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Robustness of persistent spiking to partial synchronization in a minimal model of synaptically
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We study the behavior of a minimal model of synaptically sustained persistent activity that consists of two
quadratic integrate-and-fire neurons mutually coupled via excitatory synapses. Importantly, each of the neurons
is excitable, as opposed to an oscillator; hence when uncoupled it sits at a subthreshold rest state. When the
constituent neurons are mutually coupled via sufficiently strong fast excitatory synapses, the system demonstrates
bistability between a fixed point (quiescent background state) and a limit cycle (memory state with synaptically
driven spiking activity). Previous work showed that this persistent activity can be stopped by an excitatory input
that synchronizes the network. Here we analyzed how this persistent state reacts to partial synchronization.
We considered three types of progressively more complex excitatory synaptic kernels: delta pulse, square, and
exponential. The first two cases were treated analytically, and the latter case numerically. Using phase-plane
methods, we characterized the shape of the region, such that all orbits starting within it correspond to infinite
spike trains; this constitutes the persistent activity region. In the case of instant coupling, all such active orbits were
neutrally stable; in the case of noninstant coupling, the activity region contained a unique stable limit cycle (so the
activity region was the basin of attraction for the limit cycle). This limit cycle corresponded to purely antiphase
spiking of two neurons. Increasing synchronization shifted the system toward the border of the activity region,
eventually terminating spiking activity. We calculated three measures of robustness of the active state: width of
the activity region in the phase plane, critical level of synchronization that can be tolerated by the persistent
spiking activity, and speed of reconvergence to the limit cycle. Our analysis revealed that the self-sustained
activity is more robust to synchronization when each individual neuron is closer to SNIC bifurcation (closer to
being an intrinsic oscillator), the recurrent synaptic excitation is stronger, and the synaptic decay is slower, which
is in agreement with the existing data on local circuits in the cortex that show sustained activity.
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I. INTRODUCTION

Working memory, allowing the execution of specific
responses that rely on recently remembered information,
plays a central role in enabling cognitive abilities. In order
to execute working memory based tasks, the information
relevant for the response must be held online actively so
that it can be used rapidly and efficiently. The prevalent
neural mechanism for working memory is persistent spiking
activity in neural circuits [1–3]. Persistent activity is evoked
by presentation of transient stimuli (relevant to the task),
that can be modeled as brief input pulses to the neural
circuit. This activity lasts for a prolonged time period (up to
seconds), and it is believed to underlie various brain functions
that go beyond working memory—from gaze stabilization
to memory-dependent attentional modulation and executive
control [4]. The ability of a circuit to generate different
levels of activity in the presence of the same time-invariant
input and to switch between them after transient input pulses
corresponds to multistability in the mathematical model that
describes the circuit. One of the key mechanisms proposed
for generation of such multistable behavior is self-sustained
synaptic reverberation of excitation in neural networks with
the appropriate level of interconnectivity [5]. In the simplest
case, a system is bistable: The first stable manifold corresponds
to the background regime with low firing rates, and the second
one corresponds to the active maintenance of information by
the network reflected in self-sustained spiking activity with
elevated firing rates. In deterministic spiking neural circuits,

the generic picture is that the constituent neurons are excitable
(i.e., they do not fire without sufficient synaptic input) and
the self-sustained activity is produced by synaptic interactions
and corresponds to a limit cycle or a collection of limit cycles.
Interestingly, proximity of the orbit to the limit cycle is related
to the temporal structure of firing. It has been shown that the
self-sustained activity should be almost asynchronous: splay
state for large networks [6] where for any two successive
spikes of a given neuron in the network, the spikes of the
other neurons are maximally “splayed out” equally in time.
In other words, there is no clustering of spike times. For a
minimal two-neuron model this corresponds to an antiphase
“ping-pong” firing [7,8]. Furthermore, it has been noted that
strong enough partial synchronization can move the system
out of the active regime thus terminating self-sustained activity
[6,7,9]. Recently we proposed that control over synaptically
sustained activity in large circuits can be implemented by either
changes in input correlations and/or frequency shifts in global
input oscillations, again pointing toward input-modulated
synchrony within the sustained activity pattern. However, the
precise mechanisms by which even partial synchronization
may terminate self-sustained activity have not been fully
characterized. This motivates the present study of the basin
of attraction structure for a minimal model of a steady-state–
limit-cycle bistable system, as well as a characterization of
the critical partial synchrony level required for pushing the
system out of the basin of attraction that exists around the limit
cycle.
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To determine the specific conditions on the transient partial
synchrony and robustness of sustained firing we turned to a
minimal model that is able to demonstrate the type of bista-
bility described above: background rest state and a sustained
firing regime, as well as relative asynchrony of the activity.
This minimal model should also consist of neural equations
that reflect the active spike generation and be simple enough
to be amenable to analysis (e.g., by phase- plane methods
since our previous work allowed us to conjecture that the
geometry of the region for the active regime matters). We thus
focused on a minimal model that consists of two excitable type
I neurons (either receiving tonic inhibition from an external
source or having the stable subthreshold state and a threshold
due to passive membrane currents) mutually coupled by fast
excitatory synapses that are sufficiently strong [7]. For the
single-cell equations we picked the quadratic integrate-and-fire
neuron (QIF). The QIF is the canonical one-dimensional model
for type I excitable neurons and is directly related to the normal
form for the saddle node on an invariant circle bifurcation that
underlies type I excitability [10,11]. The QIF, when interpreted
in terms of voltage, includes the active spike generation
reflected in the solutions that trend to infinity in finite time if the
state variable pushed above the saddle threshold. This explo-
sion to infinity models the active spike generation. Practically
speaking, the voltage in the QIF can be reset at a sufficiently
large finite value without loss of generality [12]. The QIF and
the related theta neuron have been previously used in multiple
studies of neuronal dynamics [12,13] and models of working
memory [14]. The coupling between the neurons is modeled
by voltage-dependent synapses that reflect AMPA recurrent.

This minimal model shows important dynamical hallmarks
of the sustained firing observed in larger models of working
memory [14,15] and hinted at in experiments in animals
performing delayed response tasks [1–3]. Within the minimal
model, in the background state, both neurons are quiescent,
while in the active regime they alternatively force each other
to cross the spiking threshold (by the recurrent synapses) and,
consequently, to fire spikes. The behavior of such system
is determined by relative timing of spikes: The active state
corresponds to antiphase firing, and should it be somehow
pushed to be sufficiently strongly synchronized, the system
falls to the background state. It should be noted that systems
of coupled type I oscillators are studied very well [16], while
analytical studies of systems of coupled type I neurons in
the excitable regime are less common. For a large network
of recurrently coupled excitable type I neurons, it was shown
that the splay state (analogous to the antiphase state of the
two-neuron system) is stable when synaptic coupling between
neurons is noninstant [8].

In the present study, we expand on work by Gutkin et al. [6],
and analyze a system of two synaptically coupled excitatory
quadratic integrate-and-fire neurons with the input currents
being negative in the absence of synaptic activity. The main
goal of our analysis is to systematically investigate how
robustness of the sustained activity to partial synchronization
depends on parameters of the model circuit. We use the term
“robustness” in the nonstrict sense, assuming that the sustained
activity is more robust if stronger synchronizing perturbation
of the system’s state should be applied to terminate it and
if the system returns faster to the asynchronous regime after

a perturbation that did not terminate the activity. Instead of
explicitly perturbing the state, we analyze the phase space of
the system and derive three measures of robustness: (1) width
of the region of self-sustained activity on the phase plane, (2)
speed of convergence to the limit cycle (if the system has one),
and (3) critical level of synchronization between spikes of two
neurons that leads to termination of the activity.

This paper is organized as follows. First, we describe our
model and introduce main definitions and equations. We lay
out the background by drawing the structure of the solution
flows, fixed points, and associated solutions (e.g., the stable
and unstable heteroclinics for the saddle points) for two
uncoupled neurons. We then build on that to draw the structure
of the phase space for the coupled system including the region
of self-sustained spiking activity. The geometry of this region,
that is also the basin of attraction for the stable limit cycle in
the case of noninstant coupling, gives us qualitative hints about
how robust the activity is to various perturbations. We shore
up the qualitative analysis by computing the curve of maximal
synchronization that does not move the system out of the
active region or, in other words, does not terminate persistent
activity. We present the structure of the activity region and the
maximal synchronization curves obtained for the systems with
different types of coupling: (1) uncoupled system, (2) system
with instant interaction, (3) system with square synaptic kernel,
and (4) system with exponential synaptic kernel. We then look
at how robustness depends on key parameters of the model:
intrinsic cell properties, synaptic strengths, and time scales.
We demonstrate that the self-sustained antiphase firing mode
is stable in the case of noninstant synaptic coupling, and that it
is more robust when each of the constituent neurons is closer
to its intrinsic bifurcation and synaptic coupling is stronger
and slower. Finally, we summarize our results in a context of
previous results.

II. METHODS

In the present paper, we analyze a system of two excitable
quadratic integrate-and-fire (QIF) neurons coupled by excita-
tory synapses. First, we introduce notation related to dynamics
of a single QIF neuron and describe equations that govern
these dynamics. Next, we do the same for the system of two
coupled neurons. Specifically, we describe synaptic kernels
analyzed in this paper, and discuss an approach to making
the synaptically coupled system autonomous by moving from
time-dependent to voltage-dependent synaptic kernels. We
also introduce notations for spike-to-spike mapping of the
system state. Finally, we define the measures of robustness
that we use in this manuscript and relate them to generally
accepted notions of stability.

A. Quadratic integrate-and-fire neuron

We start by describing a solution for voltage dynamics of a
single QIF neuron receiving constant input current:

dx

dt
= x2 + I, x ← −∞ if x = ∞. (1)

The neuron is considered to fire a spike when its voltage
diverges to infinity.
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Assuming that the voltage of a neuron at zero time moment
was x0, we will use the following notation for the voltage at
the time t :

x(t) = φI (x0,t). (2)

We will also use the following notation for the time during
which the voltage changes from x0 to x:

t = TI (x0,x). (3)

Let us denote â = √|I |. The expressions for φI and TI

depend on the sign of I , which leads to the following three
cases.

(a) The neuron is excitable if I < 0:

x(t) = φex
I (x0,t) = −bex + bex

2 − â2

bex − x0
,

bex = â

tanh(ât)
. (4)

t = T ex
I (x0,x) = 1

â
arctanh

â(x − x0)

x0x − â2
,

x0 � x � −a or − a � x � x0 � a or a � x0 � x.

(5)

(b) The neuron is oscillatory if I > 0:

x(t) = φosc
I (x0,t) = −bosc + bosc

2 + â2

bosc − x0
,

bosc = â

tan(ât)
. (6)

t = T osc
I (x0,x) =

[ 1
â

arctan â(x−x0)
x0x+â2 , x0x + â2 � 0

π
â

+ 1
â

arctan â(x−x0)
x0x+â2 , x0x + â2 < 0

,

x0 � x. (7)

(c) The neuron is at its bifurcation (saddle node on an
invariant circle) I = 0:

x(t) = φbif
I (x0,t) ≡ −bbif + bosc

2

bbif − x0
, bosc = 1

t
, (8)

t = T bif
I (x0,x) = x − x0

x0x
,

x0 � x � 0 or x0 � x � 0. (9)

The case (c) is degenerate, so we will concentrate on the
cases (a) and (b).

Using (5) and (7), we can express time T̃I since the last
spike that is needed for a neuron to reach voltage x:

T̃ ex
I (x) =

[− 1
â

arctanh â
x
, x � −a

∞, x > −a
. (10)

T̃ osc
I (x) =

[− 1
â

arctan â
x
, x � 0,

π
â

− 1
â

arctan â
x
, x > 0

. (11)

B. Two-neuron model description

Now let us consider a system of two coupled quadratic
integrate-and-fire (QIF) neurons (denoted by X and Y):

dx

dt
= x2 + Iext + I x

syn,

dy

dt
= y2 + Iext + I y

syn,

x ← −∞ if x = ∞,

y ← −∞ if y = ∞, (12)

where x, y are voltages of neurons X and Y respectively;
Iext < 0 is the constant inhibitory current; I x

syn, I y
syn are the input

synaptic currents of neurons X and Y, respectively. Neuron X
(Y) is considered to produce a spike when x = ∞ (y = ∞).

To simplify the equations, we will use the notation

a =
√

|Iext|. (13)

Note that a in (13) is related to the tonic input current only,
while â in (4)–(11) is related to the total input current. We also
use the following notation for phases of neurons X and Y:

θx = 2 arctan x,

θy = 2 arctan y. (14)

When voltage x goes to infinity and resets to minus infinity,
phase θx passes through the value θx = π ; the same is true for
y and θy . The QIF model rewritten using the phase notations
is known as the theta model [11].

The synaptic current received by neuron X at the time t

depends, in general, on the time passed since the last spike of
neuron Y (and vice versa):

I x
syn(t) = K(t − ty),

I y
syn(t) = K(t − tx), (15)

where tx and ty are the times of the last spikes of neurons X
and Y, respectively (if a neuron produced no spikes in the past,
the corresponding time can be considered as −∞), and K(�t)
is a synaptic kernel function depending on the time �t passed
since the last spike. In this paper, we consider the following
four types of synaptic interactions.

(a) No interaction (uncoupled system):

K(�t) = 0. (16)

(b) Instant synaptic interaction:

K(�t) = Jδ(�t), (17)

where J is the synaptic weight, and δ the Dirac delta function.
In this case, when a neuron fires a spike, voltage of another
neuron instantaneously increases by J .

(c) Interaction via synapse with square kernel:

K(�t) = Jh(�t)h(τs − �t), (18)

where J is the synaptic weight, τs the “width” of the synaptic
kernel, and h(·) is the Heaviside step function. In this case, a
constant synaptic current is received by a neuron during the
time τs after a spike of another neuron.
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(d) Interaction via synapse with exponential kernel:

K(�t) = J exp
−�t

τs

h(�t), (19)

where J is the synaptic weight (amplitude of postsynaptic
current step), τs the width of the synaptic kernel (time
constant of synaptic current decay), and h(·) the Heaviside step
function. In this case, synaptic current exponentially decays as
the time since the last spike increases.

Let us assume that the synaptic current decays sufficiently
fast compared to the interval between adjacent spikes of two
neurons. In this case, at the time moment tx when neuron
X fires a spike, the input synaptic current I x

syn(tx) (initiated
by a previous spike of neuron Y) is negligible and can be
considered to be zero. We can also consider that I x

syn(t) = 0
for any t from the time interval between tx and the moment of
firing the next spike by neuron Y. Consequently, the voltage
x(t) is not affected by the history of the system that preceded
tx , so x(t) and t − tx are in one-to-one correspondence given
by (4) and (10):

x(t) = φex
Iext

(−∞,t − tx),

t − tx = T̃ ex
Iext

(x). (20)

The same reasoning applied for neuron Y yields

y(t) = φex
Iext

(−∞,t − ty),

t − ty = T̃ ex
Iext

(y), (21)

where t lies between ty and the time of the following spike of
neuron X.

The assumption mentioned above allows us to move from
the time-dependent kernels K(·) given by (16)–(19) to the
kernels K̃(·) that depend on the voltage of the recently fired
neuron:

I x
syn(x,y) = K̃(y) ≡ K

(
T̃ ex

Iext
(y)

)
,

I y
syn(x,y) = K̃(x) ≡ K

(
T̃ ex

Iext
(x)

)
. (22)

We should note that using voltage-dependent kernels K̃(·)
instead of time-dependent kernels K(·) has no significant ef-
fects on the dynamics of the system only if the synchronization
between the neurons is not too strong (i.e., a neuron fires a spike
only when its input synaptic current produced by the previous
spike of another neuron is already terminated).

Substituting the expressions in (22) into (12) makes the
system autonomous, so it can be studied using phase-plane
analysis. In order to make the phase portrait more tractable,
it is convenient to use the (θx ; θy) description instead of the
(x; y) description. Obviously, θx and θy are defined up to 2π ,
so the phase portrait of the system on the (θx ; θy) plane is 2π

periodic (or, in other words, it lies on the surface of a torus with
the period of 2π ). Further in this paper, we will always use
(θx,θy) coordinates for visualizing phase portraits, and (x,y)
coordinates for calculations; the legend on phase portraits will
be also given in (x,y) coordinates.

C. Useful notation for spike-time maps

Let us denote the state of the system at zero time as (x0,y0)
and the state of the system at the time t as (x,y). We introduce
the following notations:

(x,y) = f (x0,y0,t), (23)

t = τ (x0,y0,x,y). (24)

Let us assume that neuron Y produces a spike at zero time,
and neuron X produces a spike at the time tx . At the moment
of spike firing, voltage of a QIF neuron is infinite, so from (23)
and (24) we get

(∞,y) = f (x0, − ∞,tx), (25)

tx = τ (x0, − ∞,∞,y). (26)

We will use the following notation for the mapping from
(x0, − ∞) to (∞,y) and for the corresponding time interval:

y = g1(x0), (27)

tx = τ1(x0). (28)

Now let us assume that neuron Y produces the first spike at zero
time and the next spike at the time ty ; and that the voltages
of neuron X during these two spikes are equal to x0 and x,
respectively. In this case, we will use the notations

x = g2(x0) = g1(g1(x0)), (29)

ty = τ2(x0) = τ1(x0) + τ1(g1(x0)). (30)

In this paper, we refer to τ1(x0) as the time between adjacent
spikes (of two neurons), and to τ2(x0) as the interspike interval
(i.e., the interval between spikes of the same neuron).

D. Measures of robustness

Further in this paper, we demonstrate that for appropriate
parameter combinations there exists an invariant region on the
phase plane such that each orbit that starts somewhere in this
region remains in this region and so corresponds to an infinite
train of spikes (i.e., the system demonstrates self-sustained
spiking activity). We refer to it as the activity region. We also
show that there exists a special orbit inside the activity region
that corresponds to antiphase firing of the two neurons. In the
case of noninstant synaptic interaction this orbit is an attracting
limit cycle, and in the case of instant interaction it is neutrally
stable. In the latter case, we refer to this orbit as the “middle
orbit.”

We consider the robustness of the system as its ability to
stay in the self-sustained spiking mode in the face of state
perturbations that push the system from the antiphase orbit
toward the borders of the activity region (under constant
parameters of the system). In order to mathematically express
this invariance, we calculate three robustness measures: (A)
width of the activity region Dact, (B) speed of convergence to
the limit cycle ϕconv, and (C) critical shrinking of the interval
between the asjacent spikes of the two neurons ηcrit.
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We calculate the width of the activity region along the line
on the phase plane that corresponds to firing a spike by one of
the neurons. For this purpose, we consider two voltages xmin

and xmax, such that for each x0 ∈ (xmin,xmax), the orbit starting
from the point (x0, − ∞) lies inside the activity region, and
for any other value of x0 this condition is not satisfied [e.g.,
see the bottom part of Fig. 2(a)]. Then we define the width of
the activity region as the difference:

Dact ≡ xmax − xmin. (31)

The wider the activity region is, the more robust the system
is, because in this case a stronger state perturbation is needed
to push the system outside its borders.

We calculate the speed of convergence to the limit cycle
as the inverse of the derivative of spike-to-spike mapping (27)
calculated at the point xm that is the fixed point of this mapping
(and thus lies on the limit cycle or middle orbit):

ϕconv ≡
[

dg1(x0)

dx0

∣∣∣∣
xm

]−1

. (32)

We note that the speed of convergence to the limit cycle
is related to the Lyapunov exponent λ by the following
expression:

eλτ2(xm) = 1

ϕ2
conv

, (33)

where τ2(xm) is the period of the limit cycle. When ϕconv is
larger, the system recovers faster after a state perturbation, so
the self-sustained activity is more robust if such perturbation is
repeated. In the case of instant synaptic interaction, the middle
orbit is neutrally stable, so the ϕconv measure does not make
sense. This speed of convergence also gives a measure of the
contraction mapping associated with the periodic solutions of
the system.

We calculate the critical shrinking of the normalized
interval between adjacent spikes ηcrit as follows:

ηcrit ≡
min

x0∈(xmin,xmax)
τ1(x0)

τ1(xm)
. (34)

In the numerator we have a minimal interval between
adjacent spikes such that the system does not leave the
sustained spiking mode, and in the denominator we have
the interval between adjacent spikes τ1(xm) calculated on
the limit cycle or middle orbit. As the limit cycle or middle
orbit corresponds to antiphase firing, τ1(xm) equals half of the
interspike interval. Consequently, the normalization by τ1(xm)
in (34) accounts for possible changes in the antiphase single
neuron ISI caused by a change of parameters, leaving the pure
effect of synchronization between spikes of different neurons.

III. RESULTS

A. Background: solution geometry for an uncoupled system

We start our analysis from the system of two uncoupled
QIF neurons (Isyn = 0). We do it in order to describe the
direction field on the phase plane, because our results suggest
that its main features remain the same after adding synaptic
interaction. Since the coupling we introduce is fast and depends
on the spikes of the neurons, the uncoupled vector fields form
a scaffold for the coupled case: Most of the characteristic
solutions are preserved together with the nodes and the saddles
with their separatrices. Understanding the geometry of this
direction field will enable us to pursue analysis of the full
system below. Obviously, the neurons are independent in this
case. The constant external current is inhibitory (Iext < 0), so
both neurons are excitable. Given the initial state (x0,y0), the
system has the following solution:

x(t) = φex
Iext

(x0,t),

y(t) = φex
Iext

(y0,t), (35)

where the function φ is given by (4).
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FIG. 1. (a) Dynamics of voltage of a single QIF neuron. Solid lines represent the orbits that start from the different voltages. Dashed lines
represent the resting state and the threshold. (b) Phase portrait of uncoupled system. Black dot: stable fixed point; white dots: unstable fixed
points. Dashed black lines represent firing thresholds (separatrices of the saddle points); solid black lines represent the phases at which spikes
occur. Four periods of a system are shown.
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FIG. 2. (a) Phase portrait of a system with instant synapse (Iext = −0.3, J = 2.5). Gray regions: active state; corners of the dashed square
are fixed points of the system. Blue (starting from x01), red (starting from x02), and green (starting from x03) solid lines: arbitrary orbits; black
(starting from xm) solid line: “middle orbit.” Vertical arrows represent instantaneous increase of voltage of neuron Y by J after a spike of neuron
X. Horizontal dashed lines represent the phase switching from π to −π (which are equivalent on a torus). Blue, black, and red orbits (starting
from x01, xm, and x02, respectively) correspond to infinite spike trains, while the green orbit (starting from x03) converges to the subthreshold
resting state. Numerals 1–3 denote the moments of the first three spikes on the blue orbit (starting from x01). (b) Spike trains corresponding to
the orbits from (a). Solid lines: voltage dynamics of neuron Y; dashed lines: voltage dynamics of neuron X.

The solution for neuron X is represented in Fig. 1(a). If
x0 < a, then voltage converges to x = −a. If x0 > a, then
voltage goes to infinity (producing a spike), resets to minus
infinity, and, again, converges to x = −a. Thus x = a is the
threshold of spike generation, and x = −a is the resting state.

The time of the spike can be expressed as

τ1(x0) = T̃ ex
Iext

(x0), (36)

where the function T̃ is given by (10).
The phase portrait of the system (35) is represented at

Fig. 1(b). The system has four fixed points:

S11 = (−a, − a), S12 = (a, − a),

S21 = (−a,a), S22 = (a,a), (37)

where S11 is a stable node, S22 is an unstable node, and S12

and S21 are saddles. S11 corresponds to the steady state of the
system, in which both neurons are at their resting potentials.
The fixed points are connected by the separatrices of the
saddle points S12 and S21; these separatrices correspond to
the thresholds, above which one of the neurons fires a spike.

B. System with instant synapse

Now we continue our analysis and consider a system of two
QIF neurons with instant excitatory coupling. The dynamics
of this system is equivalent to the dynamics of the uncoupled
system, except for the fact that each neuron receives a voltage
step when another neuron fires a spike:

dx

dt
= x2 + Iext + I x

syn,

dy

dt
= y2 + Iext + I y

syn,

x ← −∞, y ← y + J if x = ∞,

y ← −∞, x ← x + J if y = ∞, (38)

while in the time intervals between spikes, the solution is given
by (35).

The phase portrait of the system is presented in Fig. 2(a).
The gray color represents the region of activity: If an orbit
starts somewhere in this region, then the system stays in the
active state, and produces an infinite train of spikes. If an orbit
starts outside the gray region, it converges to the subthreshold
fixed point S11, so the system settles down to the background
resting state. The corresponding spike trains are presented in
Fig. 2(b).

Now we derive an analytical description of the behavior of
the system in the activity region. Let (x0, − ∞) be the initial
state of the system. Obviously, neuron X will produce a spike
only if x0 > a (recall that a is the firing threshold). We can get
the expression for the time of this spike from (36)

tx = τ1(x0) = 1

a
arctanh

a

x0
. (39)

In the time interval 0 < t < tx , the solution is given by (35).
At the time t = tx , we get

b(tx) = x0; y1 = g1(x0) = J + f (−∞,tx)

= J − b(tx) = J − x0. (40)

Neuron Y will produce the second spike only if

y1 = g1(x0) > a, (41)

or, equivalently,

x0 < J − a. (42)

The voltage of neuron X after the second spike of neuron
Y is given by

g2(x0) = g1(J − x0) = x0. (43)

Thus, for any x0 ∈ (a,J − a), the orbit of a point (x0, − ∞)
is a cycle, and, because |dg2/dx0| = 1, this cycle is neutrally
stable. Evidently, any such cycle corresponds to an infinite
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spike train, and thus it lies inside the region of persistent
activity on the phase plane [e.g., blue, black, and red orbits
in Fig. 2(a), starting from x01, xm, and x02, respectively]. If
x0 /∈ (a,J − a), then the orbit of (x0, − ∞) converges to the
resting state, producing a maximum of one spike before this
[e.g., green orbit in Fig. 2(a), starting from x03]. Consequently,

xmin = a, xmax = J − a, (44)

and the width of the activity region is given by

Dact ≡ xmax − xmin = J − 2a. (45)

Obviously, the region of activity exists only if

xmin < xmax ⇔ J > 2a, (46)

i.e., when synaptic coupling is strong enough compared with
tonic inhibition.

Consider that an external influence perturbs a state of the
system that is initially in the region of persistent activity. When
synaptic coupling is stronger, and tonic inhibition is weaker,
the width of the region of activity, given by (45), is larger, so
the external perturbations are less likely to push the system
away from this region and switch it from the active to the
quiescent state.

Among the neutrally stable cycles mentioned above, there
is one special “middle” cycle that contains a state given by the
fixed point of g1:

g1(xm) = xm . (47)

From (47) and (40) we obtain

xm = J
/

2. (48)

This “middle” orbit corresponds to the spike train, in which
all the intervals between adjacent spikes of neurons X and Y are
the same [Fig. 2(b), black trace (second panel from the top)].
All other orbits that lie inside the activity region correspond
to the spike trains with alternating short and long intervals
between adjacent spikes of the two neurons [Fig. 2(b), blue and
red traces (first and third panels from the top, respectively)].
Long intervals correspond to the parts of the orbit that pass
close to one of the saddle points [S12 or S21; see Fig. 2(a),
segment 1–2 of the blue orbit (starting from x01), and Fig. 2(b),
segment 1–2 of the blue trace (first panel from the top)]; short
intervals correspond to the parts of the orbit that pass near the
curved border of the activity region [Fig. 2(a), segment 2–3 of
the blue orbit (starting from x01), and Fig. 2(b), segment 2–3 of
the blue trace (first panel from the top)]. If an interval between
adjacent spikes is too small, then the corresponding segment
of the orbit passes near the curved border of the activity region,
but from the outside of this region, so further spiking activity
is terminated [Fig. 2(a), green orbit (starting from x03), and
Fig. 2(b), green trace (bottom pannel)]. The critical shrinking
of the interval between adjacent spikes can be expressed as
follows:

ηcrit = τ1(xmax)

τ1(xm)
= arctanh[a/(J − a)]

arctanh[2a/J ]
. (49)

We note that the interspike interval for orbits passing near
the border of the activity region is longer than the interspike
interval for the middle orbit [compare the interval between
spikes 1 and 3 in Fig. 2(b) for the black trace (middle

J

0.3extI
0.6extI

FIG. 3. Dependence of critical shrinking of interval between
adjacent spikes (ηcrit) on synaptic weight (J ) for two different levels of
tonic inhibition (Iext) in the system with instant synaptic interaction.

orbit; second panel from the top) and for the red and blue
traces (orbits near the border; third and first panels from
the top, respectively)]. It means that shrinking of τ1(xmax)
compared to τ1(xm) is not a consequence of an instantaneous
increase of firing rate, so ηcrit actually is a measure of partial
synchronization between neurons. The dependence of ηcrit on
J for two different values of Iext is represented in Fig. 3.
Consider that the system is on the “middle” orbit, and that
a hypothetical external perturbation tends to synchronize the
neurons. From Fig. 3, we can see that in the case of weaker
tonic inhibition and stronger synaptic coupling, a stronger
spike synchronization can be tolerated by the circuit before
spiking activity is destroyed, so the active state of the system
is more robust to the external synchronizing perturbation in
this case. Therefore, the closer the two neurons are to their
respective saddle-node bifurcations, the more tolerant is the
sustained activity in the circuit to partial synchronization by a
common input. The same goes for stronger recurrent coupling.

C. System with square synaptic kernel

Now we analyze the behavior of a system of two coupled
QIF neurons with square synaptic kernels. While artificial, we
will see in the subsequent section that this type of coupling
gives a qualitatively similar phase-plane structure to a more
realistic exponential synaptic time course, yet allows us to do
some analytics for the critical spike-time shifts. In this system,
a neuron receives constant synaptic current J during the time
interval τs after a spike of another neuron, while at all other
time moments the synaptic current is zero. Assuming that τs is
smaller than the typical time interval between adjacent spikes
of two neurons, we can use (22) and consider the following
autonomous system:

dx

dt
= x2 + Iext + Jh(xs − x),

dy

dt
= y2 + Iext + Jh(xs − y),
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x ← −∞ if x = ∞,

y ← −∞ if y = ∞, (50)

where h(·) is the Heaviside function, and xs is the voltage that
a neuron reaches after time τs since it fired a spike (assuming
that input synaptic current to the neuron is zero during this
time interval):

xs = φex
Iext

(−∞,τs) = − a

tanh(aτs)
. (51)

Self-sustained spiking activity is possible in this system
only if synaptic input can push the postsynaptic neuron across
its bifurcation and switch it from the excitable state to the
oscillatory state, because during the influence of this input,
the neuron should increase its voltage from x < −a to x > a,
while in the excitable state, the voltage can only decrease in the
x ∈ (−a ; a) interval. Thus, in the presence of synaptic input,
the total input current to a neuron should be positive, which
gives us the following condition:

J > |Iext|. (52)

Consider that the system evolves from a state (x0; y0) to a state
(x; y) in a time t , and that no spikes are produced during this
evolution. The exact form of the solution depends on which
neurons receive nonzero synaptic input: none of them, only
one, or both. Thus there are four possible cases.

(a) x0,x � xs ; y0,y � xs.

The synaptic activity is absent, so both neurons are
excitable:

x(t) = φex
Iext

(x0,t) = −bex + bex
2 − a2

bex − x0
,

y(t) = φex
Iext

(y0,t) = −bex + bex
2 − a2

bex − y0
,

bex = a

tanh(at)
. (53)

(b) x0,x � xs ; y0,y < xs.

Neuron Y recently fired a spike, and it produces an input
synaptic current to neuron X. Thus neuron Y is excitable, and
X is oscillatory:

x(t) = φosc
Iext+J (x0,t) = −bosc + bosc

2 + ã2

bosc − x0
,

y(t) = φex
Iext

(y0,t) = −bex + bex
2 − a2

bex − y0
,

ã =
√

J − a2, bosc = ã

tan(ãt)
, bex = a

tanh(at)
. (54)

(c) x0,x < xs ; y0,y � xs.

Neuron X recently fired a spike, so X is excitable, and Y is
oscillatory.

This case is equivalent to (b) if we interchange X and Y.
(d) x0,x < xs ; y0,y < xs

Both neurons recently fired spikes, so both of them are
oscillatory:

x(t) = φosc
Iext+J (x0,t) = −bosc + bosc

2 + ã2

bosc − x0
,

y(t) = φosc
Iext+J (y0,t) = −bosc + bosc

2 + ã2

bosc − y0
,

ã =
√

J − a2, bosc = ã

tan(ãt)
. (55)

Note that in case (d) our assumption of a large interval
between adjacent spikes is not satisfied, so moving from time-
dependent to phase-dependent coupling kernels using (22) may
change the behavior of the system.

In the expressions above, the functions φosc and φex were
taken from (6) and (4), respectively. These expressions are
valid only in the time intervals between events: spikes and
terminations of synaptic activity; at the moments of events
one should switch from one system of equations to another.
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FIG. 4. (a) Phase portrait of a system with square synapse (Iext = −0.3, J = 10, τs = 0.2). Gray regions: active state; corners of the dashed
square are fixed points of the system. Blue (starting from x01), red (starting from x02), and green (starting from x03) solid lines: arbitrary orbits;
black (starting from xm) solid line: limit cycle. Horizontal dashed lines represent the phase switching from π to −π (which are equivalent on a
torus). Blue, black, and red orbits (starting from x01, xm, and x02, respectively) correspond to infinite spike trains, while the green orbit (starting
from x03) converges to the subthreshold resting state. Numerals 1–3 denote the moments of the first three spikes on the blue orbit (starting
from x01). (b) Spike trains corresponding to the orbits from (a). Solid lines: voltage dynamics of neuron Y; dashed lines: voltage dynamics of
neuron X.
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The phase portrait of the system with several orbits is
represented in Fig. 4(a), and the spike trains that correspond to
these orbits, in Fig. 4(b) [the legend is the same as in Figs. 2(a)
and 2(b), respectively]. There are some notable differences
with the previous case considered. At the bottom of the phase
plane we can see a long, thin, nearly horizontal “wing” of the
gray region. This wing corresponds to the situation in which
neuron Y just fired a spike, so neuron X receives input current,
and its voltage grows very fast. The analogous region at the
left side of the phase portrait corresponds to the situation in
which neuron X just fired a spike and neuron Y receives input
current. If we transiently partially synchronize the spikes (e.g.,
advance a spike of one neuron by a weak transient excitatory
input), the system will shift out of the gray wing and fall into
the white region, subsequently converging to the double-rest
point; see the green orbit (starting from x03) in Fig. 4(a).

As in the case of instant coupling, we analytically describe
behavior of the system in the region of self-sustained activity.
Let us assume that the system starts from the point (x0, − ∞)
that corresponds to the spike of neuron Y, and that x0 > xs .
A spike of neuron X can occur only if the voltage x after the
termination of synaptic input is above the threshold a. This
gives us the following condition for the minimal value of x0

(denoted as xmin) that leads to a spike:

φosc
Iext+J (xmin,τs) = a. (56)

From this condition, we can express xmin in the following
way:

xmin = bs − bs
2 + ã2

bs + a
, bs = ã

tan(ãτs)
,

ã =
√

J − a2. (57)

It should be noted that the statement above is valid only if
xmin > xs .

State of the system at the moment τs is expressed as follows:

x̂0 = φosc
Iext+J (x0,τs),

ŷ0 = xs. (58)

Time from the termination of synaptic input to the spike of
neuron X is given by

t̂0 = T ex
Iext

(x̂0,∞) = 1

a
arctanh

a

x̂0
, (59)

where the function T ex is given by (5).
Voltage of neuron Y during the spike of neuron X is

given by

y1 = φex
Iext

(ŷ0,t̂0) = −b̂0 + b̂2
0 − a2

b̂0 − ŷ0
, b̂0 = a

tanh(at̂0)
. (60)

By substituting (58) and (59) into (60), we obtain the
following spike-to-spike voltage mapping:

y1 ≡ g1(x0) = −x̂0 + x̂2
0 − a2

x̂0 − xs

= (a2 + bsxs)x0 − (a2bs − ãxs)

(bs + xs)x0 + (ã2 − bsxs)
. (61)

The inverse mapping can be expressed as follows:

x0 ≡ g−1
1 (y1) = (bsxs − ã2)y1 + (ã2xs − a2bs)

(xs + bs)y1 − (a2 + bsxs)
. (62)

The second spike of neuron Y can occur only if

y1 = g1(x0) > xmin, (63)

where xmin is given by (57). This gives us the maximal value
of x0 (denoted as xmax) that leads to the second spike:

xmax = g−1
1 (xmin). (64)

Thus the necessary condition of the activity region existence
on the phase plane is

xmin < xmax, (65)

where xmin and xmax are given by (57) and (64), respectively.
There is a limit cycle that corresponds to the fixed point of

g1 (and, therefore, of g2):

xm = g1(xm). (66)

Using the expression (61) for g1, one can get xm as the
solution of the quadratic equation:

K1x
2 − K2x + K3 = 0,

K1 = xs + bs,

K2 = 2bsxs + a2 − ã2,

K3 = a2bs − ã2xs. (67)

Our numerical simulation had shown that the larger root of
this equation corresponds to the observed limit cycle:

xm =
K2 +

√
K2

2 − 4K1K3

2K1
. (68)

From (61), the speed of convergence to the limit cycle can
be expressed as follows:

ϕconv =
[

dg1(x0)

dx0

∣∣∣∣
xm

]−1

= [xm(bs + xs) + (ã2 − xsbs)]
2(

a2 − x2
s

)(
b2

s + ã2
) .

(69)

The plot of ϕconv, obtained for several combinations of
parameters, is represented in Fig. 5(a). We can see that
ϕconv > 1 for all considered cases, which means that all orbits
that start from (x0, − ∞) such that x0 ∈ (xmin,xmax) converge
to the limit cycle; i.e., the limit cycle is stable. It is also seen
that the convergence is faster when synaptic coupling (given
by Jτs) is stronger, and the synaptic time constant (τs) is
larger. Surprisingly, the convergence is faster when the tonic
inhibition (Iext) is stronger; however, this effect is quite subtle.

Plots of the activity region width Dact and of the critical
shrinking of the interval between adjacent spikes ηcrit [given
by (31) and (34)] obtained for various combinations of
parameters are represented in Figs. 5(b) and 5(c), respectively.
As expected, we can see that the activity region is wider, and the
critical time interval is smaller, when the synaptic interaction
is stronger and slower and the tonic inhibition is weaker.
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FIG. 5. Three metrics of the active-state robustness in the system with square synaptic kernel, plotted versus synaptic time constant τs for
various values of tonic inhibition Iext and synaptic coupling Jτs : speed of convergence to the limit cycle (a); width of the activity region (b);
critical shrinking of interval between adjacent spikes that does not destroy self-sustained activity (c).

D. System with exponential synaptic kernel

In this section, we perform numerical analysis of a system
with an exponential synaptic kernel and compare the results
of this analysis with the previously described results obtained
for the system with a less realistic square kernel. As before,
we assume that τs is smaller than the typical time interval
between adjacent spikes, and use (22) to get an autonomous
system:

dx

dt
= x2 + Iext + J exp

[
− T̃ ex

Iext
(y)

τs

]
,

dy

dt
= y2 + Iext + J exp

[
− T̃ ex

Iext
(x)

τs

]
,

x ← −∞ if x = ∞,

y ← −∞ if y = ∞, (70)

where the function T̃ is given by (10).
The phase portrait of the system and several spike trains are

represented in Fig. 6. The results are qualitatively similar to the
ones obtained for the system with a square kernel (see Fig. 4):
One can see the activity region (gray) of approximately the
same shape, and the limit cycle (black curve, starting from
xm) that attracts all other orbits from the activity region.
Numerically obtained plots of metrics of the active-state
robustness (speed of convergence to the limit cycle; width
of the activity region; critical shrinking of interval between
adjacent spikes) are represented in Fig. 7. These plots are
qualitatively similar to the ones presented in Fig. 5 for the
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FIG. 6. (a) Phase portrait of a system with voltage-dependent exponential synapse (Iext = −0.3, J = 10, τs = 0.2). Gray regions: active
state; corners of the dashed square are fixed points of the system. Blue (starting from x01), red (starting from x02), and green (starting from x03)
solid lines: arbitrary orbits; black (starting from xm) solid line: limit cycle. Horizontal dashed lines represent the phase switching from π to −π

(which are equivalent on a torus). Blue, black, and red orbits (starting from x01, xm, and x02, respectively) correspond to infinite spike trains,
while the green orbit (starting from x03) converges to the subthreshold resting state. Numerals 1–3 denote the moments of the first three spikes
on the blue orbit (starting from x01). (b) Spike trains corresponding to the orbits from (a). Solid lines: voltage dynamics of neuron Y; dashed
lines: voltage dynamics of neuron X.
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FIG. 7. Three metrics of the active-state robustness in the system with exponential synaptic kernel, plotted versus synaptic time constant
τs for various values of tonic inhibition Iext and synaptic coupling Jτs : speed of convergence to the limit cycle (a); width of the activity region
(b); critical shrinking of interval between adjacent spikes that does not destroy self-sustained activity (c).

system with a square kernel: The active state is more robust
when tonic inhibition is weaker, and synaptic interaction is
stronger and slower. The plots for Iext = −0.6, Jτs = 1.5 are
not presented because the activity region is so small in this case
that our numerical algorithm failed to calculate the metrics of
the active-state robustness.

In order to further check our findings, we performed nu-
merical simulations for the system with a delayed exponential
synaptic kernel and for the system with a synapse with a finite-
rise-time kernel described by an alpha function. We found that
the phase portraits of these systems do not differ qualitatively
from the results described above (simulations not shown).

IV. DISCUSSION AND CONCLUSIONS

In the present study, we analyzed the behavior of a system of
two excitable quadratic integrate-and-fire neurons; the system
is bistable and can be considered as a minimal model for
a circuit that maintains a memory trace of an item to be
used in a delayed response task (or working memory task):
It has a quiescent background state and an active regime
characterized by self-sustained spiking activity based on
mutual synaptic excitation between the neurons. The active
regime is initiated by a transient excitatory stimulus and is
antisynchronous. It can be stopped by a transient stimulus
rapidly. The constituent neurons in this minimal circuit were
modeled by the quadratic integrate-and-fire equations, that are
a normal form for the saddle-node bifurcation and a canonical
model for type I excitability. The coupling was excitatory and
modeled fast glutamatergic synapses. The main goal of our
study was to see how robust the persistent activity can be to
transient perturbations in the spike times away from the stable
antisynchrony. We considered an uncoupled system, as well as
systems of neurons coupled via excitatory synapses with either
a delta pulse, square, or exponential kernel. We developed
the expressions for synaptic currents in such a way that they
depend only on the voltage of a fired neuron, but not explicitly
on the time since the last spike. Thus all systems under

consideration were two-dimensionally autonomous, which
allowed us to perform phase-plane analysis.

In accordance with the previous work [6], we found that
the uncoupled system has four equilibria: a stable node
(both neurons are at their resting potentials), two saddle
points (one of the neurons is at its resting potential, and
the other one is at its firing threshold), and an unstable node
(both neurons are at their firing thresholds). For the coupled
systems with strong enough synaptic coupling, in addition to
the subthreshold equilibrium, we characterized an invariant
“butterfly” shaped region on the phase plane that corresponds
to self-sustained spiking activity. Any orbit that starts from
this region corresponds to an infinite spike train in which two
neurons fire alternatively, pushing each other across the firing
threshold. For the system with instant coupling, the region of
activity was fully located inside the phase-plane quadrants in
which the voltage of one neuron is above the firing threshold,
and the voltage of another one is below the resting potential.
For the systems with noninstant coupling (via square and
exponential synapses), the region of activity extended outside
the quadrants mentioned above—forming thin “wings” of the
butterfly. In the latter case, the geometry of the activity region
is similar to the one discovered by Gutkin et al. [6] for a
different type of synaptic kernel.

Orbits that pass inside the region of activity correspond
to spike trains with relatively small synchrony (or strong
antiphase) between the neurons. These antiphase spike trains
in a two-neuron system are equivalent to the splay state
[8] observed in larger networks. Pushing the system toward
one of the borders of the activity region leads to partial
synchronization: Some intervals between subsequent spikes
become shorter, and the others longer. Perturbing the system
out of the activity region terminates spiking activity: It leads
either to convergence to the subthreshold equilibrium without
firing spikes, or to firing one more spike very soon after
the previous one, followed again by convergence to the
equilibrium. Thus a critical level of synchronization (related
to the interval between adjacent spikes) exists, above which
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the system switches from the active state to the background
state. This result is in agreement with the idea that sustained
spiking activity that reflects maintenance of information in
working memory models can be terminated by an excitatory
pulse that synchronizes the neural population [17]. However,
in that work, strong perturbation ensuring hard synchrony was
considered. Here we show that the pulse can be much weaker,
depending on the coupling strength, the temporal scale of the
synapses, and the distance of the neurons from their individual
bifurcation points.

The main goal of the present study was to analyze
robustness of the active state. For the system with instant
synaptic interaction, we proved that all orbits in the activity
region are neutrally stable; for the systems with noninstant
interaction, we have found the existence of a limit cycle that
attracts all orbits that start within the activity region. These
findings are in agreement with the study [8] in which results
were obtained for stability of the splay state in the network of
excitatory neurons. In this work we went beyond that study,
since we assessed robustness of the active state using three
metrics: (a) speed of convergence to the limit cycle (given
by the inverse of the absolute value of the spike-to-spike
voltage mapping derivative at the fixed point); (b) width of the
activity region (along a line that corresponds to firing a spike
by one of the neurons); (c) critical shrinking of the interval
between adjacent spikes (relative to the interval observed in
the antiphase regime) that does not lead to termination of
spiking activity. We note that normalization of metric (c) by
the interval obtained in the antiphase regime guarantees that
changes of this metric caused by changes of model parameters
are not related to changes in the steady-state firing rate and thus
reflect the critical synchronization itself. For the system with
instant synapses, we showed that metrics (b) and (c) are larger
(so the active state is more robust) when the tonic inhibition
is weaker and the synaptic coupling is stronger [metric (a)
cannot be calculated in this case because the system does
not have a limit cycle]. For the system with a square kernel,
we derived analytical expressions for all three metrics and
found that (a), (b), and (c) are larger when the tonic inhibition
is weaker, the synaptic coupling is stronger, and the synaptic
decay is slower. Interestingly, metric (a) depended very weakly
on the level of tonic inhibition. Dependence of the robustness
metrics on the synaptic decay time constant supports the idea
that self-sustained activity can be stabilized by adding slow
synapses to a model [18]. All the aforementioned findings
were reproduced in the more realistic case of an exponential
synaptic kernel, for which we calculated the robustness metrics
numerically. Interestingly, robustness of the sustained activity
in the circuit can also be improved by decreasing the tonic

“inhibitory” current. This could be done physiologically by a
number of potential mechanisms, for example, downregulating
slow hyperpolarizing currents that are quasitonically active
at rest potentials (the leak currents, or the dopaminergic
or cholinergic modulation of the M-type potassium current)
or activity-dependent changes in the reversal potentials of
GABA-mediated inhibitory synapses [19–21].

In summary, we investigated the behavior of a bistable
two-neuron system that can serve as a minimal model of a
working memory circuit. We performed phase-plane analysis
and defined the geometry of a region of self-sustained
spiking activity, extending the previously obtained results
[6]. We confirmed the idea that self-sustained activity can be
terminated by synchronization of neuronal activities. Finally,
we explored how robustness of the active state depends on the
model parameters; in the cases of instant and square synapses,
we did it analytically. The results we presented here give an
analytical basis for the phenomena we observed by simulation
in larger scale networks. For example, we saw that persistent
activity in a large network supporting spatial working memory
is asynchronous and is turned off by synchronization [17]. We
also saw that in a large network model of discrete working
memory, the persistent activity encoding the memory trace
could be turned off by correlated noise with the probability of
turning off being controlled by the coherence of the noise [14].
We conjectured that this effect is due to partial synchronization
within the large network. Interestingly, as opposed to [9], our
work proves that the turnoff does not require recruitment of
inhibition. Hence our results fall into a hypothesis suggesting
that glutamatergic mechanisms may be sufficient to implement
dynamical control of sustained activity in working memory
tasks [14]. In the future, we are planning to analyze the
behavior of the systems considered in this paper in the presence
of periodic external input, and to find out how parameters
of this input affect robustness of the active state, as it was
made for the network of excitatory neurons in [14]. We are
also planning to analyze the system with excitatory random
noise, in order to prove that the previously observed inverse
stochastic resonance effect [22,23] is related to the partial-
synchronization-dependent quenching we explored here.
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