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Derivation of Hodgkin-Huxley equations for a Na+ channel from a master equation
for coupled activation and inactivation
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The Na+ current in nerve and muscle membranes may be described in terms of the activation variable m(t)
and the inactivation variable h(t), which are dependent on the transitions of S4 sensors of each of the Na+

channel domains DI to DIV. The time-dependence of the Na+ current and the rate equations satisfied by m(t)
and h(t) may be derived from the solution to a master equation that describes the coupling between two or
three activation sensors regulating the Na+ channel conductance and a two-stage inactivation process. If the
inactivation rate from the closed or open states increases as the S4 sensors activate, a more general form of
the Hodgkin-Huxley expression for the open-state probability may be derived where m(t) is dependent on both
activation and inactivation processes. The voltage dependence of the rate functions for inactivation and recovery
from inactivation are consistent with the empirically determined expressions and exhibit saturation for both
depolarized and hyperpolarized clamp potentials.
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I. INTRODUCTION

The opening and subsequent inactivation of Na+ channels
and the activation of K+ channels generate the action potential
in nerve and muscle membranes [1]. The time-dependence of
the Na+ current in the squid axon may be described in terms
of the expression m(t)3h(t), where the activation variable m(t)
and inactivation variable h(t) satisfy the rate equations

dm

dt
= αm − (αm + βm)m, (1)

dh

dt
= αh − (αh + βh)h, (2)

and αm, βm, αh, and βh are voltage-dependent rate functions for
activation and inactivation transitions within the membrane.

The Hodgkin-Huxley (HH) description of the Na+ current
is equivalent to an eight-state master equation where three
independent voltage sensors may activate and open the
channel, and independent inactivation may occur from each of
the closed or open states [2–4]. Although this master equation
is not consistent with the measurement of an almost zero
Na+ current during repolarization of an inactivated channel,
by assuming that the backward inactivation rate to the open
state is zero but the recovery rate to closed states increases
as the S4 sensors deactivate [5], and that inactivation is a
two-stage process where the rate functions satisfy microscopic
reversibility, the model provides a good description of the
recovery from inactivation, and the Na+ current during a
depolarizing clamp [6].

In this paper, it is shown that the Hodgkin-Huxley ex-
pression for the Na+ current and the rate equations for
activation and inactivation may be derived from a master
equation, which describes the coupling between two or three
activation sensors regulating the Na+ channel conductance and
a two-stage inactivation process. For a Na+ channel with two
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independent activation sensors, where the deactivation rate
during repolarization is slower between inactivated states than
between closed or open states, only four of the terms of the
solution to a six-state master equation for a depolarizing clamp
contribute to the open state O(t), which may be expressed as
m(t)2h(t). Assuming that the inactivation rate from the open
state is larger than the rate from closed states [7], the time-
course of entry into the inactivated state and the recovery from
inactivation may be approximated by biexponential functions,
in agreement with kinetic data from Na+ channels [6]. The
voltage dependence of the rate functions for inactivation and
recovery from inactivation have a similar form to empirical
expressions for Na+ channels [1,5], and in particular, the
exponential variation exhibits saturation for both depolarized
and hyperpolarized clamp potentials.

II. VOLTAGE CLAMP OF A Na+ CHANNEL WITH TWO
ACTIVATION SENSORS

The Na+ channel protein is composed of four domains DI
to DIV, each containing an S4 segment with positively charged
residues at every third position [3]. Based on voltage clamp
fluorometry, it has been shown that, in response to membrane
depolarization, the transverse motion of the charged S4
segments of the Na+ channel domains DI to DIII is associated
with activation, whereas the slower movement of DIV S4 is
correlated with the binding of an intracellular hydrophobic
motif that blocks the flow of ions through the inner mouth of
the pore [8]. This may occur for small depolarizations when the
ion channel is usually closed (closed-state inactivation) or for
larger depolarizations when the S4 segments of the domains
D1 to D3 are activated (open-state inactivation).

However, during repolarization of an inactivated Na+

channel, the OFF gating charge has a fast component which
may be attributed to the motion of the DI and DII S4 segments,
and a slow component, the “immobilized” portion, that is
generated by the conformational changes of the DIII and DIV
S4 segments [9,10]. For an inactivation modified mutant of
the human heart Na+ channel, it has been estimated that the
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FIG. 1. State diagram for Na+ channel gating where horizontal
transitions represent the activation of two voltage sensors (DIII and
either DI or DII) that open the pore, and vertical transitions represent
the two-stage inactivation process of the DIV voltage sensor and the
inactivation motif.

DIV S4 sensor contributes approximately 30% to the OFF
charge, and approximately 20% may be attributed to the DIII
S4 sensor, which is only immobilized when the inactivation
gate is intact. The slow component of the OFF gating charge
has the same time course as the Na+ channel recovery from
inactivation, and therefore, the rate-limiting step is the motion
of the DIV S4 sensor and not the unbinding of the inactivation
gate [11].

In order to account for the effect of double-cysteine mutants
of S4 gating charges on the ionic current of the bacterial
Na+ channel NaChBac, it has been proposed that at least
two transitions are required during the activation of each
voltage sensor [12]. This conclusion is consistent with an
earlier result that cross-linking a DIV S4 segment from the
extracellular surface inhibits inactivation during membrane
depolarization, whereas cross-linking the same segment from
the inside inhibits activation of the Na+ channel, and therefore,
the DIV S4 sensor translocates across the membrane in two
stages [13,14]. The measurement of currents for wild-type
and charge-neutralized mutant Na+ channels gives additional
support to the conclusion that the activation of the DIV S4
sensor is correlated with ion channel inactivation [6].

In this section, we assume that the activation of two voltage
sensors regulating the Na+ channel conductance (DIII S4 and
the S4 segment of either the DI or DII domains) is coupled
to a two-stage inactivation process (see Fig. 1), and therefore,
the kinetics may be described by a master equation where the
occupation probabilities of the closed states C1, C2, A1, and
A2, the open states O and A3, and the inactivated (or blocked)

states B1, B2, and B3 are determined by

dC1

dt
= −(αi1 + αC)C1(t) + βCC2(t) + βi1A1(t), (3)

dC2

dt
= −(αi2 + αO + βC)C2(t) + αCC1(t)

+βOO(t) + βi2A2(t), (4)

dO

dt
= αOC2(t) − (βO + αi3)O(t) + βi3A3(t), (5)

dA1

dt
= αi1C1(t) − (αA1 + βi1 + γi1)A1(t)

+ δi1B1(t) + βA1A2(t), (6)

dA2

dt
= αi2C2(t) − (αA2 + βA1 + βi2 + γi2)A2(t)

+ δi2B2(t) + αA1A1(t) + βA2A3(t), (7)

dA3

dt
= αi3O(t) − (βA2 + βi3 + γi3)A3(t)

+ δi3B3(t) + αA2A2(t), (8)

dB1

dt
= γi1A1(t) − (αB1 + δi1)B1(t) + βB1B2(t), (9)

dB2

dt
= γi2A2(t) + αB1B1(t) + βB2B3(t)

− (αB2 + βB1 + δi2)B2(t), (10)

dB3

dt
= γi3A3(t) + αB2B2(t) − (βB2 + δi3)B3(t). (11)

The master equation may be derived from a Smoluchowski
equation applied to the resting and barrier regions of an energy
landscape for each of the S4 sensors in the domains DI to
DIV [15,16]. The translocation of the S4 segment through
the gating pore for Na+ (or K+) channels requires sufficient
energy to overcome several barriers that are dependent on the
Coulomb force between positively charged residues on the S4
sensor and negatively charged residues on neighboring helices,
the dielectric boundary force, the electric field between internal
and external aqueous crevices, and hydrophobic forces [17]. It
is assumed that the transition rates for each stage of inactivation
are dependent on single-barrier activation, and therefore, are
proportional to exp(-U) where U is the voltage-dependent
height of the barrier [18]. However, if the Na+ channel S4
sensors of the DI, DII, or DIII domains are activated in two
stages, the HH rate functions αm and βm may be approximated
by two-state expressions [19].

In order to simplify the solution of Eqs. (3) to (11), it is
initially assumed that

αik = αi1, βik = βi1, γik = γi1, (12)

for each k, and to ensure that the Na+ current recovers
from inactivation when the S4 sensors that regulate Na+

conductance deactivate, it is further assumed that

δi1 > δi2 > δi3 ≈ 0. (13)

From microscopic reversibility or the principle of detailed
balance, the product of the transition rates in the clockwise
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and anticlockwise directions are equal [3], and we may write

δ21
αB1

βB1
= αA1

βA1
= αC

βC

,

δ32
αB2

βB2
= αA2

βA2
= αO

βO

, (14)

where δ21 = δi2/δi1 < 1 and δ32 = δi3/δi2 < 1.
Assuming that the first forward and backward transitions for

inactivation are rate limiting (βik � δik and γik � αik , for k =
1 to 3) [19,20], and that βik + γik , for each k, is greater than the
activation-deactivation rate functions αA1, βA1, αA2, βA2 [6],
the occupation probabilities A1, A2, and A3 rapidly attain a
quasi steady state before the relaxation of the closed, open,
and inactivated states (see Fig. 2):

A1 ≈ αi1C1 + δi1B1

βi1 + γi1
, (15)

A2 ≈ αi2C2 + δi2B2

βi2 + γi2
, (16)

A3 ≈ αi3O + δi3B3

βi3 + γi3
, (17)

and therefore, Eqs. (3) to (11) may be reduced to a six-state
master equation (see Figs. 3 and 4):

dC1

dt
= −(ρ1 + αC)C1(t) + βCC2(t) + σ1B1(t), (18)

dC2

dt
= αCC1(t) − (αO + βC + ρ2)C2(t) +βOO(t) + σ2B2(t),

(19)
dO

dt
= αOC2(t) − (βO + ρ3)O(t) + σ3B3(t), (20)

dB1

dt
= ρ1C1(t) − (αB1 + σ1)B1(t) + βB1B2(t), (21)

dB2

dt
= ρ2C2(t) + αB1B1(t) − (αB2 + βB1 + σ2)B2(t)

+βB2B3(t), (22)

dB3

dt
= ρ3O(t) + αB2B2(t) − (βB2 + σ3)B3(t), (23)

where the derived forward and backward rate functions for
inactivation ρk and σk are, in general, voltage dependent
[21–23]:

ρk ≈ αikγik

βik + γik

, (24)

σk ≈ δikβik

βik + γik

. (25)

The rates ρk and σk are dependent on the ratio βik/γik

and either αik or δik , and therefore, are generally small
relative to the activation-deactivation rate functions despite
the large value of βik + γik . For a 15-state master equation
for a Na+ channel [6], βik + γik , for each k, is greater than
the activation-deactivation rate functions αAj ,βAj for each
j, and therefore, may be approximated by a ten-state gating
model. If the conditions βik � δik and γik � αik for each k

are not satisfied, the inactivation of the Na+ current during
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FIG. 2. During a depolarizing clamp potential for a Na+ channel,
the occupation probabilities A1, A2, and A3 (see Fig. 1) determined
from the numerical solution of a nine-state master equation, rapidly at-
tain a quasi-steady state (dashed line) when γik = 20.1 and βik(V ) =
3.4 exp(−2.3V/25) are sufficiently large, and the rate functions
are αik(V ) = 1 for each k, δi1(V ) = 2.5, δi2(V ) = 0.0045δi1(V ),
δi3(V ) = 0.05δi2(V ), αC = 2αm, βC = βm, αO = αm, βO = 2βm,
αA1 = αC , βA1 = βC , αA2 = αO , βA2 = βO , αB1 = 3αC , βB1 =
0.0135βC , αB2 = 3αO , βB2 = 0.15βO (ms−1), and αm = 0.1(V +
25)/(1 − exp[−(V + 25)/10]), βm = 4 exp[−(V + 50)/18] are the
HH rate functions for Na+ channel activation, where V = −10 mV
and the resting potential is −50 mV. However, if the inactivation
rates are reduced by an order of magnitude to γik = 2.0 and βik(V ) =
0.34 exp(−2.3V/25), the occupation probabilities A1(t), A2(t), and
A3(t) (dotted red line) are not constant during the relaxation of the
closed, open, and inactivated states.

a depolarizing clamp potential may be biexponential. From
the assumptions of Eqs. (12) and (13), the inactivation rate
is not state dependent (ρk = ρ1 for each k), the recovery
rates σ1 > σ2 > σ3 ≈ 0, and therefore, from the microscopic
reversibility conditions in Eq. (14),

βB1αC < βCαB1, (26)

βB2αO < βOαB2. (27)

The nonzero eigenvalues of the characteristic equation for
Eqs. (18) to (23) are λj = −ωj for j = 1 to 5, where ωj
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FIG. 3. During a depolarizing clamp potential for a Na+ channel,
the solution of a nine-state master equation for γik = 20.1, βik(V ) =
3.4 exp(−2.3V/25) for each k (dashed line), and γik = 2.0, βik(V ) =
0.34 exp(−2.3V/25) (dotted red line), may be approximated by the
solution of the corresponding six-state master equation (solid line)
when γik and βik(V ) are sufficiently large, and A1, A2, and A3 are
constant during the relaxation of the closed, open, and inactivated
states (see Fig. 2).

may be approximated by the roots ωkF and ωkG of the cubic
polynomials F (ω) and G(ω), defined such that ω1F � ω2F �
ω3F , and ω1G � ω2G � ω3G (see Fig. 5 and Eq. (A1) of the
Appendix) and where

F (ω) = ω3 − f1ω
2 + f2ω − f3, (28)
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FIG. 4. The nine-state system for Na+ channel gating in Fig. 1
may be approximated by a six-state system when βik � δik and
γik � αik , for k = 1 to 3, and βik + γik is greater than the activation-
deactivation rate functions αA1, βA1, αA2, and βA2 where ρk and σk

are derived rate functions for a two-stage Na+ inactivation process,
defined in Eqs. (24) and (25).
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FIG. 5. The voltage dependence of ωj = −λj , j = 1 to 5 (solid
lines), where λj is a nonzero eigenvalue of the characteristic equation
of the six-state master equation for Na+ channel gating, may be
approximated by ω1F � ω2F � ω3F (dotted lines), and ω1G � ω2G �
ω3G (dashed lines), the roots of the cubic polynomials F (ω) and
G(ω), and ω1 = αh + βh ≈ ω1G + ω1F , where the rate functions are
αik(V ) = 1, γik(V ) = 20.1, βik(V ) = 3.4 exp(−2.3V/25), for each k,
δi1(V ) = 2.5, δi2(V ) = δi3(V ) = 0, αC = 2αm, βC = βm, αO = αm,
βO = 2βm, αB1 = 3αC , βB1 = 0.0135βC , αB2 = 3αO , βB2 = 0.15βO

(ms−1).

f1 = αO + βO + αC + βC + ρ1 + ρ2 + ρ3,

f2 = (βC + ρ2)(βO + ρ3) + ρ3αO

+ (αC + ρ1)(αO + βO + βC + ρ2 + ρ3) − αCβC,

f3 = αOρ3(αC + ρ1) + (βO + ρ3)(ρ2αC + ρ1βC + ρ1ρ2),

(29)

and

G(ω) = ω3 − g1ω
2 + g2ω − g3, (30)

g1 = αB1 + βB1 + αB2 + βB2 + σ1,

g2 = αB1(αB2 + βB2) + βB1βB2 + σ1(βB1 + αB2 + βB2),

g3 = σ1βB1βB2. (31)

For a depolarizing potential, we may define ωk ≈ ωkF ,
ωk+2 ≈ ωkG, for k = 2,3, whereas for a hyperpolarizing po-
tential, ωk ≈ ωkG, ωk+2 ≈ ωkF . If βh is the rate of inactivation
and αh is the rate of recovery from inactivation, it may be
shown from the characteristic equation (see Appendix) that
ω1 = αh + βh ≈ ω1G + ω1F , where

ω1G = g3

ω2Gω3G

, (32)

ω1F = f3

ω2F ω3F

. (33)

If αi1, βi1, γi1 are, in general, exponential functions of V ,
the rate of inactivation,

βh ≈ ω1F = ρ1 = αi1

1 + βi1/γi1
, (34)

has an exponential voltage dependence for small clamp
potentials but saturates for a larger depolarization when αi1 is
weakly dependent on voltage (see Fig. 6 and the Appendix) [1].
In this section, it is assumed that the activation sensors
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FIG. 6. Voltage dependence of the HH Na+ channel
inactivation rate functions βh = 1/{1 + exp[−(V + 20)/10]} and
αh = 0.07 exp[−(V + 50)/20] (dashed lines) may be approximated
by the expression in Eq. (34) and by the smaller root of
Eq. (35) (dotted red lines), derived from a master equation for
a six-state system where activation and two-stage inactivation
are interdependent, and the rate functions are defined in Fig. 5.
The HH Na+ channel activation rate functions αm = 0.1(V +
25)/{1 − exp[−(V + 25)/10]}, βm = 4 exp[−(V + 50)/18] and
αm + βm (dot dashed lines) may also be approximated by
two stage expressions αm,2 = 2.3 exp[0.32(V + 50)/25]/{1 +
8.37 exp[−1.3(V + 50)/25]}, βm,2 = 4.2 exp[−0.77(V + 50)/
18]{0.077 + 8.37 exp[−1.3(V + 50)/25]}/{1 + 8.37 exp[−1.3(V +
50)/25]}, and αm,2 + βm,2 (solid lines) [19].

are independent and αC = 2αm, αO = αm, βC = βm, βO =
2βm [2], where αm and βm are HH rate functions for Na+

channel activation, and may be approximated by two-stage
expressions (see Fig. 6) [19]. If the DIII S4 sensor is the
slowest to deactivate (βB1 � βB2) [10,11], ω1G and ω2G are
solutions of the equation (see Appendix)

ω2 − ω(αB1 + βB1 + σ1) + σ1βB1 = 0, (35)

and the rate of recovery from inactivation αh ≈ ω1G. For the
rate functions of Fig. 5, αh ≈ σ1 when βB1 � σ1, whereas
for βB1 � σ1 the rate of recovery for inactivation αh ≈ βB1.
From the microscopic reversibility conditions of Eq. (14),
we may assume that βB1 ∝ βC and αB1 ∝ αC and therefore,
αh(V ) and βm(V ) have a similar voltage dependence for small
hyperpolarizing potentials, which is consistent with the HH
determination of the rate functions [βm(V ) ≈ 57αh(V )] [1].

If the Na+ channel is depolarized to a clamp potential V

from a large hyperpolarizing holding potential, the solution of
Eqs. (18) to (23) for σ1 > σ2 > σ3 ≈ 0, when σ2 is small, may
be approximated by the solution of the corresponding master
equation, for which σ1 > σ2,σ3 = 0,

C1(t) = k1C1s + 
5
j=1kj+1C1j exp(−ωj t), (36)

C2(t) = k1C2s + 
5
j=1kj+1C2j exp(−ωj t), (37)

O(t) = k1Os + 
5
j=1kj+1Oj exp(−ωj t), (38)

B1(t) = k1B1s + 
5
j=1kj+1B1j exp(−ωj t), (39)

B2(t) = k1B2s + 
5
j=1kj+1B2j exp(−ωj t), (40)

B3(t) = k1B3s + 
5
j=1kj+1B3j exp(−ωj t), (41)

where

k−1
1 = 
2

j=1(Cjs + Bjs) + Os + B3s , (42)

C1s = σ1βB1βB2E0,

C2s = σ1βB1βB2αC(βO + ρ1),

Os = σ1βB1βB2αCαO,

B1s = βB1βB2f3,

B2s = βB2(αB1 + σ1)f3 − ρ1σ1βB2E0,

B3s = αB2(αB1 + σ1)f3 − ρ1σ1αB2E0 + ρ1σ1αCαOβB1,

(43)

E0 = ρ1αO + (βO + ρ1)(βC + ρ1), f3 is defined in Eq. (29),
the amplitudes of the terms for each state are dependent on

C1j = E(ωj ), (44)

C2j = −αC(ωj − βO − ρ1), (45)

Oj = αCαO, (46)

B1j = −F (ωj )

σ1
, (47)

B2j = 1

σ1βB1
[−ρ1σ1E(ωj ) + (ωj − αB1 − σ1)F (ωj )],

(48)

B3j = −ρ1αCαO + αB2B2j

ωj − βB2
, (49)

and, as ρk = ρ1 for each k (see Appendix),

E(ω) = ω2 − ω(αO + βO + βC + 2ρ1) + ρ1αO

+ (βC + ρ1)(βO + ρ1). (50)

Applying the initial conditions [C1(0) = 1 and C2(0) =
O(0) = B1(0) = B2(0) = B3(0) = 0], the parameters kj ,j =
2 to 6 may be determined from the solution in Eqs. (36)
to (41). For a depolarizing potential, ω4 ≈ ω2G, ω5 ≈ ω3G

and therefore, from Eqs. (28) and (47), assuming that the
difference between the roots of F (ωj ) and G(ωj ) is sufficiently
large, |F (ω2)|,|F (ω3)| � |F (ω4)|,|F (ω5)| and |Bk2|,|Bk3| �
|Bk4|,|Bk5| for each k. Therefore, to satisfy the initial condi-
tions, k5,k6 ≈ 0 and

k2 = 1 − k1σ1βB1βB2ω2ω3

(ω2 − ω1)(ω3 − ω1)
, (51)

k3 = −1 − k1σ1βB1βB2ω1ω3

(ω2 − ω1)(ω3 − ω2)
, (52)

k4 = 1 − k1σ1βB1βB2ω1ω2

(ω3 − ω1)(ω3 − ω2)
. (53)

That is, each term of the open state probability in Eq. (38)
with eigenvalue λ = −ω4 ≈ −ω2G or −ω5 ≈ −ω3G has an
amplitude close to zero. If it is assumed that ρ1 = ρ2 = ρ3 and
the two activation sensors are independent, the roots of Eq. (28)
are ω1F = ρ1, ω2F = αm + βm + ρ1, ω3F = 2(αm + βm) + ρ1
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(see Appendix) and

O(t) ≈ m(t)2h(t), (54)

m(t) = αm

αm + βm

(1 − exp[−(αm + βm)t]), (55)

h(t) = αh + βh exp[−(αh + βh)t]

αh + βh

. (56)

When the recovery rates σ1 > σ2 > σ3 are chosen to
satisfy microscopic reversibility, and σ2,σ3 are sufficiently
small, it may be shown from the numerical solution of the
six-state master equation that O(t) = m(t)2h(t) is still a good
approximation, where m(t) and h(t) are defined in Eqs. (55)
and (56), and are derived from the analytical solution of
the corresponding master equation with σ2 = σ3 = 0 (see
Fig. 7). It may also be shown from Eqs. (36) and (37) that
C1(t) ≈ [1 − m(t)]2h(t) and C2(t) ≈ 2m(t)[1 − m(t)]h(t), as
the amplitude kj+1C1j and kj+1C2j for j = 4,5 are close to
zero, even though the magnitude of C1j and C2j increase with
membrane depolarization.

The inactivated state probability B3(t) in Eq. (41) has the
largest contribution from the term with the slowest relaxation
rate ω1, with smaller contributions from the other terms,
including those with eigenvalues −ω4 and −ω5 because,
although k5,k6 ≈ 0, |B34| and |B35| in Eq. (49) are corre-
spondingly large. However, following the rapid decay of the
terms with the largest relaxation rates, the probability for the
inactivated state B3(t) may be approximated by a biexponential
function, and therefore, consistent with the experimental
determination of the time-course of the development of fast
inactivation in Na+ channels [6,24] (see Fig. 8).

Assuming that the time-dependence of the Na+ chan-
nel open state probability is described by the solution of
a phenomenological master equation, as well as the HH
expression m(t)2h(t), the conditions for model reduction,
|F (ω2)|,|F (ω3)| � |F (ω4)|,|F (ω5)| for depolarizing poten-
tials, provide constraints upon the choice of empirical
activation-deactivation rate functions. If ω2 ≈ ω4 and ω3 ≈ ω5

for a weakly coupled model of Na+ channel activation and
inactivation, these conditions are not satisfied and therefore,
the terms with eigenvalues −ω4 and −ω5 have a nonzero
amplitude and also contribute to the time-dependence of O(t).

When the Na+ channel is hyperpolarized to a clamp
potential V from a large depolarizing holding potential, the
solution of Eqs. (18) to (23) for σ1 > σ2,σ3 = 0 is given by
Eqs. (36) to (41), where k1 and the stationary solution are
defined in Eqs. (42) and (43), and for j = 1 to 5

C1j = σ1βB1βB2E(ωj )

F (ωj )
, (57)

C2j = −σ1βB1βB2αC(ωj − βO − ρ1)

F (ωj )
, (58)

Oj = σ1βB1βB2αOαC

F (ωj )
, (59)

B1j = −βB1βB2, (60)
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FIG. 7. During a depolarizing clamp potential for a Na+ chan-
nel, from the numerical solution of a six-state master equation
that satisfies microscopic reversibility (see Fig. 4), the open-state
probability O(t) (solid line) ≈m(t)2h(t) (dashed, dotted, or dot-
dashed), C1(t) (solid line) ≈[1 − m(t)]2h(t) (dashed, dotted, or
dot-dashed), and C2(t) (solid line) ≈2m(t)[1 − m(t)]h(t) (dashed,
dotted, or dot-dashed), where m(t) and h(t) are solutions of rate
equations for activation and inactivation in Eqs. (55) and (56),
derived from the analytical solution of the master equation with
σ2 = σ3 = 0, and the rate functions are αik(V ) = 1, γik(V ) =
20.1, βik(V ) = 3.4 exp(−2.3V/25) for k = 1 to 3, δi1(V ) = 2.5,
δi2(V ) = 0.0045δi1(V ), δi3(V ) = 0.05δi2(V ), αC = 2αm, βC = βm,
αO = αm, βO = 2βm, αB1 = 3αC , βB1 = 0.0135βC , αB2 = 3αO ,
βB2 = 0.15βO , αm = 0.1(V + 25)/{1 − exp[−(V + 25)/10]}, βm =
4 exp[−(V + 50)/18] (ms−1).

B2j = βB2

(
−ρ1σ1E(ωj )

F (ωj )
+ ωj − αB1 − σ1

)
, (61)

B3j = −ρ1σ1αCαOβB1βB2 + αB2F (ωj )B2j

F (ωj )(ωj − βB2)
, (62)

and E(ω) is defined in Eq. (50).
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FIG. 8. During a depolarizing clamp potential for a six-state mas-
ter equation for Na+ channel gating, the probability of the inactivated
state B3(t) (solid line) determined from the numerical solution of
a master equation (see Fig. 7), may be approximated by the bi-
exponential function 0.85 − 0.95 exp(−0.24t) + 0.1 exp(−2.6t) for
V = −30 mV, and by the triexponential 0.98 − 1.04 exp[−0.7t] −
0.36 exp(−3.0t) + 0.42 exp(−4.9t) for V = −10 mV, derived from
the analytical solution of the corresponding master equation with
σ2 = σ3 = 0.

For the nonzero eigenvalues, λj = −ωj for j = 1 to 5, of
the characteristic equation [see Eq. (A1) of the Appendix],
ω1 = αh + βh ≈ ω1G + ω1F and

ωk ≈ ωkG, ωk+2 ≈ ωkF (63)

for k = 2,3 (see Fig. 5). Applying the initial conditions
[C1(0) = C2(0) = O(0) = B1(0) = B2(0) = 0 and B3(0) =
1], and assuming that the difference between the roots
of F (ωj ) and G(ωj ) is sufficiently large, from Eqs. (28)
and (59), |F (ω4)|,|F (ω5)| � |F (ω2)|,|F (ω3)|, and hence
|C24| � |C22|,|C23|,|C25| and |O4|,|O5| � |O2|,|O3|. There-
fore, to satisfy the initial conditions, k5,k6 ≈ 0 and

k2 = − 1

(ω2 − ω1)(ω3 − ω1)
, (64)

k3 = 1

(ω2 − ω1)(ω3 − ω2)
, (65)

k4 = − 1

(ω3 − ω1)(ω3 − ω2)
. (66)

Assuming that αC = 2αm, αO = αm, βC = βm, βO = 2βm,
and that the DIII S4 sensor is the slowest to deactivate (βB1 �
βB2) [10,11], from Eq. (36), we may write

C1(t) ≈
(

βm

αm + βm

)2[
1 − exp(−ω1t)

×
(

1 + ω1{1 − exp[−(ω2 − ω1)t]}
ω2 − ω1

)]
, (67)

where the relaxation rates for biexponential recovery ω1 and ω2

are solutions of Eq. (35) (see Fig. 5), and the relative amplitude
of the ω1 and ω2 components is ω2/ω1.

When the recovery rates σ1 > σ2 > σ3 ≈ 0 are chosen
to satisfy microscopic reversibility, it may be shown from
the numerical solution of the six-state master equation that
the time course of the first closed-state probability during
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FIG. 9. During a hyperpolarizing clamp potential for a six-
state master equation for Na+ channel gating, the first closed-state
probability C1(t) (solid line) determined from the numerical solution
of a master equation (see Fig. 7), may be approximated by the bi-
exponential function 1.0 − 1.58 exp(−0.86t) + 0.58 exp(−2.5t) for
V = −100 mV, and by 1.0 − 2.2 exp(−2.5t) + 1.2 exp(−4.6t) for
V = −130 mV [see Eq. (67)], derived from the analytical solution of
the corresponding master equation (σ2 = σ3 = 0).

the recovery from inactivation may be approximated by
the biexponential expression in Eq. (67), where the relative
amplitude of the ω1 and ω2 terms is in agreement with the
kinetics determined from Na+ channels [6,24] (see Fig. 9).
However, for large negative potentials, ω2 ≈ βB1 � ω1 ≈ σ1,
and Eq. (67) reduces to the HH expression C1(t) = [βm/(αm +
βm)]2[1 − exp(−ω1t)]. For a weakly coupled master equation,
the conditions |F (ω4)|,|F (ω5)| � |F (ω2)|,|F (ω3)| are not
satisfied and therefore, the terms with eigenvalues −ω4 and
−ω5 also contribute to C1(t).

When the Na+ channel conductance is regulated by the
activation of three voltage sensors in the DI, DII, and DIII
domains, and coupled to a two-stage inactivation process
where σ1 > σ2 > σ3 > σ4 ≈ 0 are chosen to satisfy micro-
scopic reversibility (see Fig. 10), it may be shown from
the numerical solution of the master equation during a
depolarizing clamp potential, that O(t) ≈ m(t)3h(t) where
m(t) and h(t) are defined in Eqs. (55) and (56), and αh

and βh are approximated by the smallest roots of two

ΑC1

ΒC1

ΑC2

ΒC2

ΑB1

ΒB1

ΑB2

ΒB2

ΑO

ΒO

ΑB3

ΒB3

Ρ2Σ2Ρ1Σ1 Ρ3Σ3 Ρ4Σ4

C1 C2 C3 O

B1 B2 B3 B4

FIG. 10. State diagram for Na+ channel gating where horizontal
transitions represent the activation of DI, DII, and DIII voltage sensors
that open the pore, and vertical transitions represent a two-stage Na+

channel inactivation process, with derived rate functions ρk and σk

defined in Eqs. (24) and (25).
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FIG. 11. During a depolarizing clamp potential for an eight-state
system for Na+ channel gating, from the numerical solution of a mas-
ter equation that satisfies microscopic reversibility (see Fig. 10), the
open-state probability O(t) (solid line) ≈m(t)3h(t) (dashed, dotted,
or dot-dashed), where m(t) and h(t) are solutions of rate equations for
activation and inactivation in Eqs. (55) and (56), derived from the ana-
lytical solution of the six state master equation, and the rate functions
are αik(V ) = 1, γik(V ) = 20.1, βik(V ) = 3.4 exp(−2.3V/25) for k =
1 to 4, δi1(V ) = 2.5, δi2(V ) = 0.0045δi1(V ), δi3(V ) = 0.05δi2(V ),
δi4(V ) = 0.05δi3(V ), αm = 0.1(V + 25)/{1 − exp[−(V + 25)/10]},
βm = 4 exp[−(V + 50)/18], αC1 = 3αm, βC1 = βm, αC2 = 2αm,
βC2 = 2βm, αO = αm, βO = 3βm, αB1 = 3αC1, βB1 = 0.0135βC1,
αB2 = 3αC2, βB2 = 0.15βC2, αB3 = 3αO , βB3 = 0.15βO (ms−1).

quartic polynomials and may be determined from Eqs. (34)
and (35) (see Fig. 11). Similarly, during a hyperpolarizing
clamp potential, if βB1 � βB2,βB3 [10,11], the numerical
determination of the time-dependence of the first closed-state
probability may be approximated by a more general form of
Eq. (67) (see Fig. 12)

C1(t) =
(

βm

αm + βm

)3[
1 − exp(−ω1t)

×
(

1 + ω1{1 − exp[−(ω2 − ω1)t]}
ω2 − ω1

)]
, (68)
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FIG. 12. During a hyperpolarizing clamp potential for an eight-
state system for Na+ channel gating, from the numerical solution
of a master equation (see Fig. 11), the first closed-state probability
C1(t) (solid line) may be approximated by the biexponential function
1.0 − 1.6 exp(−0.86t) + 0.6 exp(−2.55t) for V = −100 mV, and by
1.0 − 2.3 exp(−2.5t) + 1.3 exp(−4.6t) for V = −130 mV, based on
Eq. (68) and the numerical determination of ω1 and ω2 from the
matrix of coefficients of the master equation.

where ω1 and ω2 are the relaxation rates for biexponential
recovery from inactivation, and the relative amplitude of the
terms is consistent with experimental values [6,24].

III. MASTER EQUATION MODEL OF A Na+ CHANNEL
WITH A STATE-DEPENDENT INACTIVATION RATE

In this section, we consider the effect of an increase in
the inactivation rate as the S4 sensors activate (ρ1 < ρ2 <

ρ3) [5,6,9], on the time-dependence of m(t) and h(t). If it is
assumed that the DIV S4 rate functions satisfy αik = αi1, γik =
γi1 for each k, and

βi1 > βi2 > βi3, (69)

the derived inactivation rate functions ρk and σk in Eqs. (24)
and (25) are dependent on the closed, open, or inactivated state.
In order to satisfy microscopic reversibility, we may write

δ21
αB1

βB1
= αA1

βA1
= αCβi1

βCβi2
, (70)

δ32
αB2

βB2
= αA2

βA2
= αOβi2

βOβi3
, (71)

and therefore, from Eq. (13), the rate functions satisfy the
inequalities Eqs. (26) and (27).

The nonzero eigenvalues of the characteristic equation,
Eq. (A1), are λj = −ωj for j = 1 to 5, where ωj may
be approximated by the roots ωkF and ωkG of the cubic
polynomials F (ω) and G(ω) (see Fig. 13 and the Appendix),
and assuming that the activation sensors are independent
(αC = 2αO and βO = 2βC) and ω1F = �1F , ω2F = αO +
βC + �2F , ω3F = 2(αO + βC) + �3F are the roots of F (ω)
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FIG. 13. The voltage dependence of ωj = −λj , j = 1 to 5 (solid
lines), where λj is a nonzero eigenvalue of the characteristic equation
of a master equation for a six-state system with state-dependent
Na+ inactivation, may be approximated by ω1F � ω2F � ω3F (dotted
lines), and ω1G � ω2G � ω3G (dashed lines), the roots of the cubic
polynomials F (ω) and G(ω) computed numerically, ω1 = αh + βh ≈
ω1G + ω1F and the rate functions are based on those determined
for Nav1.4 channels [6], αik(V ) = 2.1, γik(V ) = 24.9, for k =
1 to 3, βi1(V ) = 80 exp(−2.4V/25), βi2(V ) = 40 exp(−2.4V/25),
βi3(V ) = 2 exp(−2.4V/25), δi1(V ) = exp(−0.2V/25), δi2(V ) =
δi3(V ) = 0, αC = 14.9 exp(0.5V/25), αO = 7.45 exp(0.5V/25),
βC = 0.8 exp(−0.9V/25), βO = 1.6 exp(−0.9V/25), αB1 = 4αC ,
βB1 = 0.01βC , αB2 = 5αO , βB2 = 0.05βO (ms−1).
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FIG. 14. The voltage-dependence of the roots ω1F � ω2F � ω3F

of F (ω) determined numerically (dotted lines) may be approxi-
mated by the expressions �1F , αO + βC + �2F , and 2(αO + βC) +
�3F (dark gray lines), where �1F , �2F , and �3F are given in
Eqs. (A9), (A12), and (A13), and the voltage dependence of the roots
ω1G � ω2G � ω3G of G(ω) (dashed lines) may be approximated by
the expressions �1G, αB2 + βB1 + �2G, and αB1 + βB2 + �3G (light
gray lines) where �1G, �2G, and �3G are given in Eqs. (73), (74),
and (75), �G = 2 and the rate functions are defined in Fig. 13.
The inactivation rate βh ≈ �1F ≈ 2.1/{1 + exp[−(V + 15)/10]},
and therefore, has a similar voltage-dependence to the HH Na+

channel-inactivation rate function for the squid axon [1].

in Eq. (28), the rate of inactivation for a depolarizing potential
is βh ≈ �1F (see Fig. 14), where

�1F ≈ α2
Oρ3 + 2αOβCρ2 + β2

Cρ1

(αO + βC)2
, (72)

which reduces to Eq. (34) when the inactivation rate is not
dependent on the closed or open state. Therefore, the voltage
dependence of βh has contributions from the inactivation
rate ρk for each k, as well as the activation-deactivation
functions αO and βC . However, most of the voltage dependence
derives from ρk , and this is supported by the reduced voltage
dependence of the time constant for inactivation in the charge-
neutralized mutant Na+ channel DIV-CN [6].

For a hyperpolarizing potential, assuming that ω1G = �1G

< ω2G = αB2 + βB1 + �2G � ω3G = αB1 + βB2 + �3G are
the roots of the polynomial G(ω) in Eq. (30), it may be
shown that the rate of recovery from inactivation αh ≈ �1G

(see Appendix), where

�1G ≈ σ1βB1βB2

(αB2 + βB1 + �2G)(αB1 + βB2 + �3G)
, (73)

�2G ≈
D1 −

√
D2

1 − 4D2

2
, (74)

�3G ≈ σ1 − �1G − �2G, (75)

�1G = σ1βB1βB2

(αB2 + βB1 + �G)(αB1 + βB2 + σ1 − �G)
, (76)

D1 = αB1 + βB2 − αB2 − βB1 + σ1, D2 = αB1βB2 − αB1βB1

− αB2βB2 − �1G(αB1 + βB2) + σ1βB2, and the value of the

parameter �G is chosen so that �1G ≈ �1G. If αB1,�2G �
βB2, Eq. (73) reduces to

αh ≈ σ1βB1

αB2 + βB1 + �2G

, (77)

and may be approximated by an exponential function of V

when βB1 � αB2 + �2G [1], whereas for more negative po-
tentials, there is a gradual increase of αh toward the saturation
value σ1, in accord with the rate of recovery for inactivated
Na+ channels in hippocampal neurons (see Fig. 14) [5].
The recovery rate σ1 is only weakly voltage dependent for
hyperpolarizing potentials as βi1 � γi1, and therefore, most
of the voltage dependence of αh derives from the activation
and deactivation functions between inactivated states. For the
charge-neutralized mutant Na+ channel DIV-CN, the voltage
dependence of βi1(V ) is reduced so that βi1(V ) � γi1 and
σ1 � δi1, but the voltage dependence of αB2 and βB1 are not
affected, and therefore, the expression for αh in Eq. (77) is in
accord with the DIV-CN data describing a slow recovery from
inactivation [6].

The solution of the master equation, Eqs. (18) to (23),
for σ1 > σ2,σ3 = 0 and ρ1 < ρ2 < ρ3, is given by Eqs. (36)
to (41), where the stationary solution is

C1s = σ1βB1βB2E0,

C2s = σ1βB1βB2αC(βO + ρ3),

Os = σ1βB1βB2αCαO,

B1s = βB1βB2f3,

B2s = βB2(αB1 + σ1)f3 − ρ1σ1βB2E0,

B3s = αB2(αB1 + σ1)f3 − ρ1σ1αB2E0 + ρ3σ1βB1αCαO,

(78)

E0 = E(0) = ρ3αO + (βC + ρ2)(βO + ρ3), f3 is defined in
Eq. (29), and the amplitudes of the terms of each state are
dependent on

C1j = E(ωj ), (79)

C2j = −αC(ωj − βO − ρ3), (80)

Oj = αCαO, (81)

B1j = −F (ωj )

σ1
, (82)

B2j = 1

σ1βB1
[−ρ1σ1E(ωj ) + (ωj − αB1 − σ1)F (ωj )], (83)

B3j = −ρ3αCαO + αB2B2j

ωj − βB2
, (84)

where E(ω) = ω2 − (αO + βO + βC + ρ2 + ρ3)ω + (βC +
ρ2)(βO + ρ3) + αOρ3 (see Appendix).

If the Na+ channel is depolarized to a clamp potential V

from a large hyperpolarizing holding potential, the parameters
kj ,j = 2 to 6 may be determined from the solution in
Eqs. (36) to (41), and applying the initial conditions [C1(0) = 1
and C2(0) = O(0) = B1(0) = B2(0) = B3(0) = 0], it may be
shown that k5,k6 ≈ 0 and k2,k3,k4 are given by Eqs. (51)
to (53). If ρ1 < ρ2 < ρ3, and the recovery rates σ1 > σ2 > σ3
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are chosen to satisfy microscopic reversibility, where σ2,σ3

are small, it may be shown from the numerical solution of the
master equation that O(t) ≈ m(t)2h(t), where h(t) is defined
in Eq. (56), and the activation variable is dependent on both
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FIG. 15. During a depolarizing clamp potential for a six-state
system with state-dependent inactivation, from the numerical so-
lution of a master equation that satisfies microscopic reversibility,
the open-state probability O(t) (solid line) ≈k1Os + 
3

j=1kj+1Oj

exp(−ωj t) ≈ m(t)2h(t) (dashed, dotted, or dot-dashed), C1(t)
(solid line) ≈k1C1s + 
3

j=1kj+1C1j exp(−ωj t) (dashed, dotted, or
dot-dashed), and C2(t) (solid line) ≈k1C2s + 
3

j=1kj+1C2j

exp(−ωj t) (dashed, dotted, or dot-dashed), where m(t) and h(t) are
solutions of rate equations for activation and inactivation in Eqs. (A8)
and (A14), derived from the analytical solution of the corresponding
master equation with σ2 = σ3 = 0, and the rate functions are
based on those determined for Nav1.4 channels [6], αik(V ) = 2.1,
γik(V ) = 24.9, for k = 1 to 3, βi1(V ) = 80 exp[−2.4V/25], βi2

(V ) = 40 exp[−2.4V/25], βi3(V ) = 2 exp[−2.4V/25], δi1(V ) =
exp(−0.2V/25), δi2(V ) = 0.005δi1(V ), δi3(V ) = 0.2δi2(V ), αC =
14.9 exp[0.5V/25], αO=7.45 exp[0.5V/25], βC=0.8 exp[−0.9V/

25], βO = 1.6 exp[−0.9V/25], αB1 = 4αC , βB1 = 0.01βC , αB2 =
5αO , βB2 = 0.05βO (ms−1).
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FIG. 16. During a depolarizing clamp potential for a 15-state
master equation model of a Na+ channel with three activation
sensors and an opening step [6], the open-state probability O(t)
(solid line) ≈a exp(−ω1t)[1 − exp(−ωat)]3 (dashed, dotted, or dot-
dashed), where ω1 = 0.26 ms−1, ω2 = 2.5 ms−1, ωa = ω2 − ω1,
a = 0.18 for V = −40 mV, ω1 = 1.13 ms−1, ω2 = 4.34 ms−1,
ωa = 0.93(ω2 − ω1), a = 0.95 for V = -20 mV, and ω1 = 2.26 ms−1,
ω2 = 22.5 ms−1, ωa = 0.89(ω2 − ω1), a = 0.91, for V = 60 mV,
where ω1, ω2, and a are determined from a numerical solution of the
master equation, and ωa/(ω2 − ω1) is a parameter.

activation and inactivation rate functions (see Fig. 15 and the
Appendix)

m(t) = αO

αO + βC + �
{1 − exp[−(αO + βC + �)t]}, (85)

� = αO(ρ2 + 2ρ3) + βC(2ρ1 + ρ2)

αO + βC

− 3βh. (86)

The HH expression for the open state during membrane
depolarization also applies to strong coupling models where
the probability of inactivation from a closed state is small,
and inactivation generally occurs after activation and opening
of the channel [3]. In the case of a Na+ channel with three
cooperative activation sensors, the HH description of the
time-dependence of the open state O(t) = m(t)3h(t) is still
a good approximation if there is a separate opening step that
follows the activation of the voltage sensors [6] (see Fig. 16).
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FIG. 17. During a depolarizing clamp potential, the probability
of the Na+ channel inactivated state B3(t) of a six-state master
equation [see Eq. (41)] has the largest contribution from the terms
with relaxation rates ω1 and ω2, and the amplitude kj+1B3j ≈ 0 for
j > 3 (see Fig. 15).
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FIG. 18. During a depolarizing clamp potential for a six-state
system for Na+ channel gating, the probability of the inactivated
state B3(t) (solid line) determined from the numerical solution of a
master equation that satisfies microscopic reversibility, may be ap-
proximated by the biexponential function 0.98 − 1.0 exp(−0.12t) +
0.02 exp(−7.0t) for V = −40 mV, and by 0.996 − 1.23 exp(−1.3t) +
0.23 exp(−8.0t) for V =−10 mV, derived from the analytical solution
of the corresponding master equation (see Fig. 15).

Assuming that the inactivation rate ρ3 from the open state
is larger than the rates ρ1 and ρ2 from closed states [7], from
Eq. (41) the amplitude kj+1B3j ≈ 0 for j = 4,5 and

B3(t) ≈ αs

αs + βs

+ B31 exp(−ω1t)

(ω2 − ω1)(ω3 − ω1)

− B32 exp(−ω2t)

(ω2 − ω1)(ω3 − ω2)
+ a3 exp(−ω3t),

where B31 and B32 are defined in Eq. (84), and the amplitude
a3 of the ω3 term is small, and therefore B3(t) may be
approximated by a biexponential function (see Figs. 17
and 18), where the ratio of the amplitude of the ω1 and ω2 terms
is similar to experimental values for Nav1.4 channels [6]. From
the numerical solution of a 15-state model of Na+ channel
gating during a depolarizing clamp potential, the inactivated
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FIG. 19. During a depolarizing clamp potential, the probability
of the (open) inactivated state B(t) (solid line) determined from the
numerical solution of a fifteen state master equation for Na+ channel
gating [6], may be approximated by the biexponential function
0.999 − 1.36 exp(−0.69t) + 0.37 exp(−3.2t) for V = −30 mV, and
by 1 − 1.32 exp(−1.31t) + 0.32 exp(−7.2t) for V = −10 mV.
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FIG. 20. During a hyperpolarizing clamp potential for a six-state
system with state dependent Na+ inactivation, from the numerical
solution of the master equation that satisfies microscopic reversibility,
the first closed-state probability C1(t) (solid line) may be approx-
imated by the biexponential function 0.996 − 1.16 exp(−0.74t) +
0.16 exp(−7.1t) for V = −150 mV, and by 1.0 − 1.51 exp(−2.6t) +
0.51 exp(−8.4t) for V = −180 mV [see Eq. (67)], derived from the
analytical solution of the corresponding master equation (see Fig. 15).

state probability is a sum of exponential terms but may be
approximated by a biexponential function for physiological
times (see Fig. 19).

For the six-state model of Na+ channel gating, it has been
assumed that the DIII sensor is the slowest to deactivate, and
therefore, the time course of recovery from inactivation is
given by Eq. (67) (see Fig. 20). However, by comparison,
for a 15-state master equation model of the Na+ channel, the
deactivation rates between inactivated states are equal and,
thus, the first closed-state probability during a hyperpolarizing
clamp potential has contributions from several exponential
terms but may also be approximated by a biexponential
function (see Fig. 21) [6].
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FIG. 21. During a hyperpolarizing clamp potential, the first
closed-state probability C1(t) (solid line) determined from the numer-
ical solution of a 15-state master equation for a Na+ channel [6], may
be expressed as a sum of exponential terms, but is approximated by the
biexponential function 0.91 − 1.3 exp(−1.24t) + 0.4 exp(−4.2t) for
V = −110 mV, and by 0.99 − 1.42 exp(−3.55t) + 0.43 exp(−11.7t)
for V = −150 mV.
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IV. CONCLUSION

Hodgkin and Huxley described the time-dependence of
the Na+ current in the squid giant axon membrane during
a depolarizing clamp, in terms of the expression m(t)3h(t)
where the activation variable m(t) and inactivation variable
h(t) satisfy rate equations [1]. An alternative description of
the Na+ current in nerve and muscle membranes is provided
by a master equation for coupled channel activation and
inactivation processes where the backward inactivation rate
to the open state is small, but the recovery rate to closed states
increases as the activation sensors in the domains DI, DII, and
especially DIII, deactivate. This model accounts for the small
Na+ current during repolarization of an inactivated channel,
the saturation of the rate of recovery from inactivation for large
hyperpolarized potentials, and the delay in the time-course of
the recovery from inactivation [5]. If inactivation of the Na+

channel is a two-stage process, the model can also account for
the kinetics and voltage dependence of Na+ inactivation for
wild-type and mutant channels [6].

In this paper, we consider the coupling between two voltage
sensors that regulate the Na+ channel conductance and a
two-stage inactivation process, where the first forward and
backward inactivation transitions are rate-limiting, ensuring
that the inactivation decay during a depolarizing voltage clamp
is exponential. As the Na+ current following inactivation is
close to zero until the S4 sensors of the DIII, and either DI or
DII domains deactivate, we have assumed that σ1 > σ2 > σ3 ≈
0. If σ2 and σ3 are small, the eigenvalues of the reduced six-state
master equation that satisfies microscopic reversibility are
approximated by the solutions of the characteristic equation
for σ1 > σ2,σ3 = 0. Therefore, the slowest relaxation ω1 is
determined by the inactivation rate ρ1 when the inactivation
rate is uniform between states, and by a linear combination of
ρ1, ρ2, and ρ3, when the inactivation rate increases with S4
activation, where the exponential voltage dependence of ρk ,
for each k, saturates for a large depolarizing potential [1].
For a hyperpolarizing clamp of the Na+ channel, the rate
of recovery from inactivation is dependent on the backward
inactivation rate σ1 to the first closed state, as well as the rate
functions of the DIII S4 sensor between inactivated states.
The voltage dependence of the derived rate functions for
inactivation and recovery from inactivation have a similar
form to empirical expressions for Na+ channels in the squid
axon [1], hippocampal neurons [5], and Nav1.4 channels [6].

For a hyperpolarizing clamp potential, as the recovery rate
σ1 > σ2 > σ3 ≈ 0, it may be assumed that the deactivation rate
functions between closed and open states are greater than those

between inactivated states (βO > βB2,βC > βB1), in order to
satisfy microscopic reversibility. Therefore, the closed-state
terms with eigenvalues of the characteristic equation that are
determined by the roots of the polynomial F (ω) have an
amplitude that are close to zero, and as the DIII S4 sensor
is the slowest to deactivate (βB1 � βB2) [10,11], the time-
dependence of the recovery from inactivation is biexponential,
and therefore, in agreement with the kinetic data from Nav1.4
channels [6].

For a depolarizing clamp of a Na+ channel, assuming
that βO > βB2 and βC > βB1, each term of the open-state
probability with eigenvalue λ = −ω, where ω approximates
the roots ω2G and ω3G of the polynomial G(ω), also has an
amplitude close to zero. A further simplification is possible
when it is assumed that the activation sensors are independent
(αC = 2αO,βO = 2βC) and it may be shown that the time-
dependence of the open state O(t) = m(t)2h(t). When the rates
δi2 and δi3 are small, the analytical solution provides a good
approximation to the numerical solution of the corresponding
master equation that satisfies microscopic reversibility, and the
HH expression for the open-state probability is still valid for
larger values of δi2 and δi3, comparable to those determined
for phenomenological master equation models of the Na+

channel. Assuming that the inactivation rate from the open
state is larger than the rate from closed states, the time-
dependence of the probability for entry into the inactivated
state has the largest contribution from the ω1 and ω2 terms and,
therefore, may be approximated by a biexponential function,
as described experimentally for Na+ channels [6].

In most nerve membrane Na+ channels, the activation of
three voltage sensors regulate the Na+ channel conductance,
and by application of similar constraints on the activation and
deactivation rate functions for inactivated and closed states, the
time-dependence m(t)3h(t) of the Na+ current may be derived
from the solution to an eight state master equation for coupled
activation and inactivation, and is also a good approximation
when there is a separate opening step that follows the activation
of cooperative sensors. For models of the Na+ channel where
the inactivation rate from the closed or open states increases
as the S4 sensors activate, a more general form for the HH
expression for the open state probability may be derived where
m(t) and h(t) are dependent on both activation and inactivation
processes.

APPENDIX

The Jacobian matrix of the six-state system of Eqs. (18)
to (23) is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(αC + ρ1) βC 0 σ1 0 0

αC −(αO + βC + ρ2) βO 0 σ2 0

0 αO −(βO + ρ3) 0 0 σ3

ρ1 0 0 −(αB1 + σ1) βB1 0

0 ρ2 0 αB1 −(αB2 + βB1 + σ2) βB2

0 0 ρ3 0 αB2 −(βB2 + σ3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Assuming that the recovery rate σ2,σ3 = 0, and that the
solution is a sum of terms of the form exp(λt), where λ = −ω

is an eigenvalue, the characteristic equation is

F (ω)G(ω) − σ1[ρ1E(ω)R(ω) + ρ2αCβB1S(ω)] = 0, (A1)

where F (ω) and G(ω) are given by Eqs. (28) and (30), and

E(ω) = ω2 − (αO + βO + βC + ρ2 + ρ3)ω

+ (βC + ρ2)(βO + ρ3) + ρ3αO,

R(ω) = ω2 − (βB1 + αB2 + βB2)ω + βB1βB2,

S(ω) = ω2 − (βO + βB2 + ρ3)ω + βB2(βO + ρ3)

+αOβB2ρ3/ρ2.

The constant term of Eq. (A1) is zero, and hence λ = 0 is
an eigenvalue. The nonzero eigenvalues of the characteristic
equation for Eqs. (18) to (23) are λj = −ωj for j = 1 to 5,
and assuming that the difference between the roots of F (ω)
and G(ω) is sufficiently large, the magnitude of the σ1 term
in Eq. (A1) is small relative to either F (ω) or G(ω), and
ωj may be approximated by the roots of Eqs. (28) and (30),
defined such that ω1F � ω2F � ω3F , and ω1G � ω2G � ω3G

(see Figs. 5 and 13). From Eq. (A1), as the coefficient of ω is
approximately f3g2 + f2g3,

ω1ω2ω3ω4ω5 ≈ f3g2 + f2g3, (A2)

and therefore,

ω1 ≈ f3

ω2F ω3F

g2

ω2Gω3G

+ f2

ω2F ω3F

g3

ω2Gω3G

, (A3)

where g2 ≈ ω2Gω3G and f2 ≈ ω2F ω3F . If βh is the rate of
inactivation and αh is the rate of recovery from inactivation,
ω1 = αh + βh ≈ ω1G + ω1F . To ensure that the Na+ current
recovers from inactivation when the S4 sensors that regulate
Na+ conductance deactivate, it may be assumed that σ1 >

σ2 > σ3 ≈ 0 and therefore, to satisfy microscopic reversibility,
from Eqs. (26) and (27), βB1αC < βCαB1 and βB2αO <

βOαB2. If the Na+ channel is depolarized to a clamp potential
V from a large hyperpolarized holding potential [C1(0) = 1
and C2(0) = O(0) = B1(0) = B2(0) = B3(0) = 0], the solu-
tion of Eqs. (18) to (23) for σ1 > σ2 > σ3 ≈ 0, when σ2,σ3 are
sufficiently small, may be approximated by the solution of the
corresponding master equation for which σ1 > σ2,σ3 = 0. We
may define ωk ≈ ωkF , ωk+2 ≈ ωkG, for k = 2,3 and therefore,
from Eqs. (28) and (82), |F (ω2)|,|F (ω3)| � |F (ω4)|,|F (ω5)|
and |Bk2|,|Bk3| � |Bk4|,|Bk5| for each k. Therefore, to satisfy
the initial conditions, k5,k6 ≈ 0 and

k2 + k3 + k4 = −k1σ1βB1βB2,

k2ω1 + k3ω2 + k4ω3 = 0,

k2ω
2
1 + k3ω

2
2 + k4ω

2
3 = 1,

with the solution

k2 = 1 − k1σ1βB1βB2ω2ω3

(ω2 − ω1)(ω3 − ω1)
,

k3 = −1 − k1σ1βB1βB2ω1ω3

(ω2 − ω1)(ω3 − ω2)
,

k4 = 1 − k1σ1βB1βB2ω1ω2

(ω3 − ω2)(ω3 − ω1)
.

From Eq. (42),

k−1
1 = 
2

j=1(Cjs + Bjs) + Os + B3s ,

and assuming that ρkσ1 terms are small, for each k, from
Eqs. (29), (31), and (78),

C1s + C2s + Os = σ1βB1βB2[E0 + αC(βO + ρ3) + αCαO]

≈ f2g3,


3
j=1Bjs ≈ [(αB1 + σ1)(αB2 + βB2) + βB1βB2]f3

≈ f3g2,

where f2 ≈ ω2F ω3F , g2 ≈ ω2Gω3G. Therefore,

k−1
1 ≈ σ1βB1βB2ω2F ω3F + f3ω2Gω3G,

k1Os ≈ αCαO

ω2F ω3F

αh

αh + βh

,

k1σ1βB1βB2ω2F ω3F ≈ αh

αh + βh

.

From the open-state probability in Eq. (38),

O(t) ≈ αCαO

ω2ω3

αh

αh + βh

+ αCαO

(ω2 − ω1)(ω3 − ω1)

βh exp(−ω1t)

αh + βh

×
{

1 − ω3 − ω1

ω3 − ω2
exp[−(ω2 − ω1)t]

+ ω2 − ω1

ω3 − ω2
exp[−(ω3 − ω1)t]

}
. (A4)

If it is assumed that ρ1 = ρ2 = ρ3, and the two activation
sensors are independent (αC = 2αm,αO = αm,βC =
βm,βO = 2βm), from Eq. (28) we may write ω1F = ρ1,
ω2F = αm + βm + ρ1, ω3F = 2(αm + βm) + ρ1, ω2F −
ω1F = ω3F − ω2F = αm + βm, ω3F − ω1F = 2(αm + βm),
and

O(t) ≈
(

αm

αm + βm

)2
αh

αh + βh

+ βh exp(−ω1t)

αh + βh

×
(

αm

αm + βm

)2

{1 − exp[−(αm + βm)t]}2, (A5)

and hence

O(t) ≈ m(t)2h(t), (A6)

m(t) = αm

αm + βm

{1 − exp[−(αm + βm)t]}, (A7)

h(t) = αh + βh exp[−(αh + βh)t]

αh + βh

. (A8)

It may also be shown from the closed-state probabilities in
Eqs. (36) and (37) that C1(t) = [1 − m(t)]2h(t), and C2(t) =
2m(t)[1 − m(t)]h(t). However, if ρ1 < ρ2 < ρ3, assuming that
αC = 2αO , βO = 2βC and ω1F ≈ �1F , ω2F = αO + βC +
�2F , ω3F = 2(αO + βC) + �3F are roots of the polynomial
F in Eq. (28),

�1F ≈ α2
Oρ3 + 2αOβCρ2 + β2

Cρ1

(αO + βC)2
, (A9)
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�1F + �2F + �3F ≈ ρ1 + ρ2 + ρ3, (A10)

3�1F + 2�2F + �3F ≈ αO

αO + βC

(ρ1 + 2ρ2 + 3ρ3)

+ βC

αO + βC

(3ρ1 + 2ρ2 + ρ3),

(A11)

with the solution

�2F ≈ αO(ρ2 + 2ρ3) + βC(2ρ1 + ρ2)

αO + βC

− 2�1F , (A12)

�3F ≈ (ρ1 − ρ3)(αO − βC)

(αO + βC)
+ �1F . (A13)

Defining � = �2F − �1F , as ω3F − ω1F ≈ 2(ω2F − ω1F ),
Eq. (A4) may be expressed as O(t) ≈ m(t)2h(t), where h is
defined in Eq. (A8) and

m(t) = αO

αO + βC + �
{1 − exp[−(αO + βC + �)t]},

(A14)

a more general form of the HH expression for m in Eq. (A7).
If the Na+ channel is hyperpolarized to a clamp potential
V from a large depolarized holding potential [C1(0) =
C2(0) = O(0) = B1(0) = B2(0) = 0 and B3(0) = 1], the so-
lution of Eqs. (18) to (23) for σ1 > σ2 > σ3 ≈ 0 may be
approximated by the solution of a master equation for
which σ1 > σ2,σ3 = 0, and the deactivation rate functions
satisfy βO > βB2,βC > βB1, in order to satisfy microscopic
reversibility. For a hyperpolarizing potential, we may define
ωk ≈ ωkG, and ωk+2 ≈ ωkF , for k = 2,3, and as ω2F and
ω3F are roots of F (ω), assuming that the difference between
the roots of F (ωj ) and G(ωj ) is sufficiently large, from
Eqs. (28) and (59), |F (ω4)|,|F (ω5)| � |F (ω2)|,|F (ω3)|, and
hence |C24| � |C22|,|C23|,|C25| and |O4|,|O5| � |O2|,|O3|.
Therefore, to satisfy the initial conditions, k5,k6 ≈ 0,

k2 + k3 + k4 = 0,

k2ω1 + k3ω2 + k4ω3 = 0,

k2ω
2
1 + k3ω

2
2 + k4ω

2
3 = −1,

with the solution

k2 = − 1

(ω2 − ω1)(ω3 − ω1)
,

k3 = 1

(ω2 − ω1)(ω3 − ω2)
,

k4 = − 1

(ω3 − ω2)(ω3 − ω1)
.

From Eq. (36), as ρk ≈ 0 for each k, the closed-state probabil-
ity,

C1(t) ≈ βCβO

βCβO + αCβO + αCαO

+
3
j=1kj+1

σ1βB1βB2E(ωj )

F (ωj )
exp(−ωj t), (A15)

and as βO � βB2,βC � βB1, we may write E(ωj ) ≈ βCβO ,
F (ωj ) ≈ ωj (βCβO + αCβO + αCαO), and Eq. (A15) be-
comes

C1(t) ≈ βCβO

βCβO + αCβO + αCαO

×
[

1 − σ1βB1βB2

ω1(ω2 − ω1)(ω3 − ω1)
exp(−ω1t)

+ σ1βB1βB2

ω2(ω2 − ω1)(ω3 − ω2)
exp(−ω2t)

− σ1βB1βB2

ω3(ω3 − ω1)(ω3 − ω2)
exp(−ω3t)

]
. (A16)

If it is assumed that αB2 + βB1 � σ1 and ω1G = �1G <

ω2G = αB2 + βB1 + �2G � ω3G = αB1 + βB2 + �3G are the
roots of the polynomial G(ω) in Eq. (30), it may be shown that

�1G ≈ σ1βB1βB2

(αB2 + βB1 + �2G)(αB1 + βB2 − �2G)
,

�2G ≈
D1 −

√
D2

1 − 4D2

2
,

�3G ≈ σ1 − �1G − �2G,

�1G = σ1βB1βB2

(αB2 + βB1 + �G)(αB1 + βB2 + σ1 − �G)
,

where D1 = αB1 + βB2 − αB2 − βB1 + σ1, D2 = αB1βB2 −
αB1βB1 − αB2βB2 − �1G(αB1 + βB2) + σ1βB2, the value of
the parameter �G is chosen so that �1G ≈ �1G, and if
αB1,�2G � βB2, we may write

αh ≈ �1G ≈ σ1βB1

αB2 + βB1 + �2G

.

However, the HH rate function αm ≈ 0 for a hyperpolarizing
potential, and assuming that the DIII S4 sensor is the slow-
est to deactivate [10,11], D1 ≈ βB2 � D2 ≈ (αB1 − αB2 +
σ1 − �1G)βB2 and therefore, �2G ≈ D2/D1 = αB1 − αB2 +
σ1 − �1G, �3G = αB2 − αB1, ω3G = αB2 + βB2, ω1Gω2G =
σ1βB1βB2/ω3 ≈ σ1βB1, and ω1G, ω2G are solutions of

ω2 − ω(αB1 + βB1 + σ1) + σ1βB1 = 0.

From Eq. (A16), as ω1,ω2 � ω3, and ω1ω2ω3 = σ1βB1βB2,

C1(t) ≈ βCβO

βCβO + αCβO + αCαO

×
[
1 − ω2

ω2 − ω1
exp(−ω1t) + ω1

ω2 − ω1
exp(−ω2t)

]
,

and if the two activation sensors are independent (αC =
2αm,αO = αm,βC = βm,βO = 2βm), we may write

C1(t) ≈
(

βm

αm + βm

)2[
1 − exp(−ω1t)

×
(

1 + ω1{1 − exp[−(ω2 − ω1)t]}
ω2 − ω1

)]
. (A17)
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