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Symbolic sequences have been extensively investigated in the past few years within the framework of statistical
physics. Paradigmatic examples of such sequences are written texts, and deoxyribonucleic acid (DNA) and protein
sequences. In these examples, the spatial distribution of a given symbol (a word, a DNA motif, an amino acid) is a
key property usually related to the symbol importance in the sequence: The more uneven and far from random the
symbol distribution, the higher the relevance of the symbol to the sequence. Thus, many techniques of analysis
measure in some way the deviation of the symbol spatial distribution with respect to the random expectation. The
problem is then to know the spatial distribution corresponding to randomness, which is typically considered to
be either the geometric or the exponential distribution. However, these distributions are only valid for very large
symbolic sequences and for many occurrences of the analyzed symbol. Here, we obtain analytically the exact,
randomly expected spatial distribution valid for any sequence length and any symbol frequency, and we study its
main properties. The knowledge of the distribution allows us to define a measure able to properly quantify the
deviation from randomness of the symbol distribution, especially for short sequences and low symbol frequency.
We apply the measure to the problem of keyword detection in written texts and to study amino acid clustering
in protein sequences. In texts, we show how the results improve with respect to previous methods when short
texts are analyzed. In proteins, which are typically short, we show how the measure quantifies unambiguously
the amino acid clustering and characterize its spatial distribution.
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I. INTRODUCTION

A symbolic sequence can be defined as a series of N

symbols {S1,S2, . . . ,SN } drawn from a given alphabet with m

symbols, Si ∈ {A1,A2, . . . ,Am}. Good examples of symbolic
sequences can be written texts, DNA sequences, and proteins,
which have been extensively analyzed within the statistical
physics context over the past few years [1–21]. In a written
text, the alphabet is formed by all the different words of
the vocabulary of the text, and each word is a symbol. In
deoxyribonucleic acid (DNA) sequences, depending on the
property one wants to study, the alphabet can be composed of 4
symbols (A,T,C,G), 16 symbols (AA, . . . ,TT), etc. In proteins,
each symbol of the alphabet corresponds to one amino acid.

When analyzing symbolic sequences, one of the main
properties of a given symbol is its spatial structure, i.e., how
the symbol is distributed along the sequence. Actually, such
spatial distribution is a key point when modeling the structure
of a language [11,22] using written texts or when trying to
automatically extract information from the symbolic sequence.
Indeed, several successful techniques aimed at extracting
keywords from written texts [23–30] or biologically relevant
motifs from DNA sequences [21,31–34] are based directly or
indirectly on quantifying the deviation of the spatial distribu-
tion of a given word or motif with respect to that expected
for randomness. The reason is that relevant words (motifs)
are unevenly distributed in texts (DNA sequences), and thus
far from randomness, and form clusters, while nonrelevant
words are used with the same likelihood everywhere in the
text and then its spatial distribution is expected to be more
homogeneous or closer to the random expectation [23] (see
Sec. IV for a more detailed explanation).
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As a consequence, the knowledge of the exact, randomly
expected distribution of a given symbol in a symbolic sequence
is crucial for all the analyses just mentioned. In many cases, the
random expectation for the intersymbol distance distribution
is assumed to be the geometric distribution [21,24,31–34] or
even its continuous counterpart, the exponential distribution
[11,13,23,29]. However, these two distributions are only cor-
rect in the asymptotic limit of very large symbolic sequences
and many occurrences of the analyzed symbol. Thus, when
analyzing short or medium-sized symbolic sequences, such as
short texts or protein sequences, the geometric or exponential
assumption could lead to misleading results.

In this paper, we obtain the exact, randomly expected
interoccurrence distance distribution of a given symbol within
a symbolic sequence, valid for any sequence size and any
number of symbol occurrences (Sec. II), and we analyze its
main properties (Sec. III). In particular, we show, first, that
given a sequence length, there exists a number of occurrences
of a symbol for which the variability of the distance distribution
is maximized and, second, that the geometric distribution is
the asymptotic limit of our result. Using the exact distribution,
we are able to define a measure well suited to quantify the
degree of clustering of a given symbol (Sec. IV) that can be
used to improve keyword detection in texts, especially of short
length (Sec. V), and also to detect unambiguously amino acid
clustering in protein sequences (Sev. VI).

II. DISTRIBUTION OF WORD INTEROCCURRENCE
DISTANCES IN SYMBOLIC SEQUENCES

For the sake of simplicity, in this section we refer to a
generic symbolic sequence as the “text,” and any symbol of
the alphabet of that sequence as a “word.” In this context, a
simple way to characterize the spatial structure of a given word
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along the text consists in using the probability distribution p(d)
of the interoccurrence distances d of the word: if we consider
a text of length N , and a word which appears n times at
positions j1,j2, . . . ,jn, then the interoccurrence distances di

(i = 1,2, . . . ,n − 1) are given by di = ji+1 − ji . If the word
is distributed at random, then it is normally assumed [11,23–
25,27,31–33] that the resulting p(d) distribution is given by
the geometric distribution:

pgeo(d) = q(1 − q)d−1, (1)

with q ≡ n/N being the probability of finding that word in
the text. In contrast, content-bearing (relevant) words are not
randomly distributed along the text and then should present
a distribution p(d) that clearly differs from pgeo(d), and the
larger the difference, the higher the relevance of the word to the
text considered. Indeed, many techniques aimed at analyzing
the statistical properties of symbolic sequences (written texts,
DNA sequences, protein chains, etc.) and detecting keywords,
relevant motifs, etc., use in some way the deviation of the
observed p(d) to the randomly expected pgeo(d) for that
purpose.

However, the distribution pgeo(d) is the correct one only
asymptotically, i.e., in the limits N → ∞, n → ∞, while
keeping constant the ratio n/N . Our aim is the determination
of the exact, randomly expected distribution for finite N and
n, pN,n(d) from now on. Such distribution would describe
better the statistical properties of low-frequency words in short
texts (i.e., small N and n), corresponding to a more realistic
situation where the use of the geometric distribution could lead
to misleading results.

The exact formulation of the problem we want to solve is the
following: Assuming that the distances are measured in words,
our text can be considered as the interval [1,N ], where the po-
sitions of a given word must be integer numbers in that interval.
Specifically, if we consider a word appearing randomly n times
in the text (n � N ), such a word would be placed at positions ji

(i = 1,2, . . . ,n) such that 0 < j1 < j2 < . . . < jn < N + 1.
The set of the n − 1 interoccurrence distances for that word is
then given by di = ji+1 − ji (i = 1,2, . . . ,n − 1). However,
we also include in the set two additional distances, d0 =
j1 − 0 = j1 and dn = N + 1 − jn, which can be understood as
boundary conditions and is equivalent to considering that the
word also appears at positions 0 and N + 1. The inclusion of
these two additional distances (then totaling n + 1 distances)
simplifies the calculation of pN,n(d) and, more importantly,
does not modify the final result (see Appendix A): Since the
word is assumed to be placed at random, all distances have the
same statistical behavior, and the distribution pN,n(d) remains
unchanged. We also note that, given N and n, the set of possible
distances must be in the range 1,2, . . . ,N + 1 − n.

To calculate pN,n(d) we start by counting the number of
ways in which a distance d can be obtained when all possible
arrangements of n words within a text of length N are analyzed.
Three different situations have to be taken into account in order
to avoid counting the same distance more than once:

(i) A distance d is found at the beginning of the interval
[0,N + 1], obtained by placing the first appearance of the word
at j1 = d. This leaves N − d sites available for the remaining
n − 1 repetitions of the word, thus leading to (N − d

n − 1 ) different

configurations where a distance d appears at the beginning of
[0,N + 1].

(ii) A distance d is found at the end of the interval [0,N +
1], obtained by placing the last appearance of the word at
jn = N + 1 − d. By symmetry, this situation is equivalent to
(i): there are N − d sites available for the remaining n − 1
words to place, and thus we have again (N − d

n − 1 ) different ways
to get a distance d at the end of the interval [0,N + 1].

(iii) A distance d is found neither at the beginning nor the
end of [0,N + 1]. In such a case, d is a “real” distance between
two repetitions of the word, and it must come from one of the
following situations: [1,1 + d],[2,2 + d],[3,3 + d] . . . ,[N −
d,N ]. Thus, there are N − d different cases to find a distance
d bounded by two words, thus leaving N − d − 1 sites to
arrange the remaining n − 2 words. As a result, we have (N −
d)(N − d − 1

n − 1 ) different ways to obtain a distance d in the inner
part of [0,N + 1].

Adding up the three cases, the total number of ways of
obtaining a word interoccurrence distance d when considering
all possible arrangements of n words in a text of length N is:

2

(
N − d

n − 1

)
+ (N − d)

(
N − d − 1

n − 2

)
= (n + 1)

(
N − d

n − 1

)
.

(2)

Finally, the normalized probability distribution pN,n(d) can
be obtained just dividing (2) by the total number of ways of
obtaining any distance d:

pN,n(d) = (n + 1)
(
N−d

n−1

)
∑N−n+1

k=1 (n + 1)
(
N−k

n−1

) =
(
N−d

n−1

)
(
N

n

) , (3)

with d = 1,2, . . . ,N + 1 − n. We show in Fig. 1 several ex-
amples of pN,n(d). Although for small N and n the distribution
pN,n(d) could be obtained numerically in an exact way (i.e.,
checking all possible configurations of the n positions of the
word), for larger N and n this cannot be done exactly in a
reasonable time due to the huge number of configurations,

FIG. 1. Examples of distributions pN,n(d) obtained from Eq. (3)
for different word counts n and for N = 200. For the n = 40 case we
also show in circles the distribution pN,n(d) numerically obtained by
generating 108 random configurations.
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indicating the usefulness of the exact result in Eq. (3). We
include an example in Fig. 1 with N = 200 and n = 40:
The number of possible configurations is (200

40 ) � 2 × 1042,
impossible to check in a reasonable time. We show the exact
result obtained from Eq. (3), and the numerical result obtained
by generating 108 random configurations.

The probability of finding the smallest possible distance
d = 1 can be easily calculated from (3):

pN,n(1) = n

N
, (4)

i.e., the probability of finding a unit distance results to be the
ratio between the word count n and the number of positions
where the word can be located (the text length N ) or, in other
words, the probability of finding the word at a given position.

Conversely, the probability of finding the largest possible
distance, d = N + 1 − n, is then

pN,n(N + 1 − n) = 1(
N

n

) . (5)

As for the dependence of pN,n(d) on n, some particular
cases can be easily obtained from (3). For n = 1 we get

pN,1(d) = 1

N
, (6)

i.e., all distances d has the same likelihood when the word
appears only once. For n = 2, from (3) we obtain

pN,2(d) = 2(N − d)

N (N − 1)
. (7)

In this case, the probability decreases linearly with the distance
d. In general, given a word with n counts pN,n(d) is a (n − 1)-th
degree polynomial defined in d = 1,2, . . . ,N + 1 − n.

III. SOME PROPERTIES OF pN,n(d)

Once the distribution pN,n(d) has been determined analyt-
ically, we present in this section some of its main properties.

Normalization. By construction, pN,n(d) is normalized:

N+1−n∑
�=1

pN,n(d) =
N+1−n∑

d=1

(
N−d

n−1

)
(
N

n

) =
(
N

n

)
(
N

n

) = 1. (8)

Mean. The inclusion of the boundary conditions d0 = j1

and dn = N + 1 − jn implies that
∑n

i=0 di = N + 1. The
mean distance 〈d〉 is then given exactly by 〈d〉 = (N +
1)/(n + 1) and obtained for any possible configuration of the
n words. The same result can be obtained also from pN,n(d):

〈d〉 =
N+1−n∑

d=1

d pN,n(d) =
N+1−n∑

d=1

d

(
N−d

n−1

)
(
N

n

) = N + 1

n + 1
. (9)

Note that without including the boundary conditions (i.e.,
considering only the n − 1 inner distances), the expected
mean is the same since the distribution for those distances
is also pN,n(d) (see Appendix A). However, individual means
obtained for different configurations of the n words in general
differ from (9). This is one of the advantages of including
boundary conditions: The sample mean is fixed a priori and
coincides with the expected mean (9).

Second and higher moments: Variance. For the second
moment, we have

〈d2〉 =
N+1−n∑

�=1

d2

(
N−d

n−1

)
(
N

n

) = (N + 1)(2N − n + 2)

(n + 1)(n + 2)
, (10)

while the third moment is given by

〈d3〉 = (N + 1)(12N − 7n − 6Nn + 6N2 + n2 + 6)

(n + 1)(n + 2)(n + 3)
. (11)

Higher-order moments can be calculated straightforwardly
using pN,n(d), although with increasing complexity in its
explicit expression for increasing order.

Concerning the variance, using the mean (9) and the second
moment (10) we get

σ 2 = 〈d2〉 − 〈d〉2 = n(N + 1)(N − n)

(n + 1)2(n + 2)
. (12)

For fixed N , σ 2 is maximal at n = 1 and decreases as n

increases and tends to 0 as n → N . Conversely, for fixed n,
σ 2 ∼ N2/n2 for large N .

Cumulative distribution. The cumulative distribution
PN,n(k) ≡ Prob{d � k} can be obtained as:

PN,n(k) =
k∑

d=1

(
N−d

n−1

)
(
N

n

) = 1 −
(

N − k

n

)(
N−(k+1)

n−1

)
(
N

n

) , (13)

which can be expressed in terms of the probability density (3):

PN,n(k) = 1 −
(

N − k

n

)
pN,n(k + 1) (14)

or in a more compact way as

PN,n(k) = 1 −
(
N−k

n

)
(
N

n

) . (15)

Equations (14) and (15) allow us to obtain straightfor-
wardly the complementary cumulative distribution function
QN,n(k) ≡ Prob{d > k} = 1 − PN,n(k):

QN,n(k) =
(

N − k

n

)
pN,n(k + 1) =

(
N−k

n

)
(
N

n

) . (16)

A. Asymptotic properties

We address here the functional form of the interword
distribution of distances in the limit of a very long text (or
a very long symbolic sequence in general), i.e., for large N .
Starting from (3), and using the definition of combinatorial
numbers, we have:

pN,n(d) = (N − d)!n!(N − n)!

(n − 1)![N − d − (n − 1)]!N !
. (17)

For large N we can write

(N − d)!

N !
∼ 1

Nd
, (18)

(N − n)!

[N − n − (d − 1)]!
∼ (N − n)d−1. (19)
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As n!/(n − 1)! = n, from (17) we finally obtain

p̂N,n(d) = n

Nd
(N − n)d−1 = n

N

(
1 − n

N

)d−1

, (20)

where we have termed p̂N,n(d) to the distribution for large N .
Noting that the ratio n/N represents the word counts over the
total number of words in the text, i.e., the probability of finding
the word at a given position [see also (4)], then by defining q ≡
n/N the distribution p̂N,n(d) transforms straightforwardly into
the geometric distribution pgeo(d) (1). As we stated above,
pgeo(d) is the one usually assumed to be valid for a randomly
distributed word (symbol) in a text (sequence). However, this
is only correct in the limit of large N and n, and using it in a
short text can produce misleading results (see Sec IV).

B. Maximum diversity of interoccurrence distances

The interoccurrence distance distribution pN,n(d) is ob-
tained by assuming that the analyzed word is randomly
distributed, which in many contexts is a synonym of “homo-
geneity.” For this reason, we study here the expected variability
of the distribution. A convenient measure to estimate the
variability of a distribution is the coefficient of variation (cv),
defined as the ratio between the standard deviation and the
mean,

cv ≡
√

σ 2

〈d〉 = σ

〈d〉 , (21)

where cv is a dimensionless quantity that shows the extent of
variability of a distribution in relation to its mean, and that
is commonly used to characterize deviation from randomness
of time series in many scientific fields such as inmunology
[35], human dynamics [36], and complex systems [37] or the
analysis of energy levels in disordered systems [38,39]. By
using (9) and (12), for pN,n(d) we get

cv(N,n) =
√

n(N − n)

(N + 1)(n + 2)
. (22)

On the one hand, the coefficient cv is a monotonously
increasing function of N , and tends to 1 as N → ∞. On the
other hand, and more interestingly, cv presents a maximum
as a function of the word count n. The behavior of cv as a
function of n for several values of the text length N is shown
in Fig. 2, where the maxima of cv can be clearly seen. Indeed,
considering n a continuous variable and solving for n the
equation ∂cv/∂n = 0, we obtain that the maximum variability
of interoccurrence distances occurs when the word count is
given by

nmax = √
2N + 4 − 2. (23)

We also include in Fig. 2 the line of the maxima of cv (cv, max)
obtained as cv, max = cv(N,nmax) and plotted as a function of
nmax. According to (23), and noting that typically the text
length N is at least of several hundreds, we can conclude that
the spatial distribution of a given word presents a maximal
diversity (or minimal homogeneity) for n � √

2N . Note that
usually the random distribution is a reference for homogeneity,
but our results imply that, depending on n, the homogeneity

FIG. 2. Coefficient of variation cv(N,n) as a function of the word
counts n for several values of the text length N . Note how in every
case there is a clear cv maximum cv, max for a particular n value, nmax.
The solid line joins the cv, max values as a function of nmax.

changes and even presents a minimum despite the fact of
considering random distribution in all cases.

IV. MEASURING CLUSTERING IN SYMBOLIC
SEQUENCES

As we stated in the Introduction, many techniques aimed
at detecting keywords in texts, or biologically relevant motifs
in DNA sequences, are based on the deviation of the spatial
distribution of a particular word or motif with respect to the
random expectation. In texts, for example, the subjacent idea is
that a relevant, content-bearing word is used more frequently
in certain contexts (when the concept associated to the word is
discussed) and less frequently or very rarely in other contexts.
This results in large fluctuations in the spatial distribution of
the word, which is concentrated in certain regions and (almost)
does not appear in others. In this sense, using a physical
analogy, we could say that a relevant word or motif attracts
itself and tends to form clusters. In contrast, a nonrelevant word
(prepositions, articles, etc.) is used with the same likelihood
everywhere in the text, does not interact with itself, and should
appear randomly. Thus, its spatial distribution is expected to
be more homogeneous and closer to the random expectation.
In this sense, the concepts of clustering and relevance are
synonymous in written texts. A similar argument can be
applied to biological sequences such as DNA or proteins. For
example, in the case of DNA, a useless motif does not have
any restriction in its location, whereas a functional one should
appear more concentrated in regions associated to biological
functions (genes, promoters, etc.) and therefore should also
exhibit clustering.

As a consequence, it is convenient to define an appropriate
clustering measure, able to capture such deviations from the
random expectation for a given word or symbol in general.
In principle, this could be done by comparing somehow the
observed interword distance distribution with the randomly
expected one. However, for practical purposes, this strategy is
not convenient, especially in the case of words (or symbols
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in general) with low frequencies since in this case there will
be only a small number of distances available, which is not
enough to properly compare both distributions. This is the
case of short or moderately large texts, where any word of
the vocabulary appears a small number of times. This is also
the case of large motifs (i.e., with low likelihood) in DNA
sequences, as well as of amino acids in proteins, which are
typically short.

Instead of using the distributions, we propose to use a simple
and robust clustering measure defined as

C(N,n) = cv,obs(N,n)

cv,exp(N,n)
, (24)

where N is the text (symbolic sequence) length and n is
the word (symbol) count, and cv,obs(N,n) [cv,exp(N,n)] is
the observed (randomly expected) coefficient of variation
(see Sec. III B). A similar clustering measure was originally
proposed in Ref. [23], and later refined in Refs. [25,27].
However, in these previous works both cv,exp(N,n) and
cv,obs(N,n) were calculated in a different way as we propose
here (see Secs. IV A and IV B). In particular, cv,exp(N,n) was
obtained using the geometric distribution (1) instead of the
correct one (3), for which cv is given in Eq. (22).

Some authors, especially for application in written texts,
define a clustering measure only as the numerator of Eq. (24)
[cv,obs(N,n)] with the name of intermittency index [11,13,29].
The reason is that they use as reference for randomness the
exponential distribution (the continuous counterpart of the
geometric distribution), for which cv,exp(N,n) = 1 (see also
Sec. IV A). However, note that the exact cv,exp (Fig. 2) is not
a constant and, depending on N and n, with values far from
unity.

With the definition in Eq. (24), C is a dimensionless quantity
with a clear interpretation: (i) Values C > 1 mean that the
fluctuations in the observed distance distribution are larger than
those randomly expected, indicating that the word attracts itself
and is clustered. (ii) Values of C � 1 indicate that distance
fluctuations are essentially random, and therefore the word
is randomly distributed along the text. (iii) Values of C < 1
suggest low distance fluctuations, implying the existence of
word self-repulsion.

As we mentioned above, the results shown in Secs. II and III
suggest to change the traditional way in which both cv,obs(N,n)
and cv,exp(N,n) are usually estimated, therefore changing
substantially the clustering measure. In the following, we
discuss both cases.

A. The value of cv,exp(N,n): Geometric vs. exact distribution

Typically, the random expectation for the interword dis-
tance distribution is assumed to be the geometric distribution
(1), pgeo(d) both in written texts and DNA sequences. For
convenience, we reproduce its expression here:

pgeo(d) = q(1 − q)d−1, (25)

with q ≡ n/N being the probability of that word in the
analyzed text. However, we have already obtained the exact
distribution for finite N and n, pN,n(d) [Eq. (3)], which is also

reproduced here for convenience:

pN,n(d) =
(
N−d

n−1

)
(
N

n

) . (26)

The geometric distribution pgeo(d) is only asymptotically
correct, as we have shown in Sec. III A. Thus, its validity
is limited to very large texts (symbolic sequences) (N → ∞)
and infinitely many instances of the word (symbol) (n → ∞).
In the case of written texts, for long books one may have N

of the order of 105–106 words, and for relevant words n it is
in the range from several tens to a few hundreds. With these
numbers, the geometric approximation is usually enough since
the differences between the asymptotic case and the exact
distribution are small (see below). Then, automatic keyword
detectors using clustering measures similar to (24) with the
geometric distribution as the random expectation work fairly
well when tested in long-enough books [23–25,27,30].

However, for short or moderately large texts (such as
scientific articles, reports, web pages, etc.), N ∼ 103–104 and
n is of the order of a few tens at the very most. In this case, if
pgeo(d) is assumed to be the distance distribution expected
for the random case instead of the correct one pN,n(d),
then important errors can be introduced when estimating the
probability of a given distance.

In Fig. 3, we illustrate the differences between the geometric
distribution and the exact result in different cases. Figure 3(a)
shows the exact distributions (symbols) and the corresponding
geometric distributions (solid lines) for different values of the
text length N and the word frequency n, in all cases as a
function of the natural spatial variable, the normalized distance
d̄ = d/〈d〉. For each N and n combination, the probability
q of the corresponding geometric distribution is obtained as
q = n/N . For large values of n [see the n = 200 cases in
Fig. 5(a)], as the ones expected in a long book, the geometric
distribution and the exact result are very similar, independently
of N . In contrast, for small n values [see the n = 5 cases in
Fig. 3(a)], the geometric distribution is similar to the exact
result only in the range d̄ � 2, while for d̄ > 2 the exact result
is orders of magnitude smaller than the geometric case. Thus,
if the geometric distribution is used to estimate the probability
of a distance in this range, then such a probability would be
severely overestimated.

To better compare both cases for different n values, in
Fig 3(b) we represent the ratio r(d) ≡ pN,n(d)/pgeo(d) as a
function of the normalized distance d̄. First, we notice that
the curves with the same n value collapse, independently of
N , thus indicating that n is the natural variable to measure
the deviation from the asymptotic case. Second, we observe
that for large n, r(d) ∼ 1 in the whole studied range of d̄ , as
expected. In contrast, for small n, we observe two regimes:
(i) In the range 0 < d̄ � 2 the ratio r(d) is larger than 1
with a maximum in between, and then the probability of a
distance in that range is underestimated when using pgeo(d).
Actually, with a more detailed calculation using (25) and
(26) one can prove that for large N the maximum of r(d)
occurs at dmax = N/n and has a value r(dmax) � 1 + 1/2n.
(ii) In the range d̄ > 2, r(d) falls abruptly for increasing d̄ ,
indicating the strong overestimation when using pgeo(d) in this
range.
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FIG. 3. (a) Exact interoccurrence distance distribution pN,n(d)
(symbols) and the corresponding geometric distributions pgeo(d)
(solid lines) as a function of the normalized distance d/〈d〉 for
different combinations of N and n values. For the geometric
distributions, q = n/N . (b) Ratio p(d)/pgeo(d) for the four cases
shown in (a). Note the collapse of the curves for words with the same
frequency n, thus indicating that n is the natural variable to measure
the deviation from the asymptotic case.

These differences between the exact and the geometric dis-
tributions are also reflected in the corresponding coefficients
of variation. The denominator of the clustering measure (24),
cv,exp, corresponds to the randomly expected coefficient of
variation. We note that the geometric distribution is commonly
chosen as the random expectation, so using the definition
of cv (21), it is easy to obtain for the geometric case
that:

cv,geo(N,n) =
√

1 − n/N ≡
√

1 − q. (27)

This value is the one widely used as the denominator
in the clustering measure (24). In some cases, instead of
the geometric distribution, its continuous counterpart (the
exponential distribution) is considered as the reference for
randomness [11,13,23,29]. In this latter case, one considers
that N and n are both large, but q = n/N is very small, and then
cv,exp � 1. Obviously, this assumption can lead to misleading
results (see below) when either N or n or both are small, or
when q is not negligible, as it happens very often in protein
chains.

FIG. 4. Expected coefficients of variation obtained from the
geometric distribution (cv,geo) and the exact result (cv,exact) as a
function of the word count n. We distinguish between a text with a
fixed length of N = 1000 words, and a word with a fixed probability
q = 0.01, and then the text length is N = n/q.

However, the exact distribution is pN,n(d) and the corre-
sponding coefficient of variation is [see Eq. (22)]:

cv,exact(N,n) =
√

n(N − n)

(N + 1)(n + 2)
. (28)

Both cv,geo and cv,exact are shown in Fig. 4 as a function
of the word count n. We consider two cases: (i) We fix the
text length N , and then the geometric probability q varies
with n as q = n/N (dashed line and circles). (ii) We fix the
geometric probability q, and then the text length N varies as
N = qn (solid line and squares). In both cases we find that for
increasing n, cv,exact tends asymptotically to cv,geo, as expected.
Then, for large n values, as it happens in long books, there
should be no differences when using cv,exact or cv,geo in the
relevance measure (24). However, for small n values, which
is the normal situation found in short texts, the differences are
substantial. Indeed, cv,geo/cv,exact > 1 and the smaller the n, the
larger the ratio, thus indicating that the use of cv,exact instead
of cv,geo in (24) is more sensitive to the detection of clustering
in low-frequency words. We will show some examples of this
property in Secs. V and VI.

B. The value of cv,obs(N,n): The need for boundary conditions

Traditionally, the observed coefficient of variation
cv,obs(N,n) is calculated as follows: given a word appearing n

times in a text of length N at positions j1,j2, . . . ,jn, the set
of the n − 1 interword distances is obtained as di = ji+1 − ji .
Then,

〈dobs〉 =
∑n−1

i=i di

n − 1
, (29)

〈
d2

obs

〉 =
∑n−1

i=i d2
i

n − 1
, (30)

from where σ 2
obs = 〈d2

obs〉 − 〈dobs〉2 and cv,obs(N,n) =
σobs/〈dobs〉. Note that when obtaining these expressions,
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boundary conditions are not imposed. In this case, the
observed mean 〈dobs〉 differs in general from the randomly
expected mean 〈d〉 = (N + 1)/(n + 1), since, depending on
the particular spatial distribution of the word,

∑n−1
i=i di varies in

the range n − 1 �
∑n−1

i=i di � N − 1. Recall that the expected
mean 〈d〉 is the same no matter whether boundary conditions
are considered (9) or not (see Appendix A).

However, when considering boundary conditions, the ob-
served mean is always identical to the expected mean, since in
this case there are always n + 1 distances, and

∑n+1
i=1 di =

N + 1. Obviously, 〈d2
obs〉 will also differ considerably if

evaluated as in (30) with n − 1 distances or considering
boundary conditions with n + 1 distances. As a consequence,
the observed coefficient of variation cv,obs(N,n) will change
substantially if boundary conditions are imposed or not, as it
is usually done.

Indeed, we propose here to calculate cv,obs(N,n) using
boundary conditions. Otherwise, when using cv,obs in the
clustering measure (24), the resulting C(N,n) value could
be misinterpreted. We recall that values of C > 1 should
indicate clustering, values of C � 1 should indicate ran-
dom distribution, and values of C < 1 should indicate self-
repulsion. However, let us consider an example of extreme
clustering which would be interpreted as strong self-repulsion
if boundary conditions are not applied. Suppose we have a
text of length N , and a word appearing n times in the text
as clustered as possible, for example, all separated the unit
distance from position m, i.e., in m,m + 1, . . . ,m + n − 1.
Applying Eqs. (29) and (30), we get 〈dobs〉 = 〈d2

obs〉 = 1, from
where σ 2

obs = cv,obs(N,n) = 0, then leading (24) to C = 0
indicating extreme repulsion. In contrast, using boundary
conditions, there are two additional distances in the set, d0 = m

and dn = N + 1 − (m + n − 1). When these distances are
considered, we obtain the highest possible clustering, as it
should be (see below).

C. Extreme clustering values

As we have shown in the two preceding subsections how to
properly calculate cv,exp and cv,obs to be used in the clustering
measure C (24), we study in this section which are the extreme
values of C. Let us consider a text of length N and a particular
word of the vocabulary appearing n times in the text. Once N

and n are fixed, the value of cv,exp(N,n) is given by Eq. (28).
Concerning cv,obs, obviously it will be maximum when

σ 2
obs reaches also its maximum value. Assuming boundary

conditions, this happens when all the n instances of the word
appear concentrated at the beginning, or at the end, or split
between the beginning and the end of the text. In all these cases,
the set of n + 1 interword distances consists of n distances of
value 1 and a distance of value N + 1 − n. Then, noting that
〈dobs〉 = (N + 1)/(n + 1), we get:

σ 2
obs,max = n + (N + 1 − n)2

n + 1
−

(
N + 1

n + 1

)2

. (31)

Using this expression in (21) we can obtain the maximum
value of cv,obs, from which, by using (24), we finally obtain

the maximum clustering value:

Cmax(N,n) =
√

(N − n)(n + 2)

N + 1
� √

n + 2, (32)

where the approximation usually works because typically
n � N .

A situation of extreme clustering close to the maximum
value appears when there is a single cluster neither at the
beginning nor the end of the text. Let us consider a single
cluster starting at position j and then occupying positions
j,j + 1, . . . ,j + n − 1. The set of interword distances con-
tains n − 1 distances of value 1 and two additional distances of
values j and N + 1 − (j + n − 1). Proceeding as before, we
can obtain in this case σ 2

obs and the corresponding C(N,n; j ),
which is this case is also a function of j . Obviously, for j = 1
and j = N − n + 1, C(N,n; j ) = Cmax(N,n) since the cluster
is located at the beginning or at the end of the text, respectively.
For j in the range 1 < j < N − n + 1, the function C(N,n; j )
has a minimum at jmin = (N − n + 2)/2, where the clustering
results are

C(N,n; jmin) =
√

(N − n)(n + 2)(n − 1)

2n(N + 1)

=
√

n − 1

2n
Cmax(N,n). (33)

From now on, we consider this last value as the
boundary for extreme clustering and define Cb(N,n) ≡√

(n − 1)/2n Cmax(N,n). Similar extreme clustering values
are obtained for situations such that a word is located almost
entirely at a single cluster with a few isolated instances
out of the cluster or a word is located at two very distant
clusters. Thus, this analysis leads us to conclude that words
with extreme clustering can be identified whenever their
corresponding clustering value C(N,n) falls in the range
Cb(N,n) � C(N,n) � Cmax(N,n). This property will be used
in the next section.

To end this analysis, we want to remark that the extreme
clustering values shown in Eqs. (32) and (33) have been
obtained under the hypothesis of having clusters with many
interword distances of value 1. Obviously, this does not occur
in a real text (although it can happen in other symbolic
sequences as DNA or proteins), where the typical interword
distances are always larger than 1 even within a cluster.
However, noting that within a cluster these typical distances
are much smaller than the expected mean (9), and that the
coefficient of variation measures the distance fluctuations
as compared to the mean, the extreme clustering values in
Eqs. (32) and (33) are also applicable in this case.

In this section, we have calculated the extreme values of C

via calculating the maximum values of cv,obs(N,n). Note that
if we could determine the probability distribution of all the
observable cv,obs(N,n) values, we could develop a standard
hypothesis test since we could associate a p value to any
experimental result. However, it seems that such distribution
cannot be obtained analytically and should be obtained with
extensive numerical simulations for any combination of N and
n, which is out of the scope of this work.

052302-7



PEDRO CARPENA et al. PHYSICAL REVIEW E 94, 052302 (2016)

V. APPLICATION I: IMPROVING KEYWORD
DETECTION IN TEXTS

We have shown in the preceding section how to properly
calculate cv,exp(N,n) and cv,obs(N,n) as a consequence of
knowing the exact distribution of interword distances ran-
domly expected (26) and of applying boundary conditions.
Then, the values of the clustering measure (24) can differ
substantially if calculated as we suggest here [i.e., using that
cv,exp(N,n) = cv,exact(N,n) and applying boundary conditions
to obtain cv,obs(N,n)] or if calculated as it is usually done
[i.e., using that cv,exp(N,n) = cv,geo(N,n) and without apply-
ing boundary conditions to get cv,obs(N,n)]. To distinguish
between both cases, from now on we name C(N,n) to the
clustering measure calculated as we propose here and C∗(N,n)
to the clustering measure calculated traditionally.

Our hypothesis is then that using C(N,n) instead of
C∗(N,n) should improve the results of word ranking in
two aspects: (i) C(N,n) should detect better the clustering
associated to relevant words, especially in the case of short
texts and/or low-frequency words. The reason is the use of
cv,exact(N,n) in C(N,n) instead of the asymptotic cv,geo(N,n) in
C∗, which overestimates the randomly expected clustering for
low-frequency words; and (ii) only when boundary conditions
are considered (i.e., in C) can the different regimes of
word spatial distribution be properly associated to clustering
values: C > 1 implies clustering, C � 1 indicates random
distribution, and C < 1 points to repulsion. This is not always
true when C∗ is used, as we have shown above with an extreme
clustering example interpreted as repulsion.

To show that this is the case, we choose as our benchmark
the book On the Origin of the Species [40] by Charles Darwin,
as it has become the standard reference for many word-ranking
algorithms [24,27,30], partly because the book contains its own
glossary, and then deciding the relevance of a word to the book
is easier and less subjective than in other cases.

When the whole book is analyzed (N � 1.56 × 105, and
a vocabulary of 6866 different words), all the relevant words
are relatively frequent with n of several tens, and therefore
there should not be great differences related to frequency since
cv,exact and cv,geo are almost identical (see Fig. 4). Indeed,
other keyword extractors should work well in this case: The
text is large and there are no statistical problems related to
low-frequency keywords. To illustrate this, we show in Table I
the ranking of the top-10 most relevant words obtained using C

and C∗. For comparison, we also include the ranking obtained
using the entropic measure Enor [24]. As expected, the three
measures work nicely: The three rankings are quite similar and
share many words, and the extracted keywords reflect very well
the topic of the book.

Concerning the C and C∗ comparison, both rankings are
similar and contain almost the same words with small changes
in the order. Indeed, they share eight words, and the two
words in the C∗ ranking which are absent from the C one
(“workers” and “diagram”) appear also in the top-35 positions
of the C ranking. Conversely, the word “fertility,” absent from
the top-10 C∗ ranking, is actually ranked 11th. However, the
word “wax,” absent from the C∗ ranking, deserves special
attention. Its frequency is relatively high (and therefore with
little influence), but it is ranked 8th using C and ranked 1406th

TABLE I. Ranking of the 10 most relevant words extracted from
the book On the Origin of the Species, by Charles Darwin. Words are
ordered in descending value of C (first column), C∗ (second column),
and the entropic measure Enor [24] (third column).

C ranking C∗ ranking Enor ranking

formations formations hybrids
sterility cells sterility
hybrids sterility i
bees hybrids species
instincts bees islands
instinct instincts forms
cells workers instincts
wax slaves varieties
fertility instinct breeds
slaves diagram fertility

using C∗. This dramatic difference is originated by the effect of
using boundary conditions in C and not in C∗, and we discuss
it in detail in Sec. V A.

We also want to mention that typical nonrelevant words
(such as “the,” “to,” “and,” “or,” etc.) are not necessarily the
last ones in the rankings. Note that C measures deviation from
randomness, and such deviation can be attractive (C > 1, more
frequent) or repulsive (C < 1, rare). These kinds of words are
essentially distributed at random, and for them we observe
C � 1.

In conclusion, when analyzing long texts with C and
C∗, the relevance rankings are quite similar with very few
exceptions. However, when a shorter text is considered, the
differences should be remarkable since the low frequency of
the words accentuates the differences between C and C∗ (and
may strongly affect other keyword detectors). To show this,
instead of the whole book, we choose to analyze its shortest
chapter (Chapter 3), entitled The Struggle for Existence, with
N = 6239 words. The results are shown in Table II, where we
observe that, indeed, the C and C∗ rankings differ markedly,
with the C ranking being better since the C∗ ranking includes
words such as “had” or “said.” We note also that the ranking
obtained with Enor includes some nonrelevant words as a
consequence of the low word frequency.

To better understand the differences between C and C∗
in short texts, we show in Table III some keywords of

TABLE II. Ranking of the seven most relevant words extracted
from chapter 3 of the book On the Origin of the Species, by Charles
Darwin. Words are ordered in descending value of C (first column),
C∗ (second column), and Enor [24] (third column).

C ranking C∗ ranking Enor ranking

varieties varieties or
selection had been
bees cattle we
advantage trees the
heath said heath
individual climate i
competition species bees
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TABLE III. Ranking of relevant words extracted from the shortest
chapter (chapter 3) of the book On the Origin of the Species, by
Charles Darwin. We include the word frequency in the chapter
(second column) and the position of the word in the relevance ranking
obtained using either C (third column) or C∗ (fourth column).

Word Word count n rank C rank C∗

varieties 16 1 1
selection 6 2 36
advantage 5 4 197
individual 6 6 219
competition 7 7 11
natural 7 16 207

the analyzed chapter, as well as their frequencies and their
positions in the C and C∗ rankings. In general, for (relatively)
large word frequencies, both rankings are similar. That is the
case of “varieties,” which is the first ranked word in both
cases. In contrast, for relevant words with low frequencies
(< 10), the general behavior is that the use of C improves the
results considerably: The most relevant words to the chapter
(“selection,” “advantage,” “individual,” “competition,” etc.)
are boosted to the top of the rank, whereas the same words
are relegated to rearward ranking positions when the usual C∗
is used.

These results indicate that the use of the exact, finite-case
distribution of distances between consecutive instances of a
randomly distributed word together with the use of appropriate
boundary conditions have potential benefits in word-ranking
algorithms, especially for short texts and low-frequency words,
where the statistical methods are usually less efficient.

A. Generic vs. specific keywords

The previous results show that C is a convenient keyword
detector, especially in the case of short texts, and the algorithm
is simple: Calculate the C value for any word in the vocabulary
and rank all the words in descending order of C value, and the
words at the top of the ranking would be the keywords of the
text with high reliability. However, within the set of keywords
(words with large C value), our results of extreme clustering
in Sec. IV C allow us to go a step further and suggest a way to
classify keywords and separate them into two classes, generic
and specific keywords.

Generic keywords are words with large C values, but which
are used all along the text. Such words can be identified by
two main characteristics: First, the word should be relatively
frequent and, second, its C value, though large, must be
smaller than the extreme clustering boundary we determined
in Sec. IV C, given by Cb(N,n). Note that this boundary was
obtained by assuming that the word was located in a single
cluster.

Conversely, specific keywords are described by two main
features: First, its frequency cannot be large and, second, its C

value should be close to or larger than the extreme clustering
boundary. Note that this can happen only when the word is
concentrated in a single cluster or a similar situation, implying
that the word is used solely in a very specific context of the
text.

FIG. 5. Clustering values C(N,n) for the words of the vocabulary
of the book On the Origin of the Species as a function of the word
count n. We include only words with n > 3. The lines correspond to
the maximum clustering value Cmax(N,n) and the extreme clustering
boundary, Cb(N,n).

In Fig. 5, we show the C(N,n) value for all the words of
the vocabulary of On the Origin of the Species as a function of
the word count n. We also show with lines the maximum
clustering value Cmax(N,n) and the boundary for extreme
clustering, Cb(N,n). In the figure, we choose two typical
examples corresponding to generic and specific keywords.

The case of “wax,” already mentioned above when dis-
cussing the results of Table I, corresponds to a specific keyword
since its C value lies practically on top of the extreme
clustering line. This word is only detected as a keyword if
C is used (instead of C∗), as a consequence of applying
boundary conditions. The specificity of “wax” can be better
appreciated in Fig. 6 (top panel) where the positions of the
39 instances of the word in the whole text are indicated with

FIG. 6. Positions of the words “wax” (n = 39, top panel) and
“hybrids” (n = 136, bottom panel) in the book On the Origin of the
Species, for which N � 1.56 × 105 words.
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vertical lines. Indeed, “wax” appears in the book only in the
interval 71 066–74 741 words, entirely within chapter 7 of the
book, where the behavior of bees is studied.

Concerning “hybrids,” it is a word with larger frequency
(n = 136) than “wax” and also with higher C value than “wax.”
However, the C value of “hybrids” lies well below the extreme
clustering line (see Fig. 5), and this situation corresponds to
a generic keyword: highly clustered but not used in a single
context. Indeed, this is confirmed in Fig. 6 (bottom panel),
where we show the positions of the 136 instances of “hybrids”
along the whole text, and where it is shown how the word is
clustered but also utilized in different contexts.

VI. APPLICATION II: AMINO ACIDS CLUSTERING
IN PROTEINS

Proteins can be considered as another paradigmatic exam-
ple of symbolic sequences: In general, a protein is a sequence
of 20 different amino acids that can be read as a “text” where
any amino acid is a “word” of the vocabulary. In addition,
proteins are moderately short, with an average length of around
560 amino acids [41] for Homo sapiens, and the frequencies
of individual amino acids are typically small. Then, when
analyzing the spatial distribution of amino acids in a typical
(short) protein searching for clustering, the use of C∗ instead
of C as will produce misleading results for two main reasons:
(i) the use of the geometric distribution instead of the exact one
as the random expectation is less justified than in texts (both N

and n are small). In particular, the small frequency n of all the
amino acids results in cv,exact being clearly smaller than cv,geo

(see Fig. 4) and then contributing to rising C as compared
to C∗. (ii) When applying boundary conditions, adding the
two additional distances (then passing from n − 1 to n + 1
distances) can also strongly modify the value of cv,obs when n is
small. But in this latter case, the effect of considering boundary
conditions does not always modify cv,obs (and then C) in the
same way, since, depending on the spatial configuration of the
amino acid, the inclusion of boundary conditions can raise,
lower, or leave unaffected cv,obs. As a consequence, these two
effects combine to produce in general quite different C and C∗
values. In the few cases of large proteins with large amino acid
frequency n, we expect C and C∗ to have similar values except
for the cases where boundary conditions have an influence,
typically for amino acids located in single clusters.

In order to have a global view of the different behavior of
C and C∗, we calculate the C and C∗ values for all the amino
acids in the whole data set [41], and for any amino acid we
obtain the ratio r ≡ C/C∗. The results are shown in Fig. 7,
where we plot r as a function of the amino acid frequency n.
As expected, for amino acids with large n, C and C∗ are very
similar [as the example in Fig. 9 (top panel)] and then r � 1 in
this case. However, for decreasing n we obtain a broad range
of r values (broader for smaller n), but where the ratio r tends
to be on average clearly greater than 1, implying that in general
the clustering measure C has larger values than C∗, and then
it is most sensitive to clustering detection. This does not mean
that all the individual r values are larger than 1. Indeed, for
some cases we observe that r < 1 and then C < C∗, but this
situation is not frequent, as can be better appreciated in the
inset of Fig. 7, where we show the probability density p(r)

FIG. 7. Ratio r ≡ C/C∗ for all the amino acids in all the proteins
of the Swiss-Prot database (20 204 proteins). Each ◦ represents the
r value obtained for any single amino acid (with frequency >3) in a
single protein. Inset: Probability density of the r values.

of the r values: Despite having some r values smaller than 1,
the majority of the values are in the r > 1 region, where p(r)
exhibits a long tail.

Once we have shown that C is more appropriated for
measuring amino acid clustering, we analyze the clustering
behavior of the amino acids in the human proteins, which we
show in Fig. 8. We observe a great diversity of behaviors,
from extreme clustering (C � 1) to strong repulsion C �
1 passing through intermediate almost-randomly distributed
cases (C � 1), depending on the amino acid and the protein

FIG. 8. Clustering measure C(N,n) for all the amino acids in
all the proteins of the Swiss-Prot database (20 201 proteins). Each
◦ represents the C(N,n) value obtained for any single amino acid
(with frequency >3) in a single protein. The lines correspond to
the maximum clustering value Cmax and the boundary for extreme
clustering Cb(N,n), obtained assuming that N � n and then the
approximation in Eq. (32) is valid. The three large circles correspond
to the amino acids shown in Fig. 9.
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FIG. 9. Positions of three different amino acids in three different
proteins. The three cases correspond to extreme clustering (a), random
distribution (b), and strong repulsion (c).

considered. The advantage of using C is that its numerical
values are always correctly interpreted in terms of the spatial
distribution.

We end this section by showing in Fig. 9 some examples of
amino acids with different behavior in the spatial distribution
and how C captures this behavior. Figure 9(a) shows as vertical
lines the positions of the amino acid cysteine in the human
protein MUC-19. With a value of C = 9.21, it corresponds
to the highest clustering value C for any amino acid in the
whole data set (as can be also seen in Fig. 8). Indeed, for this
amino acid, according to Eq. (33), we have that the boundary
for extreme clustering is Cb(6254,130) = 8.00, clearly smaller
than the observed clustering. Figure 9(b) depicts the positions
of amino acid glycine in the protein IFT-80. In this case, we
obtain C = 1.00, corresponding to a paradigmatic random
distribution. Finally, Fig. 9(c) shows the positions of amino
acid alanine in the protein YM102. In this case C = 0.31,
indicating extreme self-repulsion, as can be appreciated in the
figure where the positions of the amino acid follows an almost
equidistant pattern.

VII. CONCLUSIONS

In this paper, we have obtained analytically the exact
probability distribution of the interword distances of given
words in a text (or, in general, of a symbol within a symbolic
sequence), assuming that it appears at random. Traditionally,
this distribution is assumed to be the geometric distribution,
but this is only the case in the asymptotic limit. We analyze the
main properties of the exact distribution, and in particular we
show that there exists a certain frequency for the analyzed
word for which the variability of the interword distances
is a maximum. The knowledge of the distribution, together
with the application of boundary conditions, allows us to
improve the clustering detection in symbolic sequences. For
written texts, our newly defined clustering measure improves
considerably the keyword detection, especially in short texts.
Also, an analysis of extreme clustering values allows us to

classify keywords and distinguish between specific and generic
keywords. For protein sequences, which are typically short,
our clustering measure detects unambiguously the clustering
of amino acids as compared to previous measures, properly
characterizing their spatial distribution.
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APPENDIX A: DISTRIBUTION WITHOUT
BOUNDARY CONDITIONS

Let us consider that we have a text of length N , and a
given word appearing n times in that text. When no boundary
conditions are considered, the interword distance distribution
comes only from the “inner” n − 1 distances (see Sec. II).
When an inter-word distance d is found, such a distance
appears because there are two neighbor instances of the
word separated d words, and therefore their positions must
correspond to one of the following situations: [1,1 + d],[2,2 +
d],[3,3 + d] . . . ,[N − d,N ]. Then, there are N − d different
cases to find a distance d bounded by two words, thus leaving
N − d − 1 sites to arrange the remaining n − 2 words. As a
result we have (N − d)(N − d − 1

n − 2 ) different ways to obtain a
distance d. If we notice that in this case the possible distances
are again in the range (1,N + 1 − n), then the probability to
find a distance d can be obtained as

pN,n(d) = (N − d)
(
N−d−1

n−2

)
∑N+1−n

j=1 (N − j )
(
N−j−1

n−2

) . (A1)

After performing the summation and simplifying, we obtain

pN,n(d) =
(
N−d

n−1

)
(
N

n

) , (A2)

which coincides with Eq. (3), obtained using boundary con-
ditions. Since the distributions are the same, all the statistical
properties are also identical in both cases and in particular the
expected mean (9).

APPENDIX B: RELATION TO GEOMETRIC
FRAGMENTATION

Fragmentation problems have been an intense focus of
research since the pioneering works of Lienau [42] and Mott
[43–45]. Good historical reviews of the topic can be seen in
Refs. [46,47]. The main aim of fragmentation research is to
obtain the fragment size distribution of one-dimensional (1D),
2D, and 3D solid bodies after catastrophic events causing mul-
tiple fractures of the material. Usually the problem is tackled
by using two different approaches. The first, simplest one, is
called geometric fragmentation, and it consists essentially of
statistically determining the fragment size distribution of a
given topology when it is randomly partitioned into a number
of discrete entities (see chapter 2 in Ref. [47]).

The second, more complex and realistic, approach is usually
termed dynamic fragmentation, and this is a more physical
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approach in which loading conditions, material properties,
cracks growth, fracture sites nucleation, etc., are included in
the theoretical analysis, giving rise to different models [48–51].

If we restrict ourselves to the simplest case of geometric
fragmentation, and in particular to the discrete fragmentation
of 1D bodies, the result we have found for pN,n(d) can be
extrapolated straightforwardly to the fragment size distribution
in this case. Let us consider a segment of length L that can be
broken at N evenlyspaced potential fracture sites:

L

N + 1
,

2L

N + 1
, . . . ,

N L

N + 1
. (B1)

This problem is equivalent to considering the interval [0,N +
1], assuming that it can be fractured only at the integer
positions 1, . . . ,N and then adopting L/(N + 1) as the unit of
length. In this sense, the set of possible fracture points 1, . . . ,N

coincides with the possible positions of a given symbol in a

sequence of length N . If we randomly introduce n (n � N )
equally probable fracture points (“cuts”) placed at positions ji

(i = 1,2, . . . ,n) such that 0 < j1 < j2 < . . . < jn < N + 1,
then we finally obtain n + 1 fragments of lengths �0 = j1, �i =
ji+1 − ji (i = 1,2, . . . ,n − 1), and �n = N + 1 − jn. This is
exactly the same situation as the one we considered before for
word interoccurrence distances, and, in addition, the boundary
conditions we introduced in that case appear here naturally as
the lengths of the first and last fragments. Thus, the distribution
of fragments lengths � is then

pN,n(�) =
(
N−�

n−1

)
(
N

n

) . (B2)

This same 1D discrete fragmentation problem was discussed
in Ref. [48], where a recursive solution for the fragment size
distribution was obtained instead of an explicit expression
as (B2).
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