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We demonstrate an equivalence between two widely used methods of community detection in networks, the
method of modularity maximization and the method of maximum likelihood applied to the degree-corrected
stochastic block model. Specifically, we show an exact equivalence between maximization of the generalized
modularity that includes a resolution parameter and the special case of the block model known as the planted
partition model, in which all communities in a network are assumed to have statistically similar properties.
Among other things, this equivalence provides a mathematically principled derivation of the modularity function,
clarifies the conditions and assumptions of its use, and gives an explicit formula for the optimal value of the

resolution parameter.

DOI: 10.1103/PhysRevE.94.052315

I. INTRODUCTION

Community detection, sometimes called network cluster-
ing, is the division of the nodes of an observed network into
groups such that connections are dense within groups but
sparser between them [1-4]. Not all networks support such
divisions, but many do, and the existence of good divisions is
often taken as a hint of underlying semantic structure or pos-
sible mechanisms of network formation, making community
detection a useful tool for interpreting network data.

The development of methods or algorithms to perform
community detection on empirical networks has been a
popular pursuit among researchers in physics, mathematics,
statistics, and computer science—a tremendous number of
such algorithms have been published in the past decade or
so [1-5]. In this paper we study two of the most popular and
widely used methods for community detection, the method
of modularity maximization and the method of maximum
likelihood as applied to the stochastic block model. Building
on previous work by ourselves and others [6—8], we show that,
different though they at first appear, these two methods are in
fact exactly equivalent, for appropriate choices of models and
parameters, which we specify. This sheds light in particular
on the modularity maximization method, which is generally
motivated with heuristic arguments [9,10], although there have
been efforts to place it on a firmer footing, particularly the
generalized modularities of Reichardt and Bornholdt [11] and
the random-walk based derivation of Lambiotte et al. [12].
Our results provide a rigorous derivation for the modularity
and demonstrate that modularity maximization is optimal
under appropriate conditions, but also highlight the method’s
limitations. In particular, we show that modularity maximiza-
tion effectively assumes that communities in a network are
statistically similar, and it is not guaranteed to give good results
for networks where this is not the case.

II. COMMUNITY DETECTION

We begin by describing the two methods of community
detection that we study, in their most widely accepted forms,
beginning with the method of modularity maximization.
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A. Modularity maximization

Modularity maximization operates by defining a benefit
function, called the modularity, that measures the quality of
divisions of a network into communities. One optimizes this
benefit function over possible divisions of the network of
interest to find the one that gives the highest score, taking this
to be the definitive division of the network. Since the number
of possible divisions of a network is exponentially large,
we normally cannot perform the optimization exhaustively,
so we turn instead to approximate optimization methods, of
which many have been tried, including greedy algorithms
[10,13], extremal optimization [14], spectral relaxation [15],
genetic algorithms [16], simulated annealing [17,18], and
belief propagation [8]. The popular Louvain algorithm for
community detection [19], which is built into a number
of network analysis software packages, uses a multiscale
modularity optimization scheme and is one of the fastest
community detection methods in practice. Overall, modularity
maximization is perhaps the most widely used of all methods
for community detection for networks, although it is also
known to have some drawbacks [20,21], as discussed below.

The definition of the modularity function is straightforward
[9]. We desire a benefit function that, given a network and a
candidate division of that network into groups, returns a score
that is larger if the division is a “good” one and smaller if it
is “bad.” The heuristic notion used to define the modularity
is that a good division is one that places most of the edges
of a network within groups and only a few of them between
groups.

Let us represent our network by its adjacency matrix. For
an undirected unweighted network of n nodes, numbered 1 to
n, the adjacency matrix A is the real symmetric n x n matrix
with elements A;; = 1 if there is an edge between nodes i and
j and O otherwise. Let us consider a division of the network
into g nonoverlapping groups, numbered 1 to ¢, and let us
denote by g; the number of the group to which node i is
assigned. Thus, the complete vector g of group assignments
specifies the division of the network. Then the number of
edges that fall within groups, for this particular division, is
equal to 1 >i; Aijdgg;» where §;; is the Kronecker § and the
leading factor of a half prevents double counting of edges.
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The number of in-group edges alone, however, is not a good
measure of the quality of a division, since it can be trivially
maximized by putting all the nodes in one of the g groups and
none in any of the others. This would put 100% of edges inside
groups but clearly doesn’t constitute a useful division of the
network. Instead, therefore, modularity measures not just the
number of edges within groups but the difference between that
number and the expected number of such edges, were edges
placed at random within the network.

Suppose we take our observed network and randomize the
positions of its edges. We keep the total number of edges the
same but we reposition them between the nodes at random, in a
manner to be determined shortly. And suppose that, following
this randomization, the probability that nodes i and j are
connected by an edge is P;;. Then the expected number of
edges within groups after randomization is 5 Z P;jdg,,; and
the modularity is proportional to the actual number of edges
minus the expected number, thus:
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where m is the total number of edges in the network and
is included here by convention only—it makes Q equal to
a fraction of edges rather than an absolute number, which
makes modularity values more easily comparable between
networks of different size. For the purposes of maximizing
the modularity, which is our main concern here, the factor of
m makes no difference at all. The position of the maximum
does not depend on overall constant factors.

Note that if we now put all nodes in the same group, then

840, = 1 foralli,jand
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since, as we have said, the number of edges in the network
is held constant during randomization, and hence }_;; P;; =
> ; Aij = 2m. Thus, we no longer get a high modularlty score
for putting all nodes in a single group together. The maximum
of modularity occurs for some other (nontrivial) division of the
nodes, which we take to be the best division of the network.
This is the method of modularity maximization.

It remains to determine what P;; is. The value depends on
the particular scheme we use to randomize the positions of the
edges. The simplest scheme would be just to reposition the
edges uniformly at random, every position having the same
probability as every other. In effect, the network is replaced
by a random graph with the same number m of edges. For a

network of n nodes there are (5) places to put an edge, and
hence the probability of filling any of them with one of the m
edges is

m
()
independent of i and j. (Technically this is the ex-
pected number of edges not the probability, but normally

P = 3)
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m < (5) so that probability and expected number are closely
equal.)

In practice, however, this choice does not work very well
because it fails to respect the degrees of the nodes in the
network. The probabilities of connections between nodes
depend strongly on the total number of connections nodes
have—their degrees—with nodes of high degree being much
more likely to be connected than nodes of low degree [9]. For
reasons that will become clear in this paper, it is important to
include this effect in the definition of modularity if things are
to work correctly.

Instead, therefore, we consider a constrained randomization
of the edges in the network in which we preserve the
node degrees, but otherwise position the edges at random.
This kind of randomization is well known in the study of
networks: it gives rise to the random graph ensemble known
as the configuration model [22,23]. After randomization, the
probability of connection between two nodes is equal to

kik

Pij = 2—mj (4)

where k; = Z A;; is the degree of node i and m is once again
the number of edges in the network. (Again, this is technically
the expected number of edges, but the probability and expected
number are closely equal.)

This is the choice that is most commonly used in the
definition of the modularity. With this choice the modularity
is given by

1 kik;
Q= m Z(AU - 2_mj>‘sgfgj’ (&)

t

which is the form in which it is most often written.

There is a further twist, however, because even this
definition does not always work well. As shown by Fortunato
and Barthélémy [20], community detection by modularity
maximization using the definition of Eq. (5), while it works in
many situations, has one specific shortcoming: it is unable
to find community structure in networks with many small
communities. In particular, if the number of communities in
a network is greater than about +/2m, then the maximum
modularity will not correspond to the correct division. The
maximum will instead tend to combine communities into
larger groups and fail to resolve the smallest divisions in the
network.

To address this problem, Arenas et al. [24] proposed a
generalized modularity function that can be written in the

form
1 kik;
00 =5 - Z(Au - yz—m’)ég,-g,-- ©)
)
(A similar generalization was proposed previously on different
grounds by Reichardt and Bornholdt [11].)

When the parameter y = 1, Eq. (6) is the same as the
traditional modularity of Eq. (5), but other choices allow us to
vary the relative weight given to the observed and randomized
edge terms. If one places more weight on the observed
edge term (by making y smaller), the maximum modularity
division favors, and the method therefore tends to find larger
communities. If one places more weight on the randomized
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edge term (larger y), the method finds smaller communities.
(Note that when y # 1 Eq. (2) no longer applies.)

There has not previously been any fundamental theory
dictating what value of y one should use, but this is one of
the questions on which we will shed light in this paper. (We
note, however, that a network can, in principle, simultaneously
contain communities with a range of different sizes, in which
case there may be no one “correct” value of y [24,25].)

B. Statistical inference

The other method of community detection we consider is
the method of statistical inference, as applied to the stochastic
block model and its variants. With this method, one fits a
generative model of a network to observed network data
and the parameters of the fit tell us about the structure of
the network in much the same way that fitting a straight
line through a set of data points can tell us about their
slope.

The model most commonly used in this context is the
stochastic block model, which is a random graph model of
a network with community structure [26-28]. One takes some
number n of nodes, initially without any edges, and divides
them into ¢ groups in some way, with g; being the group
to which node i is assigned, as previously. Then one places
undirected unweighted edges between nodes independently
at random, with the probability w,; of an edge between a
particular pair of nodes depending only on the groups r and s
to which the nodes belong. Thus, there is a symmetric g x g
matrix of parameters w,, that determine the probabilities of
edges within and between every pair of groups. If the diagonal
elements w,, of this matrix are larger than the off-diagonal
elements, then networks generated by the model have a higher
probability of edges within groups than between them and
hence have traditional community structure.

In fact, the stochastic block model is often studied in a
slightly different formulation in which one places not just a
single edge between any pair of nodes but a Poisson distributed
number of edges with mean w,,. Thus, w,, is the expected
number, rather than the probability, of edges between nodes
in groups r and s, and the networks generated by the model
can in principle have multiedges, meaning there can be more
than one edge between the same pair of nodes. Moreover,
one typically also allows the network to contain self-edges,
edges that connect a node to itself, which are also Poisson
distributed in number, with mean %wrr for a node in group
r. (The factor of half is included solely because it makes the
algebra simpler.) The inclusion of multiedges and self-edges
in the model can in some cases add a useful level of realism,
as in web or citation networks, for instance: a web page can
link to the same other page repeatedly; a paper can cite another
paper repeatedly. In other cases, multiedges or self-edges are
less realistic. However, most real-world networks are also very
sparse, meaning that the values of the edge probabilities w,g
are very small. In this situation, the density of multiedges
and self-edges in the network will itself be small and can
usually be neglected [29]. At the same time, the Poisson
version of the model is technically easier to handle than
the Bernoulli version. In this paper we use the Poisson
version.
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The definition of the model above is in terms of its use
to generate networks. When applied to community detection,
however, the model is used in the “reverse” direction to infer
structure by fitting it to data. In this context, one hypothesizes
that an observed network, with adjacency matrix A, was
generated from the stochastic block model, and attempts to
work out what values of the model parameters must have been
used in the generation. The parameters in this case are the edge
probabilities w,; and the group memberships g;.

Given particular values of the parameters we can write down
the probability, or likelihood, that the observed network was
generated from the block model, thus

(la)gg)Aii/z w;’é

2778i8i — Wy, 0. /2 & —w,

P(A|Q,g) = H(lA—)!e gii/ 1_[ Ty/e @sisi - (7)
i N2 i<j i

where €2 denotes the complete matrix of values w,; and we have
adopted the common convention that a self-edge is represented
by a diagonal adjacency matrix element A;; = 2 (and not 1 as
one might at first imagine).

The position of the maximum of this quantity with respect
to 2 and g tells us the values of the parameters most likely to
have generated the observed network. Here we are interested
primarily in the group assignments g, which tell us how
the network divides into groups. Alternatively (and usually
more conveniently), we can maximize the logarithm of the
likelihood. Taking (natural) logs of Eq. (7), we have

log P(A|Q,g)
1 1 1 1 |
= lZ EA,‘Z' IOg Ea)gig,. — Ea)gigi — IOg EA,‘,’ .
+ ) (Aijlogwg,, — wg, —log Ajjl). (8)
i<j

The terms %Ai,- log %, log(%A,-j)!, and log A;;! are all inde-
pendent of the parameters and do not affect the position of
the maximum, so they can be ignored, and the log-likelihood
simplifies to

1
log P(AI.) = 5 D (Aijlogwge, —wgg). (9
ij
where we have neglected constants. The optimal division of

the network into communities is then given by maximizing
this quantity with respect to both g and €2.

C. Degree-corrected block model

As with the modularity, however, this is not the whole story.
This approach fares poorly when applied to most real-world
networks because it doesn’t respect the node degrees in the
network. The stochastic block model as described here (in
either Bernoulli or Poisson versions) generates networks that
have a Poisson degree distribution, which is very different from
the broad distributions seen in empirical networks. This means
that, typically, the model does not fit observed networks well
for any choice of parameter values. It’s as if one were trying
to fit a straight line through an inherently curved set of data
points. Even the best fit of such a line will not be a good fit.
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There are no good fits when the model you are fitting is simply
wrong.

The conventional solution to this problem is to use a slightly
different model, the degree-corrected block model [29], which
can fit networks with any degree distribution. In this model
the nodes are again assigned to groups g; and edges placed
independently at random between them, but now the expected
number of edges between nodes i and j is (kjk;/2m) w,g
(where r,s are the groups to which the nodes belong as
before and k;,k; are the degrees) or a half that number for
self-edges. The factor of 2m in the denominator is optional
but convenient since, as mentioned earlier, k;k;/2m is the
probability of an edge in the configuration model and hence,
with this definition, w,; quantifies the probability of edges
relative to the configuration model.

Following the same line of reasoning as before, and again
neglecting constants that have no effect on the position of the
likelihood maximum, the log-likelihood for this model is

1 kik
log P(A[2,g) = 5 Z(Aij logwg,g, — 2_m]“)g,gj>- (10)
ij

Community detection now involves the maximization of
this quantity with respect to the parameters €2,g to find
the best fit of the model to the observed network. This
maximization can be achieved in a number of ways. As with
the modularity, there are too many possible group assignments
g to maximize exhaustively on any but the smallest of
networks, but researchers have successfully applied a variety
of approximate methods, including label switching algorithms
[28], Kernighan—Lin-style greedy algorithms [29,30], spectral
methods [7], Monte Carlo [27,31], and belief propagation
[32,33].

III. THE PLANTED PARTITION MODEL
AND MODULARITY MAXIMIZATION

We now come to the central result of this paper, the
equivalence of modularity maximization to a particular
case of the maximum likelihood method described above.
We previously discussed a version of this equivalence in the
context of work on spectral algorithms [6,7] and it has also
been discussed by Zhang and Moore [8] in the context of
finite-temperature ensembles of graph partitions. Building on
these works, our purpose in this paper is to make explicit the
exact equivalence of the two approaches and investigate some
of its consequences.

The planted partition model [34,35] is a special case of the
stochastic block model in which the parameters w,, describing
the community structure take only two different values:

o ifr=s,
@rs = {a)out ifr #£s. an

This is a less flexible model than the full stochastic block
model. It effectively assumes that all communities in the
network are similar in the sense of having the same in-
group and between-group connection rates. Nonetheless, for
networks that do have this property, fits to the model should
recover the community structure accurately, and indeed it has
been proved that such fits are optimal in that case [32,36,37].
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In practice, if one wanted to apply the planted partition
model, one should in almost all cases use a degree-corrected
version of the kind described in Sec. IIC. Let us explore
the form of the log-likelihood, Eq. (10), for such a model.
Following Refs. [6,7] we note that Eq. (11) implies that

Wrs = (Win — Wour)drs + Wouts (12)

log ;s = (log win — l0g Wou)drs + l0g Wour, — (13)

where §,, is the Kronecker 4, as previously. Substituting these
forms into Eq. (10), we find the log-likelihood for the degree-
corrected planted partition model to be

log P(A[2,2)
1
=32 Aij [%g.; log
ij

1 kik;
3 ; 2_mj[(a)in — Wou)dg g, + a)out]

Win + log woul]
w

out

1 in 2 : in — Wou klk
— L og 1) <Aij 3 (w Wout) j >5g;g/
2 Wout m (log win — log wou) 2m

+ m(log wour — Wout)

1 kik;
where B and C are constants that depend on wj, and wqy but
not on g, and

Win — Wout

14 (15)

log wi, — 108 Weyt |
We have also made use of ) ,; A;j =} ; ki =2m in the
second equality of Eq. (14).

To perform community detection, one would now maximize
this expression with respect to both the group assignments
g; and the parameters wi, and w,,. But suppose for a
moment that we already know the correct values of wj,
and woy, leaving us only to maximize with respect to the
group assignments. Comparing Eq. (14) with Eq. (6), we see
that, apart from overall constants, Eq. (14) is precisely the
generalized modularity Q(y), and hence the likelihood and
the modularity have their maxima with respect to the g; in
the same place. Thus, community detection by maximization
of the likelihood for the planted partition model with known
values of wj, and wg, is equivalent to maximizing the
generalized modularity for the corresponding value of y, given
by Eq. (15). (We leave it as an exercise for the reader to
show that a similar equivalence applies between maximizing
the likelihood for the non-degree-corrected stochastic block
model and the modularity when one makes the choice [Eq. (3)]
for Pl‘ j')

Among other things, this result tells us what the correct
value of the resolution parameter y is for the generalized mod-
ularity, an issue that has hitherto been undecided. The correct
value, in the sense of the making modularity maximization
equivalent to the maximum likelihood fit, is given by Eq. (15).
An immediate corollary is that in most cases the conventional
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choice y = 1, corresponding to the original, nongeneralized
modularity function of Eq. (5), is not correct.

In most real-life situations, however, we do not in fact know
the values of the parameters w;, and wqy, and hence we cannot
normally employ Eq. (15) directly to calculate y. The correct
values of wj, and w,y can of course always be estimated by
maximizing the log-likelihood of Eq. (10), though this would
defeat the point of using the modularity in the first place. In
Sec. III A we present an alternative method for estimating y
that operates within the modularity maximization formalism.
For the moment, however, let us proceed under the assumption
that, by one means or another, we have made a good estimate
of the value of y.

The equivalence between modularity maximization and
maximum likelihood methods has a number of immediate
implications. First of all, it provides a derivation of the
modularity that is more rigorous and principled than the
usual heuristic arguments: modularity maximization (with
the correct choice of y) is equivalent to fitting a network to a
degree-corrected version of the planted partition model using
the method of maximum likelihood. It also explains why the
standard degree-dependent choice, Eq. (4), for the definition of
the modularity is better than the uniform choice of Eq. (3). Itis
for the same reason that the degree-corrected block model is the
correct choice for the analysis of most real-world networks: the
uniform choice effectively assumes a network with a Poisson
degree distribution, which is a poor approximation to most
empirical networks. The degree-dependent choice, by contrast,
fits networks of any degree distribution.

The equivalence of modularity and maximum likelihood
methods also implies that modularity maximization is a
consistent method of community detection, in the technical
sense used, for example, by Bickel and Chen [28], meaning
that under suitable conditions it will correctly and without bias
find community structure where present. Specifically, if one
applies the method to networks that are themselves generated
from the planted partition model (degree-corrected or not),
it will accurately find the communities in the limit of large
node degrees and large system size. This follows because
maximum likelihood fits to stochastic block models are also
known to be consistent in the same sense [28]. The consistency
of modularity maximization has been demonstrated previously
by other means [8,38], but the equivalence with likelihood
maximization makes the intuition behind it particularly clear.

A further point of interest is that while the value of y in
Eq. (15) is always positive, regardless of the values of wj, and
Wout, the value of the constant B = m log(wi, /wey) in Eq. (14)
changes sign depending on which of wy, and wy, is larger. This
means that maximization of the likelihood becomes equivalent
to minimization of the modularity when woy: > wip, i.€., when
the network has so-called disassortative structure, in which
connections are more common between groups than within
them. The minimization of modularity to find such structure
has been proposed previously on heuristic grounds [39], but the
derivation here gives a rigorous foundation for the procedure.

On the other hand, the equivalence of maximum likelihood
and maximum modularity methods also reveals some hidden
assumptions and limitations of the modularity. The planted
partition model, with its assumption, Eq. (11), that the edge
parameters w,; take the same values for every community,
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is less powerful than the full stochastic block model and
modularity maximization is similarly less powerful as a result.
In effect, modularity maximization assumes all communities
in a network to be statistically similar. This may be a
good assumption in some networks, but there are certainly
examples where it is not, and we would expect the modularity
maximization method to perform less well in such cases than
more general methods.

Some variants of the maximum likelihood method also
include additional parameters that control the prior probabil-
ities that nodes are assigned to one group or another [32,37],
and by varying these parameters one can bias the model
toward particular choices of the sizes of the groups, including
heterogeneous choices where the sizes can vary greatly from
group to group. The version used here, to which modularity
maximization is equivalent, includes no such parameters,
however, which in effect means that a priori the sizes of all
groups are the same and hence that modularity maximization
implicitly prefers groups of uniform size, which could also hurt
performance if this assumption doesn’t match the properties
of the observed network.

A. Value of the resolution parameter

A drawback of the equivalence we have demonstrated is
that it applies only when we use the correct value of the
resolution parameter y, which normally we do not know.
As mentioned above, one could estimate y by performing
a maximum likelihood fit to the block model and then feeding
the best-fit values of w;, and wqy into Eq. (15). This, however,
would defeat the point of using the modularity at all, since in
performing the maximum likelihood fit we also determine the
community assignments g; and hence there is no longer any
need to maximize the modularity. As an alternative, therefore,
one can instead make an empirical estimate of the value of y
within the modularity formalism using an iterative scheme as
follows.

First, one makes an initial guess about the value of y.
This guess need not be particularly accurate: y = 1 usually
works fine. Then, given this value, the network, and the number
of communities ¢, one finds the communities by modularity
maximization (holding the number of communities fixed at
the value ¢). This gives us some set of assignments g; of
nodes to groups—Tlikely not optimal—from which we can then
make an estimate of the parameters w;, and wo, by noting
that the expected total number of in-group edges m;, in the
(degree-corrected) planted partition model is

My, = = ZZ k k a)rr gir g, wlﬂ ZK” (16)

where k, =), k;8,, , is the sum of the degrees of the nodes
in group r. Hence we can estimate wj, from

2”nin
X, </am’

using the observed value of m;, as an estimate of the expected
value. Similarly for w,, we have

7)

Win =

2Mout _ 2m — 2m;,
Do Krks/2m 2m =Y k2 /2m

(18)

Wout =
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FIG. 1. Resolution parameter y, estimated using the method
described here, for a set of synthetic networks with varying numbers
of communities. The networks were generated using the standard
(non-degree-corrected) planted partition model with ¢ equally sized
groups of 250 nodes each and parameters w;, and w,, chosen so that
each node has an average of 16 connections within its own group and
8 to every other group. Modularity was maximized using simulated
annealing with an exponential cooling schedule. The circles represent
the estimated values of y and the solid line represents the true values
calculated from Eq. (15).

where mq, is the number of edges running between distinct
groups.

Using these estimates of w;, and w,,, we can now calculate
a new value of y from Eq. (15). Then we repeat the process,
maximizing the modularity and recalculating wi,, wou, and y
until we achieve convergence. The consistency of modularity
maximization, mentioned earlier, implies that this procedure
should converge to the correct value of y (and the correct
community structure) for networks that actually are generated
from the planted partition model, in the limit of large node
degrees. For all other networks (meaning, in practice, for all
real-world applications of the method) we have no formal
guarantees of correctness or convergence, though the same
is also true of all other methods of community detection, in-
cluding, but not limited to, community detection by statistical
inference.

One might imagine that this would not be a very efficient
method for calculating y: it requires repeated maximization of
different modularity functions until the correct value of y is
reached. In practice, however, we have found that it converges
quickly. In most cases we have examined, y is calculated to
within a few percent after just one iteration, and in no case have
we found a need for more than ten iterations, so the method
may in fact be quite serviceable. Figure 1 shows an example
application to a set of artificially generated (“synthetic”)
networks for which the true value of y is known and, as the
figure shows, the algorithm is able to determine that value
accurately in every case. Table I gives values of y calculated
using the algorithm for a number of real-world networks that
have been used as test cases in previous community detection
studies. (Note that, as described above, the value of g is
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TABLE I. Number of nodes n, number of edges m, number of
communities g, and estimated value of the resolution parameter
y for a range of networks studied in the previous literature. The
networks are the karate club network of Zachary [40], the dolphin
social network of Lusseau et al. [41], the network of political
weblogs studied by Adamic and Glance [42], the network of books
about politics studied by Krebs (unpublished, but see, for instance,
Ref. [15]), the network of interactions between fictional characters in
the novel Les Miserables by Victor Hugo [9], the network of regular
season games between Division I-A college football teams in the
year 2000 [9], the network of collaborations between jazz musicians
studied by Gleiser and Danon [43], and the network of email messages
between university students of Ebel ez al. [44]. The value of ¢ used
for each network is the generally accepted one, except for the last
two networks, for which there does not appear to be a consensus. For
these two networks we estimate the number of communities using
the inference method of Ref. [45].

Network n m q 1%

Karate club 34 78 2 0.78
Dolphin social network 62 159 2 0.59
Political blogs 1225 16780 2 0.67
Books about politics 105 441 2 0.59
Characters from Les Miserables 77 254 6 1.36
American college football 115 614 11 227
Jazz collaborations 198 2742 16 1.19

Email messages 1133 5451 26 3.63

fixed during the modularity maximization process in each
case. Maximization of modularity with g allowed to vary
does not, in general, give good estimates of the number of
communities in a network, and it is certainly possible that
we would get different and incorrect numbers of communities
were ¢ allowed to vary.)

The values of y vary in size, but there is an overall trend
toward larger values in networks with larger numbers of
communities, both among the synthetic networks and the real
ones. This is perhaps not unexpected given that the resolution
parameter y was originally introduced precisely in order to
deal with networks with larger numbers of communities.
Recall that larger values of y, and specifically values larger
than the traditional value of 1, are needed in networks where
the number of communities exceeds the resolution limit at
V2m. None of the networks studied here approach this limit,
but nonetheless we should not find it surprising that the larger
values of ¢ in both Fig. 1 and Table I are best treated using
values y > 1.

Whether the algorithm given here is in fact a useful one in
practice is a debatable point. As we have shown, it does no
more than the likelihood maximization method, and the latter
in principle gives better results, since it does not assume that all
groups are statistically similar. Modularity maximization does
have the advantage of being less nonlinear than maximum
likelihood methods, which allows for some faster algorithms
such as spectral [7,15] and multiscale [19] algorithms. Still,
the results derived here are primarily of interest not because
of the algorithms they suggest but because of the light
they shed on the strengths and weaknesses of modularity
maximization.

052315-6



EQUIVALENCE BETWEEN MODULARITY OPTIMIZATION ...

IV. CONCLUSIONS

We have shown that modularity maximization, for an
appropriate choice of the resolution parameter controlling
community size, is a special case of the maximum likelihood
method of community detection, as applied to the degree-
corrected stochastic block model. The equivalence between the
two approaches highlights some weaknesses of the modularity
maximization method: the method assumes all communities
to have statistically similar properties, which may not be the
case, and also requires us to compute the correct value of the
resolution parameter. In most previous work, the resolution
parameter has been assumed to take the value 1, but we have

PHYSICAL REVIEW E 94, 052315 (2016)

shown that this assumption is normally not correct and given an
explicit formula for the correct value along with an algorithm
for computing it on observed networks.
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