. Obviously, the unfolding process
removes any spurious effects caused by variations in spectral
density [42], and thus, we obtain the more universal properties
of the spectral fluctuations. Consequently, we can characterize
the changes in the intrinsic behaviors of functional networks
that are only related to the ADHD rather than the complex
brain system itself.

Using the unfolded eigenvalues, we can calculate the
statistical indexes in RMT, such as the nearest-neighbor
spacing distribution (NNSD), the spectral rigidity, and number
variance. The NNSD is calculated as follows:

s
(i)
1 = ηi+1 − ηi, (6)

where the unfolded eigenvalues η are ordered such that ηi �
ηi+1. The NNSD measures whether an eigenvalue is correlated
with its nearest neighbor and reflects only the short-range
correlations among eigenvalues [24,51]. If the eigenvalues
are uncorrelated, the NNSD follows Poisson statistics and
the probability density function satisfies P (s1) = exp(−s1).
Otherwise, for correlated eigenvalues, it obeys Gaussian
orthogonal ensemble (GOE) statistics and P (s1) satisfies

P (s1) = π

2
s1exp

(
−πs2

1

4

)
. (7)

By contrast, the spectral rigidity characterizes the long-
range correlations among eigenvalues [52]. For a given
unfolded eigenvalue interval [η,η + L] where the L is the size
of the spectral window, the spectral staircase function f (η)
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FIG. 2. An analysis of functional connectivity, in which the undirected functional connectivity is measured by CF and the directed functional
connectivity is measured by CC and MI. The pdfs of the (a) CF, (b) CC, and (c) MI were calculated individually for the control group and the
ADHD group.

representing the cumulative probability of the eigenvalues is
deviated from its best straight-line fitting, and the correspond-
ing least-squares deviation is regarded as the spectral rigidity
[24,51]:

�3(L; η) = 1

L
min
a,b

∫ η+L

η

[f (η′) − aη′ − b]2dη′, (8)

where a and b are the coefficients of the linear equation
obtained from a least-squares fit. In the Poisson case, �3(L)
can be predicted by �3(L) = 1

L
, whereas in the GOE case,

�3(L) depends logarithmically on L:

�3(L) ∼ 1

π2
lnL. (9)

In addition to the spectral rigidity, the number variance also
characterizes the long-range correlations among eigenvalues.
The expected number of spectra lying in the interval [η,η +
L] is L and the true number is E(η + L) − E(η), where
E(η) =| {i | ηi < η} | for the ordered eigenvalue sequence
η1 � η2 � , . . . , � ηM . The number variance 	2(L) measures
the variance between the expected number and the true number
and considers the correlations among consecutive eigenvalues
over a length L:

	2(η,L) = 〈(E(η + L) − E(η) − L)2〉. (10)

Here, the final number variance 	2(L) is obtained by cal-
culating the local average 〈〉 over all chosen η. The value of
	2(L) for Poisson statistics is 	2(L) = L, and for GOE statis-
tics, 	2(L) = 2

π2 (ln(2πL) + 1.5772 − π2

8 ) + O(L−1), where

O(L−1) is an infinitesimal term and is slightly changed to
adapt to the complex system [42,53].

III. RESULTS

A. Analysis of the functional connectivity

In this section, we compare the functional connectivity in
the control group and the ADHD group. We first investigate
how the undirected functional connectivity measured by the
CF is modified by ADHD. Figure 2(a) shows the probability
density functions (pdfs) of the CF for the control group and
the ADHD group. It is observed that the CF distributions
in the different groups are similar; the probability distribu-
tions are close to Gaussian statistics. However, the pdf of
the CF for the ADHD group is flatted, which reflects an
increased CF functional connectivity among brain regions in
the ADHD group. To further confirm the difference between
the two groups, we performed a statistical Kolmogorov-
Smirnov test and provided the statistical difference between
the undirected functional connectivity in the control group
and the ADHD group (p < 0.05). In addition, we explored the
directed functional connectivity measured by the CC and MI.
Figures 2(b) and 2(c) display the pdfs of the CC and MI for
the control group and the ADHD group, respectively. The
CC and MI pdfs for the ADHD group are again similar to
those for the control group, but both pdfs are shifted toward
larger CC and MI values, suggesting increased CC and MI
functional connectivity. Furthermore, using the Kolmogorov-
Smirnov test, we provided a significant difference between
the directed functional connectivity in the control group and
that in the ADHD group (p < 0.05 for both the CC and MI

λλ λ

FIG. 3. Global eigenvalue property analysis: the eigenvalue distribution. The eigenvalues were first calculated from the (a) CF, (b) CC, and
(c) MI functional networks for the control group and the ADHD group, and the pdfs of the eigenvalues were then calculated.
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λ λ λ

FIG. 4. Global eigenvalue property analysis: the largest eigenvalue. The largest eigenvalues of the brain functional network were first
calculated for each subject, and the box plots in each group were then plotted for the (a) CF, (b) CC, and (c) MI functional networks,
individually. In the box plot, the bottom and top of the box are the first and third quartiles, the band inside the box is the median, the ends of
the whiskers are the minimum and maximum values, and the � is the mean value.

functional connectivity). Taken together, the results obtained
in the functional connectivity analysis suggest the increased
undirected and directed functional connectivity in the ADHD
group, which reflects the more dense functional networks.

B. Global properties of the eigenvalues

Now, we investigate the global spectral properties of
the brain functional network in the control group and the
ADHD group. In Figs. 3(a)–3(c), we present the probability
distributions of the eigenvalues of the CF, CC, and MI
functional networks in both groups. It appears that the
distributions of the eigenvalues for the ADHD group are shifted
toward smaller eigenvalues for the CF, CC, and MI functional
networks. Meanwhile, we performed a Kolmogorov-Smirnov
test and found that the differences between the structures
of the eigenvalues in the control group and the ADHD
group are statistically significant (p < 0.05 for the CF, CC,
and MI functional networks). These results indicate that
ADHD pushes the pdf of the eigenvalues toward smaller
eigenvalues, thereby changing the eigenvalue structure in both
the undirected and directed functional networks.

Furthermore, we calculated the largest eigenvalue to inves-
tigate the differences in the brain functional network between
the control group and the ADHD group. Figure 4 shows a
comparison of the mean largest eigenvalue in the control
group and the ADHD group. As seen from this figure, the
mean largest eigenvalue of the brain functional network in the
ADHD group is statistically bigger than that in the control

group (p < 0.05 for the CF, CC, and MI functional networks,
two-sample T test). The result indicates that the largest
eigenvalue is a significant measure of the changes in the brain
functional network caused by ADHD and that ADHD induces
an increase in the largest eigenvalues in the CF, CC. and MI
brain functional networks.

In summary, we showed a consistent change in the global
spectral properties of the undirected and directed functional
networks caused by ADHD and provided that ADHD results
in changes to the eigenvalue structure and an increase in the
largest eigenvalue.

C. Local properties of the eigenvalues

We have found that the functional connectivity and the
global properties of the eigenvalues are sensitive to ADHD
and that the ADHD-dependent changes in these properties are
consistent among the CF, CC, and MI functional networks. To
assess the local properties of the eigenvalues, we calculated
the spectral fluctuation using RMT. The spectral fluctuation
reflects the correlations among eigenvalues: short-range corre-
lations or long-range correlations. The short-range correlation
is measured by the NNSD, and the long-range correlation
is characterized in terms of the spectral rigidity and number
variance.

1. Short-range correlations among eigenvalues

We first investigated whether the short-range correla-
tions among the eigenvalues in the undirected and directed

FIG. 5. Local eigenvalue property analysis: the short-range correlations among eigenvalues measured by the NNSD. The NNSD were first
calculated for each subject, and the probability distributions were then obtained for each group. The probability distributions of the NNSD for
the two groups are plotted separately for the (a) CF, (b) CC, and (c) MI functional networks, where the blue lines represent the empirical values
predicted by GOE and Poisson statistics.
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2 2

Δ 3 Δ 3
2

FIG. 6. Local eigenvalue property analysis: long-range correlations among eigenvalues measured by the spectral rigidity and number
variance. The spectral rigidity (upper panel) and number variance (lower panel) were first calculated for each subject and then averaged over
each group. The mean spectral rigidity and number variance for the two groups are plotted individually for the (a) and (d) CF, (b) and (e) CC,
and (c) and (f) MI functional networks. The blue lines represent the empirical values predicted by GOE and Poisson statistics.

functional networks are influenced by ADHD. Figure 5 reports
the probability distributions of the NNSD and the values
predicted by GOE and Poisson statistics. As seen from this
figure, the NNSD distributions in the control group and the
ADHD group are closer to GOE statistics than to Poisson
statistics in the CF, CC, and MI functional networks, which
reflects a large extent of correlation among eigenvalues.
Furthermore, it can be observed that the NNSD values in the
ADHD group are nearly identical to those in the control group,
and this indistinguishability is statistically supported by the
Kolmogorov-Smirnov test (p > 0.05 for the CF, CC, and MI
functional networks). Therefore, this result indicates that the
NNSD is unable to reflect the abnormalities in the undirected
and directed functional networks induced by ADHD.

2. Long-range correlations among eigenvalues

To verity the efficacy of using the long-range correlations
among eigenvalues to detect the changes in the brain functional
network caused by ADHD, we investigated the spectral rigidity
of the brain functional network in the control group and the
ADHD group. Figures 6(a)–6(c) show the spectral rigidity in
the CF, CC, and MI functional networks for both groups as
well as the empirical values predicted by GOE and Poisson
statistics. It can be seen that the spectral rigidity values in both
groups are in agreement with the GOE predictions for a long
range of L in each case (L � 11 for the CF functional network,
L � 21 for the CC functional network, and L � 25 for the
MI functional network), reflecting the predictable universal
properties of the brain functional network. As L increases, the
spectral rigidity in both groups becomes increasingly larger
than the GOE values, but they remain equal among the CF,
CC, and MI functional networks. This phenomenon reflects
the intrinsic, specific properties of the brain functional network
that not only differ from those of the GOE model but also
are unaffected by ADHD. More importantly, a significant

difference in spectral rigidity between the control group and
the ADHD group appears for sufficiently large L (L � 23
for the CF functional network, L � 35 for the CC functional
network, and L � 49 for the MI functional network). For the
CF functional network, the spectral rigidity in the ADHD
group is significantly smaller than that in the control group
[see Fig. 6(a)]. By contrast, the spectral rigidity in the ADHD
group is larger than that in the control group for the CC and
MI functional networks, as seen in Figs. 6(b) and 6(c). This
opposite change in the spectral rigidity strongly indicates that
the changes to the brain functional network caused by ADHD
are distinct with regard to directed and undirected functional
connectivity.

In parallel, we also studied the number variance in the
control group and the ADHD group. Despite the similar
roles played by the spectral rigidity and number variance in
characterizing the long-range correlations among eigenvalues,
the algorithms used to calculate them are entirely different.
Figures 6(d)–6(f) show the number variances in the control
group and the ADHD group and the values predicted by GOE
and Poisson statistics. The number variances for both groups
agree well with the GOE-predicted values at small L (L � 2
for the CF functional network, L � 4 for the CC functional
network, and L � 1 for the MI functional network), reflecting
the universal behavior of the brain functional network. As L

increases, the number variance deviates from the predicted
values, but no differences appear between the two groups,
reflecting the intrinsic and specific properties of the brain
functional network that are robust to ADHD. When L increases
to a sufficiently large value (L � 5 for the CF functional
network, L � 6 for the CC functional network, and L �
9 for the MI functional network), a noticeable difference
between the number variances for the control group and the
ADHD group arises. The number variance for the ADHD
group is smaller than that for the control group in the CF
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functional network, as seen from Fig. 6(d). However, in the
CC and MI functional networks, the number variances for the
ADHD group are larger than those for the control group [see
Figs. 6(e) and 6(f)]. These results suggest that the number
variance is an effective means of revealing the specific changes
to the undirected and directed functional networks caused by
ADHD.

A comparison of the results presented in Figs. 6(a)–6(c)
and 6(d)–6(f) reveals that three different sets of features
of the brain functional network appear as both the spectral
rigidity and number variance grow with increasing L: universal
network behavior is observed at small L, intrinsic and specific
properties of the brain functional network that are insensitive
to ADHD manifest at larger L, and specific changes related to
ADHD emerge at a sufficiently large value of L. Therefore,
the spectral rigidity and number variance not only are reliable
predictors of the universal behavior of the brain functional
network but also are effective in characterizing the intrinsic
changes to the brain functional network caused by ADHD.

IV. DISCUSSION AND CONCLUSION

In this study, we characterized both undirected and directed
brain functional connectivity using CF, CC, and MI, and
we investigated the probability distributions of functional
connectivity and the spectral properties of functional networks
to understand how ADHD changes the intrinsic properties of
the brain functional network. We first found that the functional
connectivity indicated by CF, CC, and MI were all significantly
increased in the ADHD group compared with the control
group. Then, we observed changes in the eigenvalue structure
and an increase in the largest eigenvalue related to ADHD.
Finally, using RMT, we showed the inability of the NNSD to
characterize ADHD-induced changes in the brain functional
network and provided that the long-range correlations among
eigenvalues measured by the spectral rigidity and number
variance not only predict the universal behavior of the brain
functional network but also reliably reflect the specific changes
to the undirected and directed brain functional networks caused
by ADHD.

A. Functional connectivity increase in ADHD patients

Functional connectivity measures the relationship between
recorded signals of spatially remote neurophysiological events
[54]. This relationship may be either directed or undirected
and either linear or nonlinear [13,55]. The CF serves as the
traditional means of assessing linear correlation and is used to
construct the undirected functional connectivity [48]. The CC
represents linear cross correlation and is used to construct
a measure of directed functional connectivity [14,56], and
the MI characterizes both linear and nonlinear dependence
and is also applied as a measure of directed functional
connectivity [13,57]. Our results show that ADHD patients
exhibit increased functional connectivity as indicated by CF,
CC, and MI, which reflects an abnormally coherence among
neural activities in different brain regions. Moreover, the CF
measures temporal correlation, the CC measures causality,
and the MI measures the transmission of information across
brain regions [13,57]. The increased functional connectivity

observed in the ADHD group reveals a higher degree of
linear dependence, stronger causality, and more transmission
of information across brain regions. Clinical diagnoses reveal
that ADHD patients exhibit hyperactive behavior in the resting
state [58], which must be related to certain abnormalities
in various regions of the brain and the interactions among
them [21,59]. These abnormalities strengthen the information
transmission among different regions as well as the causality
between them.

More importantly, the increased functional connectivity
observed in the ADHD group also reflects higher synchro-
nization of the brain functional network. Previous studies
have proved that strong synchronization among neural ac-
tivities often occurs in pathological scenarios [60], such as
epileptic seizures [61], but the brain functional network in
cognitive states exhibits decreased functional connectivity and
desynchronizing behavior [29]. Our results further provide that
strong synchronization occurs in ADHD patients, which may
act in opposition to the desynchronization often caused by
disease states and may be the origin of the inattentive behavior
that is characteristic of ADHD patients.

B. Global eigenvalue properties are sensitive to ADHD

The eigenvalues of the brain functional network reflect
the contributions of brain regions to this network in the
brain system, and the largest eigenvalue characterizes the
principal component of the network and contains the most
information [62]. The eigenvalue distribution and the largest
eigenvalue have been widely used to characterize changes in
various complex systems, such as the financial crisis [26,27],
the housing market [28], and the brain functional network
[29,42]. Here, the eigenvalue distribution and the largest
eigenvalue were used to distinguish the changes to the brain
functional network caused by ADHD. Our results show that
the eigenvalue structure in the ADHD group is changed with
respect to the control group and that the largest eigenvalue
is increased in the CF, CC, and MI functional networks. The
increased largest eigenvalues observed in the ADHD patients
in the resting state reveal that the brain functional network
in these patients has higher information energy that needs to
be provided by the stronger coupling between brain regions.
Therefore, ADHD patients exhibit stronger synchronization of
the brain functional network than normal subjects, as shown
in Sec. IV A. More importantly, our results indicate that the
strong synchronization that occurs in ADHD patients makes
the brain functional network resistant to the desynchronization
caused by disease states.

C. RMT reveals intrinsic changes to the functional
network caused by ADHD

The local properties of the eigenvalues are measured
by means of RMT, which separates the system dependent
properties of a particular network from the random uni-
versal properties of eigenvalues and is thus an effective
means of characterizing the intrinsic properties of complex
systems [24,29,42]. Since RMT was proposed by Wigner
to explain the statistical properties of nuclear spectra [34],
widespread applications in various real systems have been
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found [15,24,26,28,32,35–38,40–42]. Previous studies have
proved that RMT not only predicts the universal behavior of
the brain functional network but also accurately characterizes
different brain states [29,42]. Thus, RMT was adopted to
characterize the abnormalities caused by ADHD in the CF, CC,
and MI functional networks. Based on the spectral fluctuations
in a complex system, RMT can characterize the correlations
among eigenvalues.

1. Insensitivity of the NNSD to ADHD

The NNSD measures the short-range correlations among
eigenvalues and has been used to demonstrate universally
similar properties of the brain functional network [42].
However, it has been proved that the NNSD is powerless to
characterize different brain states [29,42]. Our NNSD results
show that the pdfs of the NNSD for the control group and
the ADHD group are closer to GOE statistics than to Poisson
statistics in the CF, CC, and MI functional networks, revealing
a large extent of correlation among the eigenvalues in the
brain functional network [29,42]. However, no significant
differences in the NNSD were observed between the control
group and the ADHD group. Therefore, our results further
prove that the NNSD is not an effective means of detecting
the abnormalities in the brain functional network caused by
ADHD. As proposed in a previous study [29], the reason may
be that the short-range correlations among eigenvalues are
too strong to be affected by ADHD or other brain states,
reflecting the robustness of the brain system to external
stimulation.

2. Effective ADHD characterization by means of spectral
rigidity and number variance

Both the spectral rigidity and number variance can reflect
the long-range correlations among eigenvalues. Many studies
have proved that the spectral rigidity and number variance
are quite effective for characterizing different brain cognitive
states [29,42]. Therefore, the spectral rigidity and number
variance should also be considered for characterizing the
abnormalities in the brain functional network caused by
ADHD. Our results show that the spectral rigidity and number
variance exhibit similar behaviors as L varies. At small L,
the spectral rigidity and number variance can be predicted by
empirical GOE statistics, revealing the universal behavior of
the brain functional network. At larger L, they do not follow
these predictions but do take the same values in both the control
group and the ADHD group, reflecting the properties of the
brain functional network that are insensitive to ADHD. At a
sufficiently large value of L, the spectral rigidity and number
variance in the ADHD group were significantly different from
those in the control group, reflecting the specific changes to the
functional network caused by ADHD. However, the changes to
the spectral rigidity and number variance at sufficiently large
L were inconsistent among the CF, CC, and MI functional
networks.

First, in the CF functional network, the spectral rigidity
and number variance in the ADHD group were obviously
smaller than those in the control group. Previous studies have
demonstrated that an increase in spectral rigidity and number

variance suggests greater randomness of the complex network
[24,42]. Therefore, this result indicates that the CF functional
network in the ADHD group was more orderly than that in the
control group, which suggests that in the resting state, ADHD
patients exhibit an abnormality in the CF functional network
compared with normal subjects. In general, when normal
subjects are performing cognitive tasks, the CF functional
connectivity between certain regions is strengthened but is
decreased between other regions, which results in greater
randomness of the CF functional network [29]. The more
orderly CF functional network observed in ADHD patients in
the resting state reflects an abnormal increase in CF functional
connectivity.

Second, in the CC functional network, the spectral rigidity
and number variance in the ADHD group were obviously
larger than those in the control group, reflecting greater
randomness of the CC functional network in the ADHD
group. The association between the activity of one brain
region and the activities in other regions as well as the causal
sequence of these activities in time are characterized by the
corresponding CC. A more random CC functional network
indicates greater disorder in causality among different brain
regions, which leads to abnormal cooperation among regions
in their impact on the activity of a particular region, thereby
resulting in abnormality in the functional integration of the
brain.

Finally, in the MI functional network, the spectral rigidity
and number variance in the ADHD group were again larger
than those in the control group, indicating greater randomness
of the MI functional network in the ADHD group. In the brain
system, one brain region sends information to other regions
and obtains feedback from them, and this information flow
is measured by the MI. A given region receives integrated
information from many other regions. The greater randomness
of the MI functional network observed in the ADHD group
reflects a more chaotic information flow among different brain
regions. Therefore, information integration may be poorly
controlled in ADHD patients, leading to a decrease in the
global efficiency of the brain, as reported in a previous
study [3].

It has to been stressed that the length of eigenvalue for
each subject is crucial for the statistical results in RMT.
However, the number of brain regions is decided by the
brain atlas and it is not unlimited regarding to the practical
application of neuroimage technology. Fortunately, similar
results were obtained while the brain was divided into 106
regions according to the most commonly used Automated
Anatomical Labeling (AAL) atlas [63] (see the Appendix),
which further proves the reasonability of our results based on
the 444 brain regions. It is also important to note that ADHD
induces increased functional connectivity and increases the
largest eigenvalue of the brain functional network, which leads
to higher synchronization of both the undirected and directed
functional networks. However, the CF functional network is
more orderly, whereas the CC and MI functional networks are
more random. Apparently, the CF is fundamentally different
from the CC and MI. Analysis of functional connectivity and
the global properties of the eigenvalues are incapable of de-
tecting the differences between the CF functional connectivity
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and the CC and MI functional connectivity, but RMT remedies
this deficiency. This finding further supports the efficacy
of RMT in characterizing the intrinsic properties of the
complex brain system. However, a question arises regarding
why the levels of randomness differ between the undirected
(CF) and directed (CC and MI) functional networks even
though they all exhibit a strong degree of synchronization.
Currently, the physical mechanism of this phenomenon cannot
be explained because of a lack of sufficient evidence, and in the
future, this question should be investigated based on extensive
simulations.

In summary, we studied the brain functional network in
ADHD patients and normal subjects. We first found that
ADHD patients exhibit increased undirected and directed
functional connectivity as well as stronger synchronization
in the brain functional network. Second, we showed that the
largest eigenvalue of the brain functional network is increased
in ADHD patients. Finally, using RMT, we provided that in
ADHD patients, the undirected functional network is more
orderly and the directed functional networks are more random
compared with those of normal subjects. These findings not
only reveal a higher degree of linear dependence, stronger
causality, and greater transmission of information in ADHD
patients, but also indicate greater disorder in causality and the
information flow among brain regions.
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APPENDIX: RESULTS FOR THE 106 BRAIN REGIONS

In the case that the brain is divided into 106 regions
of interest (ROIs) according to the Automated Anatomical
Labeling (AAL) atlas [63], the changes caused by ADHD
in the functional connectivity (see Fig. 7), the eigenvalue
distribution and the largest eigenvalue (see Figs. 8 and 9), and
the shot-range and long-range correlation among eigenvalues
(see Figs. 10 and 11) are respectively consistent with those for
the 444 regions.

FIG. 7. The pdfs of the (a) CF, (b) CC, and (c) MI for the control
group and the ADHD group.

FIG. 8. The pdfs of the eigenvalues for the (a) CF, (b) CC, and (c)
MI functional networks in the control group and the ADHD group.

FIG. 9. The box plots of largest eigenvalues for the (a) CF, (b)
CC, and (c) MI functional networks in the control group and the
ADHD group.

FIG. 10. The probability distributions of the NNSD for the (a)
CF, (b) CC, and (c) MI functional networks in the control group and
the ADHD group, where the blue lines represent the empirical values
predicted by GOE and Poisson statistics.

FIG. 11. The spectral rigidity (upper panel) and number variance
(lower panel) for the (a) and (d) CF, (b) and (e) CC, and (c) and (f)
MI functional networks in the control group and the ADHD group.
The blue lines represent the empirical values predicted by GOE and
Poisson statistics.

052411-9



WANG, WANG, YANG, LI, WU, AND LIN PHYSICAL REVIEW E 94, 052411 (2016)

[1] A. De La Fuente, S. Xia, C. Branch, and X. Li, Fron. Hum.
Neurosci. 7, 10422 (2013).

[2] P. H. Wender, Psych. Clin. North Am. 21, 761 (1998).
[3] P. Lin, J. Sun, G. Yu, Y. Wu, Y. Yang, M. Liang, and X. Liu,

Brain Imaging Behav. 8, 558 (2013).
[4] D. S. Bassett and E. T. Bullmore, Curr. Opin. Neurol. 22, 340

(2009).
[5] E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).
[6] O. Sporns, Networks of the Brain (MIT, Cambridge, MA, 2011).
[7] J. Gonzalez-Castillo, C. W. Hoy, D. A. Handwerker, M. E.

Robinson, L. C. Buchanan, Z. S. Saad, and P. A. Bandettini,
Proc. Natl. Acad. Sci. USA 112, 8762 (2015).

[8] A. Baldassarre, C. M. Lewis, G. Committeri, A. Z. Snyder, G. L.
Romani, and M. Corbetta, Proc. Natl. Acad. Sci. USA 109, 3516
(2012).

[9] K. Konrad and S. B. Eickhoff, Hum. Brain Mapp. 31, 904 (2010).
[10] F. X. Castellanos and E. Proal, Trends Cogn. Sci. 16, 17 (2012).
[11] A. Kucyi, M. J. Hove, J. Biederman, K. R. Van Dijk, and E. M.

Valera, Hum. Brain Mapp. 36, 3373 (2015).
[12] J. R. Sato, M. Q. Hoexter, X. F. Castellanos, and L. A. Rohde,

PLoS One 7, e45671 (2012).
[13] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F.

Beckmann, T. E. Nichols, J. D. Ramsey, and M. W. Woolrich,
Neuroimage 54, 875 (2011).

[14] F. Ren and W.-X. Zhou, PLoS One 9, e97711 (2014).
[15] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral,

and H. E. Stanley, Phys. Rev. Lett. 83, 1471 (1999).
[16] J. Jeong, J. C. Gore, and B. S. Peterson, Clin. Neurophysiol.

112, 827 (2001).
[17] S. Bialonski and K. Lehnertz, Chaos 23, 033139 (2013).
[18] P. Lin, Y. Yang, J. Jovicich, N. De Pisapia, X. Wang, C.

S. Zuo, and J. J. Levitt, Brain Imaging Behav. 10, 212
(2016).

[19] C. Stam, B. Jones, G. Nolte, M. Breakspear, and P. Scheltens,
Cereb. Cortex 17, 92 (2007).

[20] R. Wang, P. Lin, and Y. Wu, Exploring Dynamic Temporal-
topological Structure of Brain Network within ADHD (Springer,
Netherlands, Dordrecht, 2015), pp. 93–98.

[21] L. Tian, T. Jiang, Y. Wang, Y. Zang, Y. He, M. Liang, M. Sui,
Q. Cao, S. Hu, M. Peng, and Y. Zhuo, Neurosci. Lett. 400, 39
(2006).

[22] X. H. Wang and L. Li, Eur. J. Radiol. 84, 947 (2015).
[23] R. Wang, J. Li, L. Wang, Y. Yang, P. Lin, and Y. Wu, Physica A

463, 219 (2016).
[24] J. N. Bandyopadhyay and S. Jalan, Phys. Rev. E 76, 026109

(2007).
[25] J. L. Gross and J. Yellen, Handbook of Graph Theory (CRC,

Boca Raton, Florida, 2004).
[26] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes

Amaral, T. Guhr, and H. E. Stanley, Phys. Rev. E 65, 066126
(2002).

[27] M. C. Munnix, T. Shimada, R. Schafer, F. Leyvraz, T. H.
Seligman, T. Guhr, and H. E. Stanley, Sci. Rep. 2, 644 (2012).

[28] H. Meng, W. J. Xie, Z. Q. Jiang, B. Podobnik, W. X. Zhou,
and H. E. Stanley, Sci. Rep. 4, 3655 (2014).

[29] R. Wang, Z.-Z. Zhang, J. Ma, Y. Yang, P. Lin, and Y. Wu, Chaos
25, 123112 (2015).

[30] J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. Lett. 97,
094102 (2006).

[31] J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. E 76, 036151
(2007).

[32] S. Jalan and J. N. Bandyopadhyay, Europhys. Lett. 87, 48010
(2009).

[33] S. Jalan, N. Solymosi, G. Vattay, and B. Li, Phys. Rev. E 81,
046118 (2010).

[34] E. P. Wigner, Characteristic Vectors of Bordered Matrices
with Infinite Dimensions I (Springer, Berlin, Heidelberg, 1993),
pp. 524–540.

[35] M. S. Santhanam and P. K. Patra, Phys. Rev. E 64, 016102
(2001).

[36] S. M. Gibson, S. P. Ficklin, S. Isaacson, F. Luo, F. A. Feltus,
and M. C. Smith, PLoS One 8, e55871 (2013).

[37] I. Osorio and Y. C. Lai, Chaos 21, 033108 (2011).
[38] F. Luo, Y. Yang, J. Zhong, H. Gao, L. Khan, D. K. Thompson,

and J. Zhou, BMC Bioinformatics 8, 299 (2007).
[39] T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997).
[40] S. Jalan and J. N. Bandyopadhyay, Physica A 387, 667

(2008).
[41] D. Mulhall, Phys. Rev. C 91, 014305 (2015).
[42] P. Seba, Phys. Rev. Lett. 91, 198104 (2003).
[43] http://fcon_1000.projects.nitrc.org/.
[44] http://afni.nimh.nih.gov/afni/.
[45] R. W. Cox, Comput. Biomed. Res. 29, 162 (1996).
[46] http://www.fmrib.ox.ac.uk/fsl/.
[47] A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A.

Mueller, J. Kossaifi, A. Gramfort, B. Thirion, and G. Varoquaux,
Front. Neuroinform. 8, 1 (2014).

[48] Z. Zhang, S. Sun, M. Yi, X. Wu, and Y. Ding, Biomed. Res. Int.
2015, 825136 (2015).

[49] H. Peng, F. Long, and C. Ding, IEEE T. Pattern. Anal. 27, 1226
(2005).

[50] R. A. Fisher, Biometrika 10, 507 (1915).
[51] S. Jalan, C. Sarkar, A. Madhusudanan, and S. K. Dwivedi, PLoS

ONE 9, 1 (2014).
[52] S. Jalan, Pramana J. Phys. 84, 285 (2015).
[53] W. Luo and P. Sarnak, Commun. Math. Phys. 161, 419 (1994).
[54] C. J. Honey, R. Kotter, M. Breakspear, and O. Sporns, Proc.

Natl. Acad. Sci. USA 104, 10240 (2007).
[55] J. Hlinka, M. Palus, M. Vejmelka, D. Mantini, and M. Corbetta,

Neuroimage 54, 2218 (2011).
[56] T. Conlon, H. J. Ruskin, and M. Crane, Physica A 388, 705

(2009).
[57] D. Hartman, J. Hlinka, M. Palus, D. Mantini, and M. Corbetta,

Chaos 21, 013119 (2011).
[58] D. A. P. Association, Diagnostic and Statistical Manual of

Mental Disorders, 5th ed. (American Psychiatric Publishing,
Arlington, 2013).

[59] F. X. Castellanos, D. S. Margulies, C. Kelly, L. Q. Uddin,
M. Ghaffari et al., Biol. Psychiat. 63, 332 (2008).
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