
PHYSICAL REVIEW E 94, 052309 (2016)

Sequential motif profile of natural visibility graphs
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The concept of sequential visibility graph motifs—subgraphs appearing with characteristic frequencies in the
visibility graphs associated to time series—has been advanced recently along with a theoretical framework to
compute analytically the motif profiles associated to horizontal visibility graphs (HVGs). Here we develop a
theory to compute the profile of sequential visibility graph motifs in the context of natural visibility graphs
(VGs). This theory gives exact results for deterministic aperiodic processes with a smooth invariant density or
stochastic processes that fulfill the Markov property and have a continuous marginal distribution. The framework
also allows for a linear time numerical estimation in the case of empirical time series. A comparison between
the HVG and the VG case (including evaluation of their robustness for short series polluted with measurement
noise) is also presented.
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I. INTRODUCTION

In recent years different methods [1–5] have been proposed
to map the structure and underlying dynamics of a given time
series into an associated graph representation, with the aims
of exploiting the modern tools of network science [6–8] in the
traditional task of time series analysis [9–11], thereby building
a bridge between the two fields.

In this context, visibility graphs have been proposed [12,13]
as a tool to extract a graph from the relative positions of
an ordered series, from which several graph features can be
extracted and used for description and classification problems.
Examples include a topological characterization of chaotic
series (and routes to chaos) [14–16] or stochastic series
[17–20], and the method has been used for the description and
classification of empirical time series appearing in physics
[21–28], physiology [29,30], neuroscience [31], or finance
[32,33] to cite only a few examples.

Very recently we have advanced the concept of sequential
visibility graph motifs [34], building on the idea of network
motifs [35,36] to explore the decomposition of visibility
graphs into sequentially restricted subgraphs. These motifs
induce a graph-theoretical symbolization of a given time
series into a sequence of subgraphs. We have shown that
the marginal distribution of the motif sequence—the so-called
motif profile—is an informative feature to describe different
types of complex dynamics such as chaotic and stochastic
with different types of correlations and is useful in the task
of classifying empirical time series such as physiological time
series associated to subjects performing different relaxation
tasks. For large classes of dynamical systems, we were able to
develop a theory to analytically compute the frequency of each
motif when these are extracted from a so-called horizontal
visibility graph (HVG), this being a modified and simpler
version of the original (natural) visibility graph (VG), which
has often shown analytical tractability [14,15,17,37]. As a
matter of fact, in the case of VGs to obtain analytical insight has
shown to be a challenging task, and besides a few exceptions
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[20] most of the works that make use of this statistic are
computational. Here we bridge this gap and advance a theory to
analytically compute the complete motif profile in the natural
case (VG motifs). We focus on motifs of size n = 4 as this
was shown to be the simplest case that gives nontrivial results
[34]. We validate this theory by deriving explicit motif profiles
for several classes of complex dynamics, which we show to be
in good agreement with numerical simulations. We also study
the robustness of this feature when the time series is short and
polluted with measurement noise, which guarantees that this
theory can be readily used for the description of experimental
time series in physics and beyond.

The rest of the paper is organized as follows. After recalling
the definitions of natural and horizontal visibility graphs, in
Sec. II we present the concept and main properties of sequential
visibility graph motifs, as well as recalling the theoretical
framework where the motif profile from the horizontal version
was derived. In Sec. III we focus on natural visibility and
develop the theory to compute analytically the motif profile
associated to processes where the dynamics are either bounded
or unbounded. We test this theory by assessing the predictions
for different dynamical systems, and we also show that white
noise with different marginals can be distinguished using
the natural version instead of the horizontal one. In Sec. IV
we show that the visibility graph motif profile is a robust
feature in the sense of (i) having a fast convergence to
asymptotic values for short series size N and (ii) being robust
against contamination with measurement noise (white and
colored). In Sec. V we conclude.

II. VISIBILITY GRAPHS AND SEQUENTIAL MOTIFS

Let x = {x1, . . . ,xN } be a real-valued time series of N data.
The natural visibility graph (VG) [12] extracted from the series
is the graph G = {V,E} where each datum xi in the series
is associated to a node vi (thus |V | = N and V is a totally
ordered set) and an edge ei,j ∈ E between node i and node
j exists if xk < xi + k−i

j−i
[xj − xi] for each k such that i <

k < j . This is called the visibility criterion, which for the
natural version is indeed a convexity criterion. Analogously,
the horizontal visibility graph (HVG) [13] extracted from the
series is the graph Gh = {V,Eh}, with the same set of vertices
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FIG. 1. Two visibility algorithms, natural visibility (red solid line)
and horizontal visibility (green dashed line) applied to a time series of
10 data (bars); the corresponding visibility graph (VG) and horizontal
visibility graph (HVG) are shown on the right: each datum in the series
corresponds to a node in the graph and two nodes are connected if
their corresponding data heights show respectively natural visibility
or horizontal visibility (see the text).

ofG and a subset of edges Eh, which includes all edges ei,j ∈ E

between nodes i and j such that xk < inf(xi,xj ), ∀k : i < k <

j . This visibility criterion is in turn an ordering one. It was
indeed shown that the HVG associated to a time series is
invariant under monotonic transformations in the series [38],
thus the HVG is an order statistic of the series. Gh is indeed
a noncrossing graph [39], which by construction is always
also a subgraph of G (although G is not in general a planar
graph [6]). Both VG and HVG are connected graphs with a
trivial Hamiltonian path [6] given by the sequence of vertices
(v1,v2, . . . ,vN ). An illustration of how to construct a VG and
HVG from a given time series is shown in Fig. 1.

The set of sequential VG motifs of size n, n ∈ [2,3, . . . ,N]
is defined as the set of all the Mn possible subgraphs with
n consecutive vertices along the Hamiltonian path of a VG
(similarly, the set of HVG motifs of size n is the set of all the
Mh

n admissible subgraphs with n consecutive vertices along
the Hamiltonian path of a HVG). Accordingly, sequential
VG motifs are also visibility graphs. For n = 4, there are in
principle a total of M4 = 8 possible motifs (see Table II for
an enumeration), although as we will show below the number
of admissible ones is just six. Given a VG G, its sequential
motifs can be detected using a sliding window of size n, which
slides along the Hamiltonian path of the graph with N − n

consecutive overlapping steps. At each step a particular motif
is detected inside the window. We can accordingly estimate
�m, the frequency of appearance of a certain motif m, and
define the n-motif profile Zn = (�1, . . . ,�Mn

). The process
of extracting a VG or HVG and its sequential visibility motif
set is illustrated in Fig. 2 (the concept is analogous for HVG,
although the set of admissible motifs is different in both cases).
Note that since Zn can be understood as a discrete probability
distribution and is therefore a vector with unit norm (we use
the �1 norm here)

∑Mn

m=1 �m = 1, the number of degrees of
freedom of Zn (that is the minimum number of independent
coordinates) is Mn − 1 (again, as we will see below, in the
case considered here it is even more reduced as the number of
admissible motifs will be less than eight).

In a recent work [34] we introduced the concept of
sequential HVG motifs and advanced a theory to compute in an

FIG. 2. Schematic of visibility graph motif detection. A time
series is converted into a visibility graph according to the visibility
criterion (red arrow). A window of size n = 4 slides along the
Hamiltonian path of the VG graph and detects at each step a different
VG motif.

exact way Z4 in the case of the HVG. It was shown that using
the n = 4 motif statistics it is possible to discriminate different
types of dynamical and stochastic processes. The case of
uncorrelated noise was shown to yield a universal motif profile,
independent of the marginal distribution of the independent
and identically distributed (i.i.d.) random variables, and this
enabled the definition of a randomness test. We also found
for some deterministic dynamics, such for the logistic map,
the existence of forbidden motifs, defined as motifs with
null probability of appearance �m = 0, representing thus a
persistent characteristic to test the randomness of a process
(note that if a motif of size n does not occur, then also all the
motifs of size n′ > n, which incorporate that motif won’t occur
either). Since VG and HVG n-motif profiles are a temporally
constrained feature (they are evaluated along n consecutive
nodes on the Hamiltonian path) its extraction can be seen as a
process of dynamic symbolization. Under this perspective, the
relation between HVG motifs of size n = 4 and the so-called
ordinal patterns (OPs) [40] was acknowledged in Ref. [34].
n-OPs are symbols extracted from a time series representing
the possible ranking output of n consecutive data and are
extracted from a specific time series by comparing the value
of all the set of n consecutive data along the series [40–42].
It was not unexpected to find a link between HVG n motifs
and n-OPs as HVG is known to be an order statistic, much
as OPs. Indeed, in the particular case of a time series for
which the probability of finding two consecutive data of the
same value is close to zero, P (xt = xt+1) � 0, there exists a
mapping between each appearing HVG motif and a specific
set of ordinal patterns [34]; in this scenario the forbidden
motifs selected by the horizontal visibility are, in general, sets
of the so-called forbidden ordinal patterns [43]. Of course
both VG and HVG motifs analysis can be applied without
requiring any further assumption to time series taking values
from finite sets (namely when P (xt = xt+1) �= 0), while the
ordinal patterns approach—based uniquely on the ranking
statistics—require further assumptions in that case. Here we
focus in the natural version of the algorithm and explore VG
motifs instead. As VGs are not in general invariant under
monotonic transformations in the series [38] (note however
that VGs are invariant under linear ones), in general they
depend on the marginal probability distribution of the time
series and are not an order statistic. Accordingly, there is
no obvious correspondence between n-OPs and VG n motifs
and both approaches in principle represent two independent
symbolization methods that encode temporal information in
a different way. In what follows we recall the theoretical
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TABLE I. The set of size-four HVG motifs are defined according to a set of relations between four arbitrary consecutive data
{xl,xl+1,xl+2,xl+3}, l ∈ [1,N − 3] in the time series.

Label HVG motif type Inequality set

1 {∀(xl,xl+1),xl+2 < xl+1,xl+3 < xl+2} ∪ {∀(xl,xl+3),xl+1 > xl,xl+2 > xl+1}
2 {∀xl,xl+1 < xl,xl+2 = xl+1,xl+3 > xl+2}
3 {∀xl,xl+1 < xl,xl+1 < xl+2 < xl,xl+3 < xl+2} ∪ {∀(xl,xl+3),xl+1 < xl,xl+2 > xl}
4 {∀xl,xl+1 > xl,xl+2 < xl+1,xl+3 > xl+2} ∪ {∀xl,xl+1 < xl,xl+2 < xl+1,xl+2 < xl+3 < xl+1}
5 {∀xl,xl+1 < xl,xl+1 < xl+2 < xl,xl+3 > xl+2}
6 {∀xl,xl+1 < xl,xl+2 < xl+1,xl+3 > xl+1}

framework for HVG motifs and in the next section we extend
this theory to deal with VG motifs.

A. Theory for the HVG motif profile

Consider a generic dynamical process H : R → R with
a smooth invariant measure f (x), x ∈ (a,b) that fulfils
the Markov property f (xl|xl−1,xl−2, . . . ) = f (xl|xl−1), where
f (xl|xl−1) is the transition probability distribution. It was
shown in Ref. [34] that, given four arbitrary consecutive data
xl . . . xl+3 the motif profile Z4 = (�4

1, . . . ,�
4
6) could then be

computed as

�4
m =

∫
f (xl)dxl

∫
f (xl+1|xl)dxl+1 . . .

×
∫

f (xl+n−1|xl+n−2)dxl+n−1, (1)

where the range of each integral was implicitly given by the
inequality set reported in Table I. This inequality set encoded
the relative location of data within a particular motif, and
indeed highlights the order statistic nature of this measure.
In those experimental cases where there is no access to
f (xt |xt−1), this approach allowed in turn for an numerical
estimation of HVG motif profile with linear time complexity
O(N ).

III. THEORY FOR SEQUENTIAL VG MOTIFS

Let us consider again a time-discrete (deterministic or
stochastic) dynamical process xt+1 = H(xt ,ξ ), where ξ is
a generic stochastic term, that fulfils the Markov property:
∀l f (xl|xl−1,xl−2, . . . ) = f (xl|xl−1), where f (xl|xl−1) is the
transition probability distribution and x ∈ (a,b). For determin-
istic processes f (xl|xl−1) = δ[xl − H(xl−1)] where δ(x) is the
Dirac-δ distribution:∫ q

p

δ(x − y)dx =
{

1 y ∈ [p,q]
0 otherwise (2)

and f (x) is a smooth invariant measure of the process
H(x), whereas for stochastic processes f (x) is simply the
underlying probability density, i.e., the marginal distribution of
the process. Our theory addresses the motif profile Z4, in what
follows we split this analysis in two cases, depend whether x

is bounded or unbounded. In both cases, each probability �4
m

is computed formally using concatenated integrals which are
formally equivalent to Eq. (1), where the ranges of each integral
are given according to the convexity criteria defining the
visibility rule, as opposed to the HVG case where these were

simply ordering criteria. Whereas in the case of unbounded
variables the inequality set will only take into account the
visibility criteria within the motifs, in the case of bounded
variables the additional restriction of variables needing to be
bounded adds a layer of complexity as we will see. From now
on, let {xl,xl+1,xl+2,xl+3} be four arbitrary consecutive data
(l ∈ [1,N − 3]).

A. Unbounded variable x ∈ (−∞,∞)

In the case of unbounded variables, it is easy to prove
[17,34] that in general

�n
m =

∫
R

f (xl)dxl

∫ cm
1 (xl )

dm
1 (xl )

f (xl+1|xl)dxl+1 . . .

∫ cm
n−1(xl ,...,xl+n−2)

dm
n−1(xl ,...,xl+n−2)

× f (xl+n−1|xl+n−2)dxl+n−1, (3)

where {cm
i (·)}i=1,∂,n−1 and {dm

i (·)}i=1,δ,n−1 are the set of
functions that specify, respectively, the upper bound condition
and the lower bound condition for the ith integral. As
advanced, these conditions are directly related to the visibility
criterion (which in the VG case is a convexity relation) and a
summary of those are are explicitly reported in Table II. For
example, if we want to build motif 1 using four consecutive
equispaced data, we need that, given the first two generic
values xl,xl+1 (node l always connected with node l + 1),
the third datum xl+2 has to satisfy the relation xl+2 − xl+1 <

xl+1 − xl → xl+2 < 2xl+1 − xl (node l + 2 connected with
node l + 1 but not with node l) and that the fourth datum
xl+3 has to satisfy the relation xl+3 − xl+2 < xl+2 − xl+1 →
xl+3 < 2xl+2 − xl+1 (node l + 3 connected only with node
l + 2). The equivalence between each motif and its associated
inequality set can be proved rigorously also for the other motifs
in an analogous way. First, note that for the motifs 2 and
8 the inequality set is empty. This means that these motifs
are actually not admissible under the VG algorithm. In the
case of motif number 2, note that this motif was an admissible
one for HVGs associated to discrete-valued series where the
probability of finding equal consecutive data is finite. For VG,
it is easy to prove that if the bounding nodes share an edge, then
either the left edge or the right edge will necessary share an
edge with one of the inner nodes, thus motif 2 is not a VG and
is therefore not occurring. Similarly, it is easy to prove that if a
time series gives rise to a motif of type 8, then an edge would
necessarily appear between the two bounding nodes, reducing
this to type 7. Accordingly, the number of admissible motifs is
not eight but six, and thus the effective number of degrees of
freedom associated to n = 4 VG motifs is Mn − 2 − 1 = 5.
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TABLE II. The set of size-four VG motifs are defined according to a set of relations between four consecutive data {xl,xl+1,xl+2,xl+3},
l ∈ [1,N − 3] in the time series.

Label VG motif type Inequality set

1 {∀(xl,xl+1),xl+2 < 2xl+1 − xl,xl+3 < 2xl+2 − xl+1}
2 {∅}
3 {∀(xl,xl+1),xl+2 > 2xl+1 − xl,xl+3 < 3

2 xl+2 − 1
2 xl}

4 {∀(xl,xl+1),xl+2 < 2xl+1 − xl,2xl+2 − xl+1 < xl+3 < 3xl+1 − 2xl}
5 {∀(xl,xl+1),xl+2 > 2xl+1 − xl,

3
2 xl+2 − 1

2 xl < xl+3 < 2xl+2 − xl+1}
6 {∀(xl,xl+1),xl+2 < 2xl+1 − xl,xl+3 > 3xl+1 − 2xl}
7 {∀(xl,xl+1),xl+2 > 2xl+1 − xl,xl+3 > 2xl+2 − xl+1}
8 {∅}

To better understand the application of the inequality set in
the case of unbounded variables, consider a white Gaussian
process [xi ∈ (−∞,∞)] with

f (xi) = exp
(−x2

i /2
)

√
2π

and f (xi+1|xi) = f (xi+1)

the probability of appearance of motif 1 in Table II can be
written explicitly as

�4
1 =

∫ ∞

−∞

e− x2
0
2√

2π
dx0

∫ ∞

−∞

e− x2
1
2√

2π
dx1

∫ 2x1−x0

−∞

× e− x2
2
2√

2π
dx2

∫ 2x2−x1

−∞

e− x2
3
2√

2π
dx3. (4)

This integral cannot be solved in closed form but can be
easily evaluated up to arbitrary precision using symbolic
computation, to obtain �4

1 � 0.13386.

B. Bounded variables x ∈ [a,b]; a,b ∈ R; a,b < ∞
In the case where x ∈ (a,b) where the bounds a,b ∈ R

are finite, these restrictions in turn induce further conditions
on the lower and upper bounds of the integrals in Eq. (3),
which have the effect of splitting the overall integral in a
sum of different integrals. For illustrative purposes we start
by considering a particular example. Consider a series of i.i.d.
uniform random variables xi ∼ U[a,b] with f (x) = (b − a)−1

and f (xi+1|xi) = f (xi+1), and let us consider again �4
1.

According to Table II, in principle the conditions for the
first two variables x0, x1 are ∀(x0,x1) ∈ [a,b]; for the third
variable x2 the lower bound condition becomes x2 > a but the
upper bound condition will depend on the function 2x1 − x0,
which can take values in [2a − b,2b − a] and thus we need to
consider three different cases:

2x1 − x0 > b ⇒ x1 ∈
(

(x0 + b)

2
,b

]
, x2 ∈ [a,b]

a < 2x1 − x0 < b ⇒ x1 ∈
(

(x0 + a)

2
,
(x0 + b)

2

]
,

x2 ∈ [a,2x1 − x0]

2x1 − x0 < a {∅}, (5)

where the last case doesn’t contribute (as x2 > a is always
fulfilled). Similarly, for each admissible choice of the variable

x2 the bound conditions for x3 will produce an additional split:

2x2 − x1 > b ⇒ x2 ∈
(

(x1 + b)

2
,b

]
, x3 ∈ [a,b]

a < 2x2 − x1 < b ⇒ x2 ∈
(

(x1 + a)

2
,
(x1 + b)

2

]
,

x3 ∈ [a,2x2 − x1]

2x2 − x1 < a {∅}. (6)

After a bit of algebra one finds

�4
1 = 1

(b − a)4

[ ∫ b

a

dx0

∫ b

(x0+b)
2

dx1

∫ b

(x1+b)
2

dx2

∫ b

a

dx3

+
∫ b

a

dx0

∫ b

(x0+b)
2

dx1

∫ (x1+b)
2

(x1+a)
2

dx2

∫ 2x2−x1

a

dx3

+
∫ b

a

dx0

∫ (x0+b)
2

(2x0+b)
3

dx1

∫ 2x1−x0

(x1+b)
2

dx2

∫ b

a

dx3

+
∫ b

a

dx0

∫ (2x0+b)
3

(2x0+a)
3

dx1

∫ 2x1−x0

(2x1+a)
2

dx2

∫ 2x2−x1

a

dx3

+
∫ b

a

dx0

∫ (x0+b)
2

(2x0+b)
3

dx1

∫ (x1+b)
2

(x1+a)
2

dx2

∫ 2x2−x1

a

dx3

]

= 5

36
� 0.1389. (7)

Two comments are in order. First, note that this result is
different from the value for �4

1 for Gaussian white noise,
that is, the results for white noise seems to be dependent on
the marginal distribution of the noise. This lack of invariance
was expected as VG is not an order statistic, and differs
from the phenomenology found for HVG, where results for
white noise were universal (independent from the marginal
distribution). This evidence will be confirmed in the next
sections. Second, this motif profile turns to be independent
from the bounding values a and b (where x ∈ [a,b]). This is
due to the invariance properties of VGs: if the random variable
ξ ∼ U[0,1], then a + (b − a)ξ ∼ U[a,b], and the transforma-
tion ξ → a + (b − a)ξ , when b > a, leaves the VG (and hence
the VG motifs) unaltered. This is indeed a peculiarity of the
uniform distribution, in other words the VG motif profile of
white noise extracted from a bounded distribution generally
depends on the bounds of the distribution.
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TABLE III. Sets of inequalities between four consecutive data {xl,xl+1,xl+2,xl+3}, l ∈ [1,N − 3] in a time series of length N , which define
the VG motifs of size four in the case of bounded variables xi ∈ [a,b].

Motif label Motif type Inequality set

1 {xl ∈ [a,b],xl+1 ∈ [ (xl+b)
2 ,b],xl+2 ∈ [ (xl+1+b)

2 ,b],xl+3 ∈ [a,b]}
{xl ∈ [a,b],xl+1 ∈ [ (xl+b)

2 ,b],xl+2 ∈ [ (xl+1+a)
2 ,

(xl+1+b)
2 ],xl+3 ∈ [a,2xl+2 − xl+1]}

{xl ∈ [a,b],xl+1 ∈ [ (2xl+b)
3 ,

(xl+b)
2 ],xl+2 ∈ [ (xl+1+b)

2 ,2xl+1 − xl],xl+3 ∈ [a,b]}
{xl ∈ [a,b],xl+1 ∈ [ (2xl+a)

3 ,
(2xl+b)

3 ],xl+2 ∈ [ (xl+1+a)
2 ,2xl+1 − xl],xl+3 ∈ [a,2xl+2 − xl+1]}

{xl ∈ [a,b],xl+1 ∈ [ (2xl+b)
3 ,

(xl+b)
2 ],xl+2 ∈ [ (xl+1+a)

2 ,
(xl+1+b)

2 ],xl+3 ∈ [a,2xl+2 − xl+1]}
2 {∅}
3 {xl ∈ [a,b],xl+1 ∈ [a,

(xl+b)
2 ],xl+2 ∈ [ (xl+2b)

3 ,b],xl+3 ∈ [a,b]}
{xl ∈ [a,b],xl+1 ∈ [a,

(xl+a)
2 ],xl+2 ∈ [ (xl+2a)

3 ,
(xl+2b)

3 ],xl+3 ∈ [a,
3xl+2−xl

2 ]}
{xl ∈ [a,b],xl+1 ∈ [ (2xl+b)

3 ,
(xl+b)

2 ],xl+2 ∈ [2xl+1 − xl,b],xl+3 ∈ [a,b]}
{xl ∈ [a,b],xl+1 ∈ [ (xl+a)

2 ,
(2xl+b)

3 ],xl+2 ∈ [ (xl+2b)
3 ,b],xl+3 ∈ [a,b]}

{xl ∈ [a,b],xl+1 ∈ [ (2xl+a)
3 ,

(2xl+b)
3 ],xl+2 ∈ [2xl+1 − xl,

(xl+2b)
3 ],xl+3 ∈ [a,3xl+1 − 2xl]}

{xl ∈ [a,b],xl+1 ∈ [ (xl+a)
2 ,

(2xl+a)
3 ],xl+2 ∈ [ (xl+2a)

3 ,
(xl+2b)

3 ],xl+3 ∈ [a,3xl+1 − 2xl]}
4 {xl ∈ [a,b],xl+1 ∈ [ (xl+b)

2 ,b],xl+2 ∈ [ (xl+1+a)
2 ,

(xl+1+b)
2 ],xl+3 ∈ [2xl+2 − xl+1,b]}

{xl ∈ [a,b],xl+1 ∈ [ (xl+b)
2 ,b],xl+2 ∈ [a,

(xl+1+a)
2 ],xl+3 ∈ [a,b]}

{xl ∈ [a,b],xl+1 ∈ [ (2xl+a)
3 ,

(2xl+b)
3 ],xl+2 ∈ [ (xl+1+a)

2 ,2xl+1 − xl],xl+3 ∈ [2xl+2 − xl+1,3xl+1 − 2xl]}
{xl ∈ [a,b],xl+1 ∈ [ (2xl+b)

3 ,b],xl+2 ∈ [ (xl+1+a)
2 ,

(xl+1+b)
2 ],xl+3 ∈ [2xl+2 − xl+1,b]}

{xl ∈ [a,b],xl+1 ∈ [ (2xl+a)
3 ,

(2xl+b)
3 ],xl+2 ∈ [a,

(xl+1+a)
2 ],xl+3 ∈ [a,3xl+1 − 2xl]}

{xl ∈ [a,b],xl+1 ∈ [ (2xl+b)
3 ,

(xl+b)
2 ],xl+2 ∈ [a,

(xl+1+a)
2 ],xl+3 ∈ [a,b]}

5 {xl ∈ [a,b],xl+1 ∈ [a,
(xl+a)

2 ],xl+2 ∈ [ (xl+1+2a)
3 ,

(xl+1+b)
2 ],xl+3 ∈ [ 3xl+2−xl

2 ,2xl+2 − xl+1]}
{xl ∈ [a,b],xl+1 ∈ [ (2xl+a)

3 ,
(2xl+b)

3 ],xl+2 ∈ [2xl+1 − xl,
(xl+1+b)

2 ],xl+3 ∈ [ 3xl+2−xl

2 ,2xl+2 − xl+1]}
{xl ∈ [a,b],xl+1 ∈ [ (xl+a)

2 ,
(2xl+a)

3 ],xl+2 ∈ [ (2xl+a)
3 ,

(xl+1+b)
2 ],xl+3 ∈ [ 3xl+2−xl

2 ,2xl+2 − xl+1]}
{xl ∈ [a,b],xl+1 ∈ [a,

(xl+a)
2 ],xl+2 ∈ [ (xl+1+a)

2 ,
(xl+2a)

3 ],xl+3 ∈ [a,2xl+2 − xl+1]}
{xl ∈ [a,b],xl+1 ∈ [ (xl+a)

2 ,
(2xl+a)

3 ],xl+2 ∈ [ (xl+1+a)
2 ,

(xl+2a)
3 ],xl+3 ∈ [a,2xl+2 − xl+1]}

{xl ∈ [a,b],xl+1 ∈ [a,
(2xl+b)

3 ],xl+2 ∈ [ (xl+1+b)
2 ,

(xl+2b)
3 ],xl+3 ∈ [ 3xl+2−xl

2 ,b]}
6 {xl ∈ [a,b],xl+1 ∈ [ (2xl+a)

3 ,
(2xl+b)

3 ],xl+2 ∈ [a,2xl+1 − xl],xl+3 ∈ [3xl+1 − 2xl,b]}
{xl ∈ [a,b],xl+1 ∈ [ (xl+a)

2 ,
(2xl+a)

3 ],xl+2 ∈ [a,2xl+1 − xl],xl+3 ∈ [a,b]}
7 {xl ∈ [a,b],xl+1 ∈ [a,

(xl+a)
2 ],xl+2 ∈ [a,

(xl+1+a)
2 ],xl+3 ∈ [a,b]}

{xl ∈ [a,b],xl+1 ∈ [a,
(xl+a)

2 ],xl+2 ∈ [ (xl+1+a)
2 ,

(xl+1+b)
2 ],xl+3 ∈ [2xl+2 − xl+1,b]}

{xl ∈ [a,b],xl+1 ∈ [ (xl+a)
2 ,

(2xl+a)
3 ],xl+2 ∈ [2xl+1 − xl,

(xl+1+a)
2 ],xl+3 ∈ [a,b]}

{xl ∈ [a,b],xl+1 ∈ [ (xl+a)
2 ,

(2xl+a)
3 ],xl+2 ∈ [ (xl+1+a)

2 ,
(xl+1+b)

2 ],xl+3 ∈ [2xl+2 − xl+1,b]}
{xl ∈ [a,b],xl+1 ∈ [ (2xl+a)

3 ,
(2xl+b)

3 ],xl+2 ∈ [2xl+1 − xl,
(xl+1+b)

2 ],xl+3 ∈ [2xl+2 − xl+1,
(xl+1+b)

2 ]}
8 {∅}

After a bit of algebra, we are able to translate the visibility
and bounded variable restrictions inside each motif into
another set of inequalities, which we have reported in Table III.
In what follows we make use of this theory to compute the
theoretical VG motif profile for several dynamical processes.

C. VG motif profiles of different families of dynamical systems

1. Fully chaotic logistic map

We start by considering the fully chaotic logistic map
H(x) = 4x(1 − x), x ∈ [0,1], with invariant density f (x) =

1
π

√
x(1−x)

. As this process is deterministic, it fulfils a trivial
Markov property such that f (x2|x1) = δ[x2 − H(x1)]. The
HVG motif profile for this process was computed exactly
in Ref. [34], here we compute the VG motif profile. Before
proceeding to compute each probability contribution, it is

important to highlight a subtle point. Since for this process
x ∈ [0,1] is bounded, in principle one should use the inequality
set depicted for bounded variables in Table III. However, in this
particular case it is actually not necessary to explicitly consider
the restriction x ∈ [0,1]. As we will see in a moment, this is
already taken into account implicitly in the computation of
each integral and therefore one can use the (simpler) inequality
set for unbounded variables given in Table II.

We start by computing �4
1:

�4
1 =

∫ 1

0
f (x0)dx0

∫ 1

0
δ[x1 − H(x0)]dx1

∫ 2x1−x0

0

× δ[x2 − H2(x0)]dx2

∫ 2x2−x1

0
δ[x3 − H3(x0)]dx3,
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which gives the following conditions:

H3(x0) < 2H2(x0) − H(x0),

H2(x0) < 2H(x0) − x0,

which are satisfied for x0 ∈ [0.1743,0.25]. Note at this point
that the latter conditions are also satisfied in other ranges, but
we only consider those ranges that belong to [0,1], and this is
indeed the reason why we don’t need to use in this case the
inequality set for bounded variables. We thus have

�4
1 � 1

π
B[0.1743,0.25]

(
1

2
,
1

2

)
� 0.0591,

where B is the incomplete beta function. As �4
2 = 0 by

construction, we proceed by calculating �4
3:

�4
3 =

∫ 1

0
f (x0)dx0

∫ 1

0
δ[x1 − H(x0)]dx1

∫ 1

2x1−x0

× δ[x2 − H2(x0)]dx2

∫ 3
2 x2− 1

2 x0

0
δ[x3 − H3(x0)]dx3,

which gives the following conditions:

H3(x0) < 3
2H

2(x0) − 1
2H(x0),

H2(x0) > 2H(x0) − x0,

which are satisfied for x0 ∈ [0.0522,0.1743] ∪ [0.75,0.929].
Therefore:

�4
3 � 1

π
(B[0.0522,0.1743]

(
1

2
,
1

2

)

+B[0.75,0.929]

(
1

2
,
1

2

)
) � 0.289.

Similarly, for �4
4 we have

�4
4 =

∫ 1

0
f (x0)dx0

∫ 1

0
δ[x1 − H(x0)]dx1

∫ 2x1−x0

0

× δ[x2 − H2(x0)]dx2

∫ 3x1−2x0

2x2−x1

δ[x3 − H3(x0)]dx3,

which gives the following conditions:

2H2(x0) − H(x0) < H3(x0) < 3H2(x0) − 2x0,

H2(x0) < 2H(x0) − x0,

which are satisfied for x0 ∈ [0.25,0.75], and therefore

�4
4 � 1

π
B[0.25,0.75]

(
1

2
,
1

2

)

� 0.3333.

For �4
5 we have

�4
5 =

∫ 1

0
f (x0)dx0

∫ 1

0
δ[x1 − H(x0)]dx1

∫ 1

2x1−x0

× δ[x2 − H2(x0)]dx2

∫ 2x2−x1

3
2 x2− 1

2 x0

δ[x3 − H3(x0)]dx3,

which gives the following conditions:

3
2H

2(x0) − 1
2x0 < H3(x0) < 2H2(x0) − H(x0),

H2(x0) > 2H(x0) − x0,

which are satisfied for x0 ∈ [0.927,0.954], and thus

�4
5 � 1

π
(B[0.04568,0.05224]

(
1

2
,
1

2

)

+B[0.9239,0.9543]

(
1

2
,
1

2

)
� 0.0439.

For �4
6 we have

�4
6 =

∫ 1

0
f (x0)dx0

∫ 1

0
δ[x1 − H(x0)]dx1

∫ 2x1−x0

0

× δ[x2 − H2(x0)]dx2

∫ 1

3x1−2x0

δ[x3 − H3(x0)]dx3,

which gives the following conditions:

H3(x0) > 3H(x0) − 2x0,

H2(x0) < 2H(x0) − x0,

which are never satisfied and thus

�4
6 = 0.

For �4
7 we have

�4
7 =

∫ 1

0
f (x0)dx0

∫ 1

0
δ(x1 − H(x0))dx1

∫ 1

2x1−x0

× δ(x2 − H2(x0))dx2

∫ 1

2x2−x1

δ(x3 − H3(x0))dx3,

which gives the following conditions:

H3(x0) > 2H2(x0) − H(x0),

H2(x0) > 2H(x0) − x0,

which are satisfied for x0 ∈ [0,0.0457] ∪ [0.9544,1], and thus

�4
7 � 1

π
(B[0,0.046]

(
1

2
,
1

2

)
+ B[0.95,1]

(
1

2
,
1

2

)
) � 0.2741.

Finally, by construction �4
8 = 0. Altogether, we find the VG

motif profile of a fully chaotic logistic map

Z4 = (0.0591,0,0.289,0.3333,0.0439,0,0.2741,0). (8)

Note that while the result is in this case an approximation, our
theory allows for numerical estimates with arbitrary precision
(the result is not exact because the location of fixed points of
the map is only approximate, although this approximation is
arbitrarily close to the true values).

2. Uniform white noise

For white uniform noise x(t) = ξ , ξ ∼ U [a,b] we have a
probability density f (x) and transition probability f (x2|x1)
given by

f (x) = 1

b − a
, and f (x2|x1) = f (x2). (9)
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In this case the computations are more cumbersome since we
need to make use of the inequality set for bounded variables
described in Table III. The mth component of Z4 is given by

�4
m =

∑
s

∫ ∞

−∞

e− x2
0
2√

2π
dx0

∫ cm
s1

dm
s1

e− x2
1
2√

2π
dx1

∫ cm
s2

dm
s2

× e− x2
2
2√

2π
dx2

∫ cm
s3

dm
s3

e− x2
3
2√

2π
dx3, (10)

where the sum runs over all the set s of conditions dm
si ,c

m
si ,

which contribute to evaluate the probability for motif m

in Table III. All the integrals can nonetheless be solved
analytically in closed form and give the following motif profile

Z4 =
(

5

36
,0,

31

108
,

31

108
,

2

27
,

2

27
,

5

36
,0

)
, (11)

which differs from the one found for the chaotic logistic map.

3. Gaussian white noise

For standard white Gaussian noise x(t) = ξ , ξ ∼ N (0,1)
the probability density f (x) and transition probability f (x2|x1)
are given by

f (x) = exp(−x2/2)√
2π

, and f (x2|x1) = f (x2). (12)

The m component of Z4 is given by

�4
m =

∫ ∞

−∞

e− x2
0
2√

2π
dx0

∫ ∞

−∞

e− x2
1
2√

2π
dx1

∫ cm
2

dm
2

× e− x2
2
2√

2π
dx2

∫ cm
3

dm
3

e− x2
3
2√

2π
dx3, (13)

where (dm
i ,cm

i ) are now the top and bottom conditions for the
variable xl+i in motif m reported in Table II for unbounded
variables. The integrals can be evaluated numerically up to
arbitrary precision and they give the following results

Z4 = (0.13386,0,0.2850,0.2850,0.0811,0.0811,0.13386,0).

(14)

At odds with what happens for HVG motifs [34], this result is
different from the benchmark result for uniformly distributed
white noise, thus there is not a universal VG motif profile for
white noise as previously anticipated.

4. Gaussian red noise

Gaussian colored (red) noise with exponentially decaying
correlations [44] can be simulated using an AR(1) process:

xt = rxt−1 + ξ, (15)

where ξ ∼ N (0,1) is Gaussian white, and 0 < r < 1 is a
parameter that tunes the correlation. The autocorrelation
function C(t) decays exponentially C(t) = e−t/τ , where the
characteristic time τ = 1/ ln(r). This model is Markovian
and stationary, with a probability density f (x) and transition

probability f (x2|x1) given by [44]

f (x) = exp(−x2/2)√
2π

, and f (x2|x1)

= exp{−(x2 − rx1)2/[2(1 − r2)]}√
2π (1 − r2)

. (16)

The m component of Z4 is given by

�4
m =

∫ ∞

−∞

e
−x2

0
2√

2π
dx0

∫ ∞

−∞

e
−(x1−rx0)2

2(1−r2)√
2π (1 − r2)

dx1

∫ cm
2

dm
2

× e
−(x2−rx1)2

2(1−r2)√
2π (1 − r2)

dx2

∫ cm
3

dm
3

e
−(x3−rx2)2

2(1−r2)√
2π (1 − r2)

dx3, (17)

where, again, (dm
i ,cm

i ) are, respectively, the bottom and the top
conditions for the variable xl+i in motif m reported in Table II.
Once we set the precise values of the parameter r , the profile
can be evaluated numerically up to arbitrary precision; here
we give the profile for three possible values r = 1/4,1/2, and
3/4

Z4
r= 1

4
= (0.14713,0,0.27028,0.27028,0.08259,

0.08259,0.14713,0)

Z4
r= 1

2
= (0.15731,0,0.2595,0.2595,0.08316,

0.08316,0.15731,0)

Z4
r= 3

4
= (0.16410,0,0.25258,0.25258,0.08332,

0.08332,0.16410,0). (18)

In all these examples, theoretical results are in very good agree-
ment with the results obtained from numerical simulations
reported in Fig. 3.

0.05
0.07
0.09
0.11
0.13
0.15
0.17
0.19
0.21
0.23
0.25
0.27
0.29
0.31

r=0.25
r=0.5
r=0.75

Φ

FIG. 3. Average (50 realizations) frequency of appearance � of
VG motifs extracted from the AR(1) processes described by Eq. (15),
for different values of the correlation coefficient r = [ 1

4 , 1
2 , 3

4 ] (only
motifs with a non-null probability are shown). Error bars are contained
in the symbols; results are in very good agreement with the theoretical
expected value.
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
uniform i.i.d.
Gaussian i.i.d.
power−law i.i.d.
exponential i.i.d.
HVG i.i.d.

Φ

FIG. 4. Average frequency of appearance � of VG and HVG
motifs extracted from i.i.d. series of N = 105 with different marginal
distributions; VG motifs are not related with the ranking statistics of
the data and able to discriminate the different types of noise.

D. Noise characterization

Differently from the HVG motifs, VG motifs statistics does
not depend uniquely on the ranking statistics of the data and
therefore the VG motif profile could be able in principle to
discriminate white noises with different marginal distributions.
In the latter sections we have been able to distinguish between
Gaussian and uniform white noise. In Fig. 4 we summarize
the motif frequencies �4

m of VG motifs forming Z4, extracted
from i.i.d. series with different marginals:

Uniform → xi ∈ [0,1]; f (xi) ∼ 1

Gaussian → xi ∈ (−∞,∞); f (xi)

∼ exp(−x2
i /2)√

2π

Power-law → xi ∈ [1,∞); f (xi) ∼ x−k
i , k = 2.5

Exponential → xi ∈ [0,∞); f (xi) ∼ exp(−kxi), k = 2.5.

(19)

In every case we extract series of 105 data. The universal profile
obtained for HVG is also plotted for comparison. As expected,
motif profiles are different for different marginals. Motifs that
are symmetric respect to reflection (3 and 4, 5 and 6) occur
with equal probabilities, differently from the case of chaotic
time series such as the logistic map [Eq. (8)] (indeed an i.i.d
time series and the same series reversed respect to time are
both random and share the same marginal distribution).

E. Summary

According to the values obtained for the components of
Z4 in the preceding cases, one can extract some preliminary
heuristic conclusions:

(i) �1, �7 seems to encode information on the marginal
distribution of the process as well as its autocorrelation
structure.

(ii) �2 is null as this motif is not a VG. This is at odds with
the HVG case, where this is an admissible motif provided the
probability of finding consecutive equal data in the series is
finite (e.g., for discrete-valued series).

(iii) The motifs associated to the pairs (�3,�4) (�5,�6)
have an obvious mirror symmetry: the motifs associated to
�3 and �4 are isomorphic, the correct permutation being
1 − 2 − 3 − 4 → 4 − 3 − 2 − 1 (the same holds for �5 and
�6). As the node labeling encapsulates time ordering, for any
process that is statistically time reversible [38], we expect these
probabilities to be equal. Reversible processes include linear
stochastic processes (and both white and red noise belong to
this family), while noninvertible chaotic processes are usually
time irreversible (the fully chaotic logistic map is an example).
Time irreversibility of the process is therefore encoded in these
terms.

(iv) �8 = 0 as this is not a VG and therefore does not
appear (not admissible).

(v) As we can notice no set of relation exists for the VG
motif 2 and 8, meaning that the two motifs are not allowed
by natural visibility. However we have chosen to present the
motif profile as an 8-dimensional vector. This choice has been
done for the sake of the theoretical discussion, considering that
it is not trivial to say a priori if a certain motif is admissible
by the natural visibility criterion. Also we have included the
null components of the VG motif profile for allowing a better
comparison with the HVG motif profile.

IV. ROBUSTNESS: A COMPARISON BETWEEN VG
AND HVG MOTIF PROFILES

When dealing with empirical time series, the practitioner
usually faces two different but complementary challenges,
namely (i) the size of the series and (ii) the possible sources
of measurement noise. The first challenge can be a problem
when the statistics to be extracted from the series are strongly
affected by finite-size effects, whereas, for the second one
needs to evaluate the robustness of those statistics against noise
contamination. For a statistic or feature extracted from a time
series to be not just informative but useful one usually requires
that statistic or feature to be robust against both problems: it
needs to have fast finite-size convergence speed and to be
robust against reasonably large amounts of additive noise.

In Ref. [34] it has been already shown that the HVG motif
profile has good convergence properties respect to the series
size N and it is also robust respect to noise contamination.
Here we explore these very same problems for the case of
the VG motif profile and we make a detailed comparison
of its performance with the HVG motif profile in a range
of situations.

A. Convergence properties for finite-size series

In general, due to finite-size effects, the estimated value of
any feature deviates from its asymptotic value. For classical
features such as the mean or the variance of a distribution,
these deviations are bounded and vanish with series size with
a speed quantified by the central limit theorem. The estimation
of the motif frequencies can be quantitatively affected by
finite-size fluctuations and one can even observe missing
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(a)

(b)

N

N

white Gaussian 4−motifs VG
white Gaussian 4−motifs HVG
red Gaussian 4−motifs VG
red Gaussian 4−motifs HVG
log map 4−motifs VG
log map 4−motifs HVG

101 102 103

10−2

10−1

d

V

V

R

V

V

white Gaussian 4−motifs VG
white Gaussian 4−motifs HVG
red Gaussian 4−motifs VG
red Gaussian 4−motifs HVG

10 20 30 40 50 60

10−2

10−1

100

FIG. 5. Robustness of VG and HVG motif statistic respect to
finite series size effects, in the case of Gaussian white noise and
colored (red) Gaussian noise. (a) Semilog plot of the average number
of missing motifs 〈R〉 vs series size N (each point is an average
over 300 realizations of the corresponding process). 〈R〉 decays
exponentially to zero, meaning that for N ∼ 100 we can already
exclude the possibility of detecting missing motifs due to finite-size
fluctuations for both types of noise. (b) Log-log plot of the average
distance 〈d〉 (see the text) between the observed motif profile and
the theoretical profile as a function of the series size N (results are
averaged over 300 realizations). 〈d〉 decreases as a power law for all
the processes considered.

motifs (motifs with estimated frequency � = 0), which are
not actually forbidden by the process but have not appeared by
chance. This situation can be overemphasized in the presence
of certain types of measurement noise.

Following an approach analogous to the one followed
for the forbidden ordinal patterns in Refs. [45–47], we first
perform a test to study the decay of missing motifs with
the series size both in stochastic uncorrelated and correlated
processes. In Fig. 5(a) we plot 〈R(N )〉, the average number of
missing motifs in a series of size N in the case of Gaussian
white noise and colored (red) Gaussian noise [for the red
noise we consider the AR(1) process with r = 0.5 discussed in
Sec. III]. For both types of noise 〈R(N )〉 decays exponentially

to zero and already with a series of about 80–100 data points
we can exclude the possibility of detecting missing motifs (for
both HVG and VG) due to finite-size fluctuations even in the
case of correlated noise.

As a second analysis, we explore the convergence speed
of the estimated motif profile of uncorrelated and correlated
stochastic series and of chaotic series (fully chaotic logistic
map) of size N to the asymptotic profile solution given
in Sec. III. To do this we define the distance between the
estimated four-motif probabilities �̂4

m(N ) and the asymptotic
value �4

m = limN→∞ �̂4
m(N ). We use �1 norm and accordingly

define

d(N ) =
∑
m

∣∣�̂4
m(N ) − �4

m

∣∣. (20)

In Fig. 5(b) we show the trend of d(N ) in log-log scale (results
are averaged over 300 realizations). The average distance
appears to decrease like a power law for all the processes
considered, in agreement with a central-limit-theorem-like ar-
gument: since d quantifies the deviation between the estimated
values (from a sample series of finite size N ) and the exact
(asymptotic) values of the motif frequencies, when the size of
the sample series N increases, the deviation of the estimated
mean values reduces, and d must converge to zero as 1/

√
N

(deviations vanish as a power law of the sample size). For a
series of N = 103 points 〈d(N )〉 is less than 5 × 10−2 and the
average distance 〈dm〉 for each of the single components is
less than 10−2 (not shown). These results suggest that VG and
HVG motif profiles have very good convergence properties
and are thus robust against finite-size fluctuations.

B. Robustness against measurement noise

To test and compare the robustness of VG and HVG motif
profiles when the effect of noise contamination combines with
the finite-size fluctuations we consider the fully chaotic logistic
map dynamics xt polluted with measurement (additive) noise
ηt

Xt = xt + ηt

xt = 4xt−1(1 − xt−1)

ηt = rηt−1 + √
αξt , ξt ∈ N (0,1) (21)

in the two cases where ηt is, respectively, white Gaussian noise
(r = 0) or colored Gaussian noise (r = 0.5). For both cases
α ∈ [0,1] is the parameter, which tunes the noise-to-signal
ratio (NSR) of the process defined as

NSR(α) = σ 2[
√

αξ ]

σ 2[x]
, (22)

where σ 2[
√

αξ ] and σ 2[x] are respectively the theoretical
variance of the white Gaussian noise

√
αξ and the theoretical

variance of the dynamics (signal) x [note that with this
definition we are underestimating the NSR in the case
of correlated noise where σ 2[η] = σ 2[

√
αξ ]/(1 − r2)]. The

robustness of the observed motif profile �̂4
i [X(N,α)] for a

single realization of the process with given N and α can be
defined as the distance between this profile and the theoretical
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profile �4
i [η(α)] of the noise η for the given α.

δ(N,α) =
∑
m

∣∣�̂4
m[X(N,α)] − �4

m[η(α)]
∣∣. (23)

With such definition we expect δ(N,α) � 0 for low values
of the NSR (dominant signal, �̂4

m[X(N,α)] � �4
m[x]) and

δ(N,α) � 0 for high values of the NSR (dominant noise,
�̂4

m[X(N,α)] � �4
m[η]). Furthermore, δ(N,α) is affected by

finite-size effects: if we assume to have few realizations Nr

of the process X of small series size N , then we expect the
variance σ 2[δ(N,α)] calculated over the realizations to be high.
In particular we have to consider that a resolution limit δ0

exists, such that when 〈δ(N,α)〉Nr
= δ0 we cannot say any

more if the distance we measured is discriminating the signal
x from the noise η or it is simply due to finite-size effects of the
contamination noise η. We define this threshold δ0 as the sum
of the standard deviations of the estimated profile components
�̂4

m[η] given Nr realizations of the noise process alone

δ0(N,α) =
∑
m

√〈(
�̂4

m[η(N,α)] − 〈
�̂4

m[η(N,α)]
〉
Nr

)2〉
Nr

.

(24)

It is thus convenient to work with the relative distance 〈δ〉Nr
/δ0;

when 〈δ〉Nr
/δ0 � 1 we say that the resolution limit for the

process X(N,α)—given its Nr realizations—is reached, and
〈δ〉Nr

is not any more a reliable indicator.
In Fig. 6(a) we show the quantity 〈δ〉/δ0 averaged over 300

realizations of the process X for different levels of contam-
ination NSR = [0,0.2,0.4, . . . ,8] at fixed size N = 6400 =
100 × 26 (notice that for N � 100 the missing motifs are not
found anymore), respectively, for white Gaussian noise and
colored Gaussian noise and for the HVG and the VG motif pro-
file. The red solid line plotted in the figure represents the reso-
lution limit threshold for the process. We can see that the HVG
and the VG motif profiles are more robust respect to noise con-
tamination when this noise is correlated. In this situation the
HVG motif profile seems to perform better than the VG motif
profile, while in the case of uncorrelated Gaussian noise the VG
profile seems in turn slightly more robust than the HVG profile.

The last step of this robustness analysis is to consider the
usual situation where only very few realizations (often a single
one) of the same process are available. Our aim is to define a
useful indicator θ , which estimates for any given value of the
size N the maximum amount of noise contamination level for
which a measure δ computed with only one realization of the
process X can be considered reliable. We define this to be the
value of the NSR such that 〈δ〉 − σ (δ) = δ0, and thus

θ (N ) = {NSR(α) : 〈δ(N,α)〉 − σ [δ(N,α)] = δ0}. (25)

θ (N ) measures (in units of noise-to-signal ratio) the (statisti-
cal) reliability of the motif profile extracted form a single time
series of size N of the signal x in the presence of measurement
noise η.

In Fig. 6(a) we plot θ (N = 6400) for white Gaussian noise
in the case of VG by considering the 〈δ〉/δ0 curve marked by
orange squares and by taking the smallest value of NSR for
which the statistical error range allows to measure values of
δ/δ0 equal or smaller than the value of the resolution limit
threshold (this value of NSR is highlighted in figure using a
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FIG. 6. Robustness of HVG and VG motif profiles respect to
measurement noise. (a) The average distance between the motif
profile extracted from the polluted chaotic dynamics X [see Eq. (21)]
and the theoretical motif profile of the noise, normalized by the
resolution limit threshold δ0 for different level of contamination NSR
(noise-to-signal ratio) at fixed size N = 6400. When the curves reach
the resolution limit (horizontal line) we cannot consider any more
the motif profile informative about the underlying chaotic dynamics
due to the noise effects. (b) The estimated values of the measure θ in
function of the time series size N indicating the maximum amount of
NSR for which the motif profile extracted form a single realization
of the process X is reliably informative respect to the chaotic signal.
The HVG and the VG motif profiles are more robust respect to noise
contamination when the noise is correlated (red Gaussian). In this
situation the HVG motif profile seems to perform better than the VG
motif profile, while in the case of uncorrelated Gaussian noise the
VG profile seems in turn slightly more robust than the HVG profile.

blue box). We find θ � 2.2, meaning that when working with
a single time series of the process X with size N = 6400, the
〈δ〉 distance measured by using the VG motif profile is reliable
up to a level of white Gaussian noise contamination α such
that NSR(α) � 2.2. In Fig. 6(b) we report the estimated value
of θ for the VG and HVG motif profiles in the case of white
Gaussian noise and correlated Gaussian noise in function of the
series size N = 100 × 2,100 × 22, . . . ,100 × 27 [maximum
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noise contamination level considered was NSR(α) = 8]. We
can see that the motif profile is in general a robust measure
respect to the combined effect of measurement noise and
finite size: working with a single time series of only 3000
points of the process X we can extract both the VG and
the HVG motif profiles and expect those features to be
informative respect to the underlying chaotic signal x up to
a level of measurement noise for which NSR = 1.5 in the
case of uncorrelated Gaussian noise and NSR = 3 in the case
of correlated Gaussian noise.

Also and as observed before [Fig. 6(b)], given the case
of white Gaussian noise contamination the VG motif profile
(orange squares) seems to perform slightly better than the HVG
motif profile (green circles). For colored Gaussian noise the
situation is the opposite and the HVG motif profile (reversed
gray triangles) performs much better (almost a gap of one
unit of NSR for N > 1600) than the VG motif profile (blue
triangles). For both types of visibility graphs the motif profile is
systematically more robust when polluted with colored noise
than with white noise. This is probably due to the fact that
white noise breaks up the correlation structure of the signal
faster (respect to the size N ) than correlated noise.

V. CONCLUSIONS

Sequential visibility graph motifs are small subgraphs
where nodes are in consecutive order within the Hamiltonian
path that appear with characteristic frequencies for different
types of dynamics. This concept was introduced recently [34]
and a theory was developed to analytically compute the motif
profiles in the case of horizontal visibility graphs (HVGs). In
this work we have extended this theory to the realm of natural
visibility graphs (VGs), a family of graphs where the previous
amount of known exact results was practically null. We have

been able to give a closed form for the four-node VG motif
profile associated to general one-dimensional deterministic
and stochastic processes with a smooth invariant measure
or continuous marginal distribution, for the cases where the
variables belong to a bounded or unbounded interval. In the
case where the time series is empirical and one does not
have access to the underlying dynamics, the methodology
still provides a linear time [O(N )] algorithm to estimate
numerically such profile, outperforming the general algorithm
for this specific feature. We have also shown that the theory is
accurate and that VG motifs have similar robustness properties
as HVG, yet they depend on the marginal distribution of
the process and as such yield different profiles for different
marginals. This is at odds with the results found for HVGs,
where the motif profiles did not depend on the marginals as
they behave as an order statistic.

The detection of such motifs from a visibility graph
extracted from a time series can be seen as a process of
dynamic symbolization of the series itself, where the alphabet
of symbols is composed by different subgraphs (motifs),
which encode information about both data relations and
their temporal ordering in their link structure. The deep
similarity between HVG motifs and the so-called ordinal
pattern analysis—which holds mainly due to the fact that
HVG is an order statistic—vanishes for VG motifs. This
suggests that VG motifs provide different information than
HVG ones and therefore stand as a complementary tool for
time series description and classification, specially relevant
when the marginals play a role in the analysis.
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