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Roles of mixing patterns in the network reconstruction
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Compressive sensing is an effective way to reconstruct the network structure. In this paper, we investigate
the effect of the mixing patterns, measured by the assortative coefficient, on the performance of network
reconstruction. First, we present a model to generate networks with different assortativity coefficients, then
we reconstruct the network structure by using the compressive sensing method. The experimental results show
that when the assortativity coefficient r = 0.2, the accuracy of the network reconstruction reaches the maximum
value, which suggests that the compressive sensing is more effective for uncovering the links of social networks.
Moreover, the accuracy of the network reconstruction will be higher as the network size increases.
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I. INTRODUCTION

The compressive sensing has drawn considerable atten-
tion in the network reconstruction [1–5]. For example, the
compressive sensing can reconstruct a propagation network
in terms of the available time series [6], and could uncover
the network topology using limited information based on
evolutionary-game data, achieving the high accuracy results
even with small data set information [7]. The compressive
sensing method has already been applied to many research
areas, such as biology networks [8], social networks [9],
technology networks, and so on.

Generally speaking, networks could present distinct statis-
tical and functional properties with different degree-mixing
patterns, which is measured by the assortativity coefficient
[10–13]. When a network is assortative, the nodes with close
degrees tend to connect with each other. On the contrary,
in the disassortative networks, the large-degree nodes tend
to connect with small-degree ones [14]. Previous studies
suggested that the social networks are much more likely to
be assortative while the technology and biology networks
tend to be disassortative. For instance, physics coauthorship
network and company directors network are assortative, while
the internet and neural network are disassortative [11,14].
As one widely used network reconstruction method, there is
limited information about the effect of the network mixing
pattern on the compressive sensing performance.

In this paper, we present a model to generate a series
of networks with different assortativity coefficients [15,16].
Then we introduce the evolution game to generate the
signals for compressive sensing, and use the different sizes
of evolutionary-game data to reconstruct networks [17,18].
Comparing with the original networks, the successfully regen-
erated rate could be calculated. The experimental results show
that the successfully regenerated rates of assortative networks
are higher than disassortative networks, which suggests that
the compressive sensing is an effective way for regenerating
the social network structures. Furthermore, we investigate the
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effects of the network sizes on the performance of compressive
sensing, and the experimental results show that the network
regenerated rates will increase as the network size increases.
More importantly, the high network regenerated rates also
can be achieved even if there is a lot of noise in the data
information.

II. METHOD

Evolutionary games model a common type of interaction
in a variety of complex systems [7,11], it has been used
to reconstruct the network based on compressive sensing
[19–22]. The dynamical evolution of the underlying networked
system and the signals in continuous time are required, as well
these node-to-node interactions are governed by evolutionary-
game types of dynamics. In an evolutionary game, at any
time, a player has two strategies (S): cooperation (C) or
defection (D), we use the S(C) = (1,0)T and S(D) = (0,1)T

as the strategy matrices, and they will get different payoff
with different strategies. The payoff matrix G of the prisoner
dilemma (PD) game is

G =
(

I P

H Q

)
. (1)

With different strategies, the player will get different payoff
U , the payoff of mutual cooperators is I , and mutual defectors
is P . While defectors will gain H when another one is a
cooperator, and the cooperator gains payoff Q. Here we choose
the values that I = 1,H = 1.2(1 < H < 2),P = Q = 0 [17].
In a specific network, all nodes play the game with their
neighbors at each step, and at the end of one round the payoff
Ui of node i is

Ui =
∑
j∈�i

ST
i · G · Sj , (2)

where Si and Sj are the strategies of node i and j , respectively,
and �i is the neighbor set of i. Each node will obtain the
payoffs after one round of game then update their strategies in
the next round. In order to maximize its benefits in the next
round, every node will update their strategies according to its
neighbors’ and its own payoffs last round. In this paper, we
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use Fermi rule in the experiment to change the strategies of the
nodes, which is defined as follows [23]. The node i randomly
chooses a neighbor j , then i will adopt j ’s strategy Sj with
the probability

P (Si ← Sj ) = 1

1 + exp[(Ui − Uj )/κ]
, (3)

where κ reflects agents’ selection rationalities in a game. For
example, κ = 0 corresponds to absolute rationality where the
probability is 0 if Ui > Uj and 1 if Ui < Uj , and κ → ∞
corresponds to completely random decision making. The
probability thus indicates selection art as well as attitude of
agents toward relative fitness in evolution.

The compressive sensing method could be implemented in
the following way:

Y = � · X. (4)

Based on Eq. (4), one can reconstruct the network relationship
X ∈ RN with the time series data Y ∈ RM and � ∈ RM×N ,
where M � N . Accurate results can be achieved by solving
the following convex optimization problem:

min ‖X‖1

subject to Y = � · X, (5)

where min ‖X‖1 = �N
i=1|Xi | is the L1 norm of vector X. The

optimization problem solved by Candès et al. [1,2,23,24] has
been used for solving the network reconstruction problem
[25,26]. Convex optimization based on L1 norm has been
used for solving network-construction problems in oscillator
networks. To ensure the restricted isometry property [2],
we orthogonalize each column of �. We can obtain an
optimal solution by the primal-dual interior point method
(L1EQ − PD) [27] to ensure the results are reliable. Solving
the convex optimization, we can reconstruct the network
structure with the PD game information. In this paper, Y is
the payoff matrix set at different rounds:

Yi = [Ui(t1),Ui(t2), . . . ,Ui(tm)]T , (6)

Ui(t) =
∑

j

aij · ST
i (t) · G · Sj (t), (7)

where Ui(t) is the payoff of node i at time t , and t is the
number of rounds that node i play the game with other nodes
j (j = 1, . . . ,i − 1,i + 1, . . . ,n), and t = 1,2, . . . ,m, where n

is the number of nodes, m is the length of time series. Here aij

is the relationship between i and j,aij = 1 means that node i

and j are connected, otherwise aij = 0. And �i is the payoff
matrix of node i which is defined as follows:

�i =

⎛
⎜⎜⎝

Fi1(t1) Fi,2(t1) · · · Fin(t1)
Fi1(t2) Fi,2(t2) · · · Fin(t2)

...
...

...
...

Fi1(tm) Fi,2(tm) · · · Fin(tm)

⎞
⎟⎟⎠, (8)

Fij = ST
i (t) · G · Sj (t), (9)

where Fij can be calculated based on Eq. (9). Since nodes
cannot play games with themselves, so Fii equals 0 in the
model. Then we use Eq. (4) to reconstruct the network with

the data information:

Ai = (ai1,ai2, . . . ,ain)T , (10)

where Ai reflect whether the node i is connect with other nodes.
The sparsity of Ai makes the compressive sensing framework
applicable, vectors Yi ,�i , and Ai satisfy

Yi = � · Ai . (11)

By using the compressive sensing method, the network
structure A = (A1,A2, . . . ,An) can be achieved one by one.
Here the payoff data Yi can be collected during the PD game,
simultaneously, the strategies Si(t) can also be recorded to
calculate the matrix �i . With the sparsity of Ai , accurate results
can be achieved from part of time series data information
(η ≡ m/n, where η is the size of data which is used to network
reconstruction, m is the number of accessible time instances
in the time series).

In this paper, we present a model to generate networks with
tunable assortativity coefficients. Given an initial connected
network with n0 nodes, a new node with e0 edges is connected
with the existing node i in terms of the probability pi , which
is defined as follows:

pi = k
β

i∑
j k

β

j

, (12)

where ki is the degree of the node i,β is a tunable parameter
to generate different mixing patterns. In this way, we could
generate networks with n nodes and e edges, regarding to
different assortativity coefficients. Here we choose n0 = 5 and
e0 = 5.

Then we implement PD game on the networks, time series
of payoffs and strategies are recorded during the process. To
measure the performance of the network reconstruction, we
introduce the Success Rate (SR includes SRio and SRir ) to
measure the accuracy of network reconstruction, which are
defined as follows:

SRio = 1

n

n∑
i=1

(
Xir

⋂
Xio

Xio

)
,

(13)

SRir = 1

n

n∑
i=1

(
Xir

⋂
Xio

Xir

)
,

where Xio are the neighbors that node i has in the test set
which is constructed by the network model introduced above,
Xir are the neighbors that node i has in the training set which
is reconstructed by compressive sensing.

III. EXPERIMENTAL RESULTS

We generate a group of networks with 100 nodes and
480 links with different assortative coefficient. As shown in
Fig. 1(a) represents the accuracy of the network construction,
measured by success rate SR. When the assortativity coeffi-
cients range from −0.4 to 0.2, as the assortative coefficient
r increases, the value of SR would increase correspondingly.
Especially SR reaches the maximum value when the assorta-
tivity coefficient r = 0.2, then it decreases. This tendency can
be found with different η regarding to different success rate
measured by SRio or SRir . For example, Fig. 1(a) shows that
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FIG. 1. Success rates (SRio and SRir ) of networks with different assortativity coefficients. (a) and (d) are the correlation between the
assortative coefficient r and the accuracy SR, where the network size is 100, η is the size of data information which used to reconstruct the
network, and κ = 0.1. From which one can find that the accuracy SR increases as the assortative coefficient r increases and reach the maximum
value when r = 0.2, then SR decreases. This tendency can be found no matter which the η is. Each data point achieved by averaging over ten
independent runs for each network. (b) and (e) are the performance of the success rata SR for different network sizes, where the network sizes,
respectively, are 100, 150, 200, and the η = 40%. As the network size increases, SR tends to be larger. The SR of assortative network is higher
than the ones in disassortative networks when the size of network remains unchanged, this tendency also can be found when the network size
increase. (c) and (f) test the SR of network reconstruction for the PD on different degree-mixing networks without measurement noise (original
data), and with the Gaussian noise ε � [N (0,0.12)] (noised data). The network size is 100, and η = 40%.

when the η = 40%, SRio tends to be higher as the assortativity
coefficient increases, and when r = 0.2, success rate SRio can
reach 0.95. In addition, when η = 70%, 60%, 50%, a nearly
perfect success rate SRio can be achieved as the assortativity
coefficient r closes to 0.2. In the same condition, more accurate
results can be found in Fig. 1(d) when success rates are
measured by SRir . The experiment results of Fig. 1(a) and
1(d) indicate that the performance of compressive sensing for
assortative networks is better than the ones of disassortative
ones.

In addition, we investigate the performance of compressive
sensing for different network size. As shown in Fig. 1(b)
and 1(e), we can find that the SR of the assortative network
is higher than the ones of disassortative networks, which
indicates that the success rate has the same tendency even
though the network size increases. On the other hand, the
network size can influence the network reconstruction. The
experiment results indicate that as the network size increases,
more accuracy results can be achieved. For instance, in
Fig. 1(b), with the assortative network r = 0.2, success rate
SRio increases from 0.95 to 1 as the network size increase from
100 to 200. Furthermore, we add Gaussian noises [N (0,0.12)]
in the original data (Y

′ = Y + ε, where Y
′

is the noise
measurement) to measure the stability of compressive sensing

on network reconstruction. As shown in Fig. 1(c) and 1(f), we
randomly extract 40% data containing the noises to reconstruct
the network. The experimental results show that for the noised
data, the compressive sensing could also identify the missing
links accurately.

Moreover, we test the results for four empirical networks:
dolphins network, David Copperfield network, jazz musicians
network, and residence hall network. Dolphins network is a
network of bottlenose dolphins, the nodes are the bottlenose
dolphins, an edge indicates a frequent association. David Cop-
perfield network is the undirected network of common noun
and adjective adjacencies from the novel “David Copperfield”
by English 19th century writer Charles Dickens. A node
represents either a noun or an adjective. An edge connects
two words that occur in adjacent positions. Jazz musicians
network is the collaboration network between jazz musicians.
Each node is a jazz musician and an edge denotes that two
musicians have played together in a band. Residence hall
network contains friendship ratings between residents living at
a residence hall. Then we use the compressive sensing method
to reconstruct these networks with the PD model.

As shown in Table I, we reconstruct the network structure
by compressive sensing method with 40% data informa-
tion generated by evolutionary game model. The results of
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TABLE I. Basic statistical properties and the empirical results
of four networks are presented in the table. N is the number of
nodes, E denotes the number of links, r is the assortativity coefficient
of networks, and the success rates (SRio and SRir ) represent the
performance of network reconstruction.

Network N E r SRio SRir

Dolphins 62 159 −0.0436 0.7565 0.7846
David Copperfield 112 425 −0.1293 0.8555 0.8624
Jazz musicians 198 2742 0.0202 0.8686 0.8939
Residence hall 217 2672 0.0960 0.9809 0.9936

compressive sensing on network reconstruction indicate that
as the assortativity coefficient increases from −0.1293 to
0.09596, more accurate results can be achieved from 0.8555
to 0.9809. In addition, the SR (SRio and SRir ) of the
dolphins network and David Copperfield network indicates
that the network size also can improve the performance of
compressive sensing on network reconstruction from 0.7565
to 0.8555. These empirical results can verify the characteristic
of compressive sensing on network reconstruction.

IV. CONCLUSION AND DISCUSSIONS

To conclusion, in this paper we investigated the effect of the
mix patterns, measured by the assortative coefficient, on the
network reconstruction based on compressive sensing. First,
we proposed a model to generate a series of networks with
tunable assortativity coefficients. Then we reconstructed the
networks from disassortative networks to assortative networks
with part of data information, which is randomly extracted
from the PD game. The experimental results indicate that
with the same η, the success rates tend to be higher when
the networks become assortative. Specifically speaking, when
the assortativity coefficient r = 0.2, 95% of links could be
uncovered by using the compressive sensing method, which

suggests that compressive sensing is an effective way for
uncovering the missing links of social networks. Furthermore,
we investigated the effect of the assortative coefficient r on
compressive sensing in different network sizes. The experi-
mental results show that the SR of the assortative network
is higher than the ones on the disassortative network even
though the network size increases. We also found that with
the increasing of network sizes, SR can be more accurate. The
reason may lie in the fact that, based on our network model,
as the network size increases, the networks become more
sparse, which made the compressive sensing more efficient
[9]. Finally, four empirical network reconstructions verified
our conclusion with the compressive sensing method.

In summary, degree-mixing patterns have enormous impact
on network reconstruction based on compressive sensing
which is of great research importance on practical application.
However, in this paper we only investigate the effect of
degree-mixing patterns and network size on compressive
sensing, while the sparsity of network and information data
are also important elements in network reconstruction. The
network configuration can also influence the performance
of compressive sensing in network reconstruction which is
beyond the current scope of this paper. And the training set
size is also one of the key factors that affect the network
reconstruction. So the useful method mentioned above which
uncovers the topology of the network is significant to building
up a framework for understanding the compressive sensing on
network reconstruction.
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