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Optical wall dynamics induced by coexistence of monostable and bistable spatial regions

V. Odent,1,2,* E. Louvergneaux,1 M. G. Clerc,2,† and I. Andrade-Silva2

1Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
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When nonequilibrium extended homogeneous systems exhibit multistability, it leads to the presence of domain
walls between the existing equilibria. Depending on the stability of the steady states, the dynamics differs. Here,
we consider the interface dynamics in the case of a spatially inhomogeneous system, namely, an optical system
where the control parameter is spatially Gaussian. Then interfaces connect the monostable and the bistable
nonuniform states that are associated with two distinct spatial regions. The coexistence of these two regions
of different stability induces relaxation dynamics and the propagation of a wall with a time-dependent speed.
We emphasize analytically these two dynamical behaviors using a generic bistable model. Experimentally, an
inhomogeneous Gaussian light beam traveling through either a dye-doped liquid crystal cell or a Kerr cavity
depicts these behaviors, in agreement with the theoretical predictions.
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I. INTRODUCTION

Macroscopic systems under the influence of injection
and dissipation of quantities such as energy, momenta,
and matter usually exhibit a coexistence of different states,
denoted as multistability [1,2]. This is clearly a nonlinear
nature manifestation of systems far from equilibrium. Initial
heterogeneous conditions initially caused by the inherent
fluctuations generate spatial domains that are separated by
their respective interfaces. These interfaces are known as
front solutions, interfaces, domain walls, or wave fronts [2–4],
depending on the physical context where they are considered.
Interfaces between these metastable states appear in the form
of propagating fronts and give rise to rich spatiotemporal
dynamics [5–7]. Front dynamics occurs in systems as varied as
walls separating magnetic domains [8], directed solidification
processes [9], nonlinear optical systems [10–13], oscillating
chemical reactions [14], fluidized granular media [15–21], and
population dynamics [22–24], to mention a few.

From the point of view of dynamical systems theory, in
one spatial dimension, a front is a nonlinear solution that is
identified in the comoving frame system as a heteroclinic orbit
linking two spatially extended uniform states [25,26]. The
evolution of front solutions can be regarded as a particle-type
one, i.e., they can be characterized by a set of continuous
parameters such as position, core width, and so forth. The
interface dynamics depends on the nature of the steady states
that are connected. In the case of a front connecting a stable
and an unstable uniform state, it is usually called a Fisher-
Kolmogorov-Petrovsky-Piskunov (FKPP) front [22,27,28].
One of the main features of these fronts is that their propagating
speed is not unique but determined by the initial conditions.
When the initial condition is bounded, after a transient state,
two counterpropagative fronts with the minimum asymptotic
velocity emerge [22,27,28]. FKPP fronts have been observed
in Taylor-Couette [29], Rayleigh-Bénard experiments [30],
pearling and pinching on the propagating Rayleigh instabil-
ity [31], spinodal decomposition in polymer mixtures [32], and
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liquid crystal light valves [12]. The former scenario changes
drastically when the front connects two stable uniform states.
In this case, a variational system tends to develop the most
stable state with a well-defined unique velocity, in order to
minimize its energy or Lyapunov function, so that the front
solution always propagates towards the most energetically
unfavorable steady state. There is only one point in the
parameter space for which the front is motionless, which is
commonly called the Maxwell point, and is the point for which
the two states have exactly the same energy [33]. Close to
the Maxwell point, based on the parameter variation method,
one can analytically determine the front velocity [5]. For
variational systems away from the Maxwell point, one can have
implicit expressions for the front velocity [5] that correspond
to nonlinear eigenvalue problems. In the nonvariational case,
the analytical expression of the front velocity is a problem still
unresolved.

Thus, the dynamics of interfaces is thus rather well known
for ideal systems, namely, homogeneous ones. However, many
spatially physical systems do not fulfill this condition. On the
contrary, the inhomogeneity can be rather important. This is the
case, for instance, for optical systems involving laser beams
where the amplitude profile follows a Gaussian shape. The
question then arises as to the interface and its dynamics in the
case of a spatially inhomogeneous system.

The aim of this article is to investigate, theoretically
and experimentally, the dynamics of interfaces in a spatially
inhomogeneous system, namely, an optical system where one
of the control parameters is spatially Gaussian. Interfaces
connect two multistable spatial states, namely, a monostable
one and a bistable one associated with two distinct spatial
regions. The coexistence of these two regions of different
stability induces relaxation dynamics and the propagation of
a wall with a variable speed. A generic bistable variational
model allows analytical characterization of the dynamical
behaviors. Experimentally, an inhomogeneous Gaussian light
beam illuminating either a dye-doped liquid crystal cell or a
Kerr antidiffractive cavity validates the theoretical predictions.

The manuscript is organized as follows: In Sec. II
the general one-dimensional (1D) model is introduced and
its dynamics characterized analytically and numerically. In
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particular, we characterize the relaxation dynamics and the
front propagation observed in different spatial regions. In
Sec. II C, the extension of this study to two spatial dimensions
is presented. Section III describes and analyzes the nematic-
isotropic front propagation induced by the photoisomerization
process. The experimental results are also compared to
theoretical findings. A Kerr antidiffractive cavity submitted to
an inhomogeneous Gaussian light beam is studied in Sec. IV.
The dynamics of fronts is analyzed qualitatively. We conclude
in Sec. V.

II. MONO- AND BISTABLE SPATIAL MODEL

Inspired by interface dynamics reported in optical exper-
iments [34–37], where two spatially inhomogeneous states
coexist, we consider a phenomenological one-dimensional
stochastic bistable model with a diffusion effect and inho-
mogeneous media [34–37]

∂u

∂t
= η(x) + u − u3 + ∂2u

∂x2
, (1)

where u(x,t) is a scalar order parameter, {x,t} stand for space
and time, and η(x) is a spatially inhomogeneous bifurcation
parameter that accounts for an external forcing. Notice that
Eq. (1) is a dimensionless model.

The physical meaning of the scalar field and parameters
depend on the experimental setup. In a nonlinear optical
cavity [36], u(x,t) corresponds to the intracavity light field,
while parameter η is associated with the injected field [36]. In
the liquid crystal light valve with optical feedback [34,35],
u(x,t) accounts for molecular orientation around an equi-
librium state, while η is associated with the intensity of the
optical feedback. In the nematic-isotropic transition induced
by photoisomerization [37], u(x,t) stands for molecular order,
where u ≈ 1 and u ≈ −1, respectively, accounts for the
nematic and the isotropic phase, while η accounts for the
injection field amplitude. Notice that for constant η, Eq. (1)
describes an extended imperfect pitchfork bifurcation [38].
Hence, the parameter η drives the nature of the solution
(monostable or bistable) of the system.

Equation (1) is variational, that is,

∂u

∂t
= −δF

δu
, (2)

where

F [u,∂xu] =
∫ (

−η(x)u − u2

2
+ u4

4
+ (∂xu)2

2

)
dx. (3)

Hence, the dynamics of Eq. (1) is ruled by the minimization
of F . Namely, the dynamics of this model is of relaxation.

Motivated by the front propagation induced by inhomo-
geneous Gaussian forcing, e.g., in dye-doped nematic liquid
crystals [37], we no more consider a space independent but a
spatially dependent Gaussian bifurcation parameter

η(x) = −ηM + η0e
−(x/w)2

, (4)

where {ηM,η0} are constant parameters and 2w is the width of
the Gaussian. The condition for motionless front is now local

and the Maxwell point is given by η(xM ) = 0 such that

|xM | = w

√
ln

(
η0

ηM

)
. (5)

This point corresponds to a position in space where the energy
of both multistable sates are equal. As the system is variational,
we can write Eq. (1) as the derivative of a potential, plus a
diffusive term, by introducing the inhomogeneous potential
V (u,x) as

V (u,x) = −η(x)u − u2

2
+ u4

4
. (6)

The system then presents a potential which is spatially
dependent. Mono- and bistable domains spatially coexist
and are connected through parameter η(x). The bistable
regime is spatially located within [xdown; xup] (see Fig. 1)
associated with the amplitudes |ηup/down| = |η(xup/down)| =
±2/3

√
3, such that

|xdown| = w

√
ln

(
η0

ηM + ηdown

)
,

(7)

|xup| = w

√
ln

(
η0

ηM + ηup

)
.

The blue and green domains indicate a monostable regime
outside the hysteresis cycle [Figs. 1(a) and 1(e)]. For η(x) <

ηdown [respectively η(x) > ηup], the system presents a unique
steady state, corresponding to u ≈ −1 (resp. u ≈ 1). In
this regime, all the dynamics is governed by a relaxation
phenomenon. Any arbitrary initial condition relaxes toward
the equilibrium state with the lowest energy, as illustrated
in the spatiotemporal diagrams of Figs. 1(g) and 1(k). For
ηdown � η(x) < 0, the system is metastable. The state u ≈ −1
is more stable than u ≈ 1 thanks to its lower energy, as we
can see in Fig. 1(b). Considering an initial condition such
that u(x) ≈ 1, we observe front propagation, where the state
u ≈ 1 disappears in favor of the state u ≈ −1 [Fig. 1(h)]. For
0 < η(x) � ηup the system is also metastable, but now u ≈ 1
is the most stable steady state [Fig. 1(d)]. In this regime a front
also spatially propagates [Fig. 1(j)]. In these two situations,
ηdwon � η(x) < ηup, a front travels up to the location where
both metastable states get the same energy, which corresponds
to the Maxwell location xM . Then the front is pinned [Figs. 1(c)
and 1(i)].

A. Relaxation phenomenon, ghost and bottleneck

We first study the interface dynamics in a single monostable
regime configuration. We consider, for instance, that the only
existing equilibrium is uup2 [Fig. 1(e)]. In this regime, we
consider that initially the system lies near uup1 and finally
relaxes to uup2 [Fig. 1(m)]. Hence, we can separate the
dynamics initially around uup1 and later relaxation around uup2.
Assuming a slow spatial variation of the bifurcation parameter
(w � 1, wide Gaussian beam with respect to front width) and
neglecting the diffusive term in Eq. (1), the equation becomes
space independent. Furthermore, considering perturbation of
the order parameter u close to its uup1 value (Fig. 1) in the form
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FIG. 1. (a–e) Different configurations of the potential V (u,x) [Eq. (6)] versus the spatially dependent bifurcation parameter η: (a) η < ηdown,
(b) ηdown � η < 0, (c) η = 0, (d) 0 < η � ηup, and (e) ηup < η. (f) Spatial profile of η(x), together with corresponding operating regimes
(monostable or bistable). (g–k) Spatiotemporal evolution diagrams of u(x) associated with the potentials V (u,x) (a–e). (i) Spatiotemporal
evolution diagrams of u(x) at the Maxwell point, associated with the potentials V (u,x) (c). (m) Hysteresis cycle for the order parameter u

versus η. η0 = 1, ηM = 0.5.

u(x,t) ≈ uup1 + u1(t), at second order, we obtain the parabolic
equation

du1

dt
= β + αu2

1, (8)

with α = √
3 and β = η − ηup. This equation describes the

dynamics around a saddle-node bifurcation [38]. This bifurca-
tion occurs when β is zero (η = ηup). For β and α positive, the
above equation does not possess any stationary equilibrium.
The resolution of Eq. (8) gives

u1(t) =
√

β

α
tan[

√
αβ(t − t0)] + uup1, (9)

where t0 is determined by the initial conditions.
For small β, for a long time the system stays close to uup1.

This corresponds to a ghost or a bottleneck phenomenon [38].
One can determine the time τ spent in the bottleneck. It is
given by the normalized time taken for u1(t) to go from minus
to plus infinity by

Γ =
∫ +∞

−∞

du

α′ − u2
, (10)

with α′ = −η/
√

3 + 2/9 and 	 = −√
3τ . Integrating the above

expression, one obtains the time spent in the vicinity of uup1:

τ = π√√
3(η − ηup)

. (11)

We now can determine the relaxation time to reach uup2. To
find that time, we linearize the homogeneous and deterministic
equation, Eq. (1), close to uup2. We get

u2(t) = uup2 − u(t0)e−3(t−t0), (12)

where t0 � τ and u(t0) accounts for the initial condition.
The relaxation time is 1/3. Thus, the total relaxation time is
τ + 1/3. Numerical simulations of Eq. (1) confirm this analyt-
ical prediction. Figure 2 shows three different spatiotemporal
evolutions for three different values of η. We observe that
for a given time the system remains close to the initial
conditions uup1 (gray state on Fig. 2) and then it transits to
the black uup2 state. The interesting point is that this transition
is spatially dependent, as we can see from Fig. 2, and is
accompanied by a front dynamics. Figure 3 shows the temporal
evolution of u(t) taken at x = 0 from Fig. 2(b) (initial condition
close to u = −1) together with the analytical expressions (9)
and (12). We get a quite good agreement between the numerical
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FIG. 2. Numerical spatiotemporal front propagation in the single
monostable regime. From model Eq. (1) with ηM = 0.5, w = 400,
(a) η0 = 0.89, (b) η0 = 0.90, and (c) η0 = 0.92. Initial condition
u(x,t = t0) = −1.

simulations and the analytical predictions. To complete our
analysis, we study τ evolution as a function of the bifurcation
parameter η. Figure 4(a) shows the plot of time spent in the
bottleneck for different η0 values and the comparison with
analytical formula (11). The agreement between numerical
simulations and the theoretical prediction is excellent.

The relaxation phenomenon occurs only in the single
monostable regimes (around the center of the Gaussian profile
or in its wings, see Fig. 1). When the order parameter u(x,t)
reaches uup1 at x = ±xup(see Fig. 1), the dynamics is governed
by the bistable regime and changes completely in favor of front
propagation.

FIG. 3. Temporal evolution of u(x = 0,t) from the ghost point,
u ≈ −1, to a stationary point of the monostable regime obtained
from Fig. 2(b). η0 = 0.9, ηM = 0.5, u(t = 0) = −0.9. Numerical
simulations, analytical prediction for u1(t) from formula (9), and

analytical prediction for u2(t) from formula (12).

0

10

20

30

40

0.65 0.825 1
0

 [
nu

m
. s

im
. u

ni
t]

25

50

75

0.28 0.30 0.32 0.34
Power (W)

0

NUM

EXP

1/2 -0.56τ = 3.06(P -0.529)0

-1/2τ =  ( (x=0) - )up

(a)

(b)

1/43

T
[s

]

FIG. 4. Evolution of the time spent in the bottleneck versus
input energy. (a) Numerical simulations; numerical values; and

analytical prediction of nondimensional τ , measured in units of
numerical simulation following relation (11); η(x = 0) = η0 − ηMax;
η0 = 0.9, ηM = 0.5, w = 200, u(t = 0) = −0.9. (b) Experiments on
the transition from nematic to liquid phase in dye-doped nematic
liquid crystals [37]; experimental values of T in seconds and fit
on experimental points using the relation T = mτ , where m = 1.28
is a multiplying dimension factor and τ comes from formula (11).

B. Front propagation between mono- and bistable
spatial regions

When the control parameter η lies in [ηdown; ηup], the
spatial region [xup; xdown] is bistable for the order parameter
u. In this transverse domain, the wall dynamics is governed
by front propagation between two stable states. To figure
out the propagating front trajectory, we perform analytical
development around the Maxwell point xMax. In the uniform
version of Eq. (1), in other words, without spatial dependence,
the model Eq. (1) exhibits a motionless interface

u(x,t) ≡ uh(x) = tanh

(
± (x − x0)√

2

)
, (13)

where x0 accounts for the position of the front core, which
corresponds to the point of maximum spatial variation. In the
case of a small amount of spatial variation for the bifurcation
parameter, η0 	 1, we can consider the following ansatz for
the front solution:

uh(x,t) = tanh

(
± [x − x0(t)]√

2

)
+ v(x,t), (14)
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where x0(t) is promoted to a temporal function (variation
parameter method) and v(x,t) is a small correction function.
Introducing the above ansatz in the spatially forced model
Eq. (1) and by linearizing in v one obtains

Lv = −η(x) − ∂uh

∂x

∂x0

∂t
, (15)

where

L ≡
(

1 − 3u2
h + ∂2

∂x2

)
is a linear operator. Introducing the inner product 〈f |g〉 =∫ +∞
−∞ f g dx, the linear operator L is self-adjoint (L = L+)

and ∂xuh is the only element of the kernel of L which is
related to the Goldstone mode of the translation invariance [2].
Hence, the above equation has a solution if the front satisfies
the following solvability condition (Fredholm alternative [2]):

dx0

dt

∫ +∞

−∞

(
∂uh

∂x

)2

dx =
∫ +∞

−∞

∂uh

∂x
η(x)dx. (16)

To compute a simple expression, integrals are calculated
assuming the parameter η is spatially slowly varying. This
is the case close to the center of the Gaussian profile. In this
region, η can be approximated to a parabola function

η(x) ≈ −ηM + η0[1 − (x/w)2]. (17)

After straightforward calculations, we obtain the velocity of
the propagating front

dx0

dt
= −3

√
2

2
{−ηM + η0[1 − (x0/w)2]}. (18)

Starting from this equation, one can infer the transverse front
trajectory

x0(t) = a tanh[b(t − t0)], (19)

with a ≡ w
√

1 − ηM/η0 and b ≡ 3/
√

2w
√

η0(η0 − ηM ).
The asymptotic location of the front core for an infinite time

is given by

x0(t → ∞) = a = w

√
1 − ηM

η0
. (20)

This expression can be also found using the first-order
development of the front core location Eq. (5) for a Gaussian
profile of η.

To check the validity of these analytical predictions, we
perform numerical simulations of the deterministic Eq. (1)
by inserting the parabolic function (17) for the bifurcation
parameter η. Figure 5(b) shows the evolution of the front
core location x0 together with the corresponding associated
spatiotemporal diagram of u(x,t) [Fig. 5(b)]. The agreement
between the numerical values of x0 and the expression (19) is
excellent.

As for a transverse Gaussian dependence for η (Fig. 2),
a relaxation phenomenon is followed by a propagating front
between the white and black states (Fig. 5). It is worth noting
that numerical simulations of the stochastic version of Eq. (1),
through the incorporation of an additional noise, evidence the
same behaviors. Thus, the relaxation and front propagation
phenomena are robust. The stochastic version of Eq. (1) is
under investigation and the results will be published elsewhere.
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FIG. 5. 1D and 2D numerical simulations of Eqs. (1) and (21)
with a parabolic forcing. (a) Spatiotemporal diagram for the 1D
system, Eq. (1). (b) Front trajectory in the 1D system: numerical
points, analytical prediction from Eq. (19). (c) Spatiotemporal
diagram for the 2D system, Eq. (21). (d) Front trajectory in the 2D
system: numerical points, analytical prediction from Eq. (19).
(e) Spatiotemporal diagram of the relaxation phenomenon for the 2D
system with (f) the front position. (g) Numerical profile of u(r,t) at

t = 0, t = 5, t = 20, t = 600. The parameters
used for both numerical simulations are ηM = 0.5, w = 250, and
η0 = 1.

C. Extension to two transverse dimensions

Let us consider a natural two-dimensional (2D) extension of
the 1D model Eq. (1). The mono and bistable two-dimensional
spatial model reads

∂u

∂t
= η(r) + u − u3 + ∇2

⊥u, (21)

where r stands for the radial coordinate, {x,y} accounts
for the two transverse spatial Cartesian coordinates, and
∇2

⊥ ≡ ∂xx + ∂yy is the two-dimensional Laplacian. Performing
similar numerical simulations as for the previous 1D case,
we still obtain quite good agreement between the analytical
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FIG. 6. Numerical comparison between the relaxation and front
propagation characteristic times versus the bifurcation parameter η0,
Eq. (21); ηM = 0.5, w = 250.

predictions (17) and the 2D numerical simulations for the
front core location r0 when η possesses a parabolic profile
[Fig. 5(d)].

A closeup of the initial temporal evolution of the order
parameter u together with the interface trajectory r0 evolution
is depicted is Figs. 5(e) and 5(f), respectively. During this
temporal stage (t < 10), the relaxation phenomenon takes place
where the interface velocity is faster than those for the regime
of two coexisting states. It corresponds to a location of the
interface delimited by |r| < rup, with the potential of Fig. 1(e).
To illustrate the wall dynamics when the initial condition is
uniform and its value is u = −1 but the forcing η is spatially
parabolic, we plot the spatial profiles of u(x,t), at different
times, represented in Fig. 5(g). At t = 0, the initial condition
is u(x) = −1. Between t = 0 and t ∼ 10, the center part of
the scalar field u(|r| < rup) relaxes from u = −1 to u = 1.
The profile of u is shown at t = 5. Then, two opposite fronts
propagate, at t = 20, to reach the stationary position in rM

at t ≈ 600.
We compared the typical time duration of the relaxation

phenomenon with respect to the propagation phenomenon. The
relaxation time is numerically evaluated using the time to go
from the ghost state (close to uup1) to the stable state (uup2) for
different values of η (η > ηup). The front propagation time is
obtained thanks to the time taken by the front core to reach 90%
of its final position xM . Figure 6 shows the comparison between
these characteristic temporal scales versus the bifurcation
parameter.

To check the validity of the above theoretical predictions,
we carried out two experiments: a nematic-isotropic transition
induced by photoisomerization, and a focusing Kerr Fabry-
Pérot cavity operating in a negative diffraction regime.

III. NEMATIC-ISOTROPIC TRANSITION INDUCED
BY PHOTOISOMERIZATION

The nematic-isotropic transition is a classic problem of the
theory of liquid crystals. In this transition, the nematic phase
is characterized by an orientational order where molecules
are mostly pointing in the same direction, unlike the isotropic
liquid phase where molecules possess a random and isotropic

molecular ordering [39–41]. Therefore, as a function of tem-
perature T , one expects to observe a transition between these
two phases, that is, a critical temperature Tc corresponding to
the emergence of a different ordering. Since the molecules
possess a preferred orientation but not a direction, this
transition is characterized by a second-rank tensor [39–41].
This tensor is a symmetric matrix with zero trace, characterized
by a single scalar parameter S(�r,t), which is an order parameter
that accounts for the alignment of the molecules. Then, when S

is small (order 1) it accounts for the isotropic liquid (nematic)
phase.

The dynamic of the order parameter is ruled by the free
energy (Landau–de Gennes theory) [39–41]

F =
∫ (

A

2
S2 − B

2
S3 + 1

2
S4 + (∇S)2

2

)
dxdy, (22)

where {A,B} are phenomenological positive parameters. Usu-
ally parameter A is proportional to the temperature with respect
to the critical one (A ∝ T − Tc) [39–41]; this is the bifurcation
parameter. The temporal evolution of S is characterized by the
minimization of the free energy F , that is,

∂S

∂t
= −δF

δS
= −AS + BS2 − S3 + ∇2S. (23)

This model has the steady states S = 0 and S ≡ SM = (B ±√
B2 − 4A)/2 that account, respectively, for the isotropic

liquid and nematic phases. For large values of the bifurcation
parameter (A � 1), the only supported state is the isotropic
liquid phase. When the bifurcation parameter is diminished to
zero (A = 0), the isotropic state becomes unstable through a
discontinuous bifurcation (first-order transition). This bifurca-
tion generates the emergence of the nematic state, SM . This
latter phase depicts a hysteresis (coexistence) with an isotropic
state bounded by A = 0 to A = B2/4. For negative A, the only
stable state is the nematic phase.

In the case of dye-doped liquid crystal (DDLC) cells illu-
minated by a light beam, the nematic-isotropic transition can
be achieved using the intensity of the beam [37,42,43] through
the process of photoisomerization of dyes [37,43,44]. Hence,
the parameters become a function of the intensity of the light
I ({A(I ),B(I )}). Then, if the light beam illuminating the sam-
ple is inhomogeneous I (r), which is usually Gaussian, the
parameters of the equation become inhomogeneous. Thus the
equation for the order parameter reads

∂S

∂t
= −A(r)S + B(r)S2 − S3 + ∇2S. (24)

Considering the change of variable u(�r,t) = S(�r,t) − B(r)/3,
the above equation takes the form

∂u

∂t
= η′(r) + ε′(r)u − u3 + ∇2u, (25)

with

η′(r) = AB

3
− 2B3

27
− ∇2B

3
,

ε′(r) = −A + B2

3
.

Therefore the dynamics exhibited by the order
parameter of the nematic-isotropic transition induced by
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FIG. 7. Schematic sketch of the experimental setup of a nematic-
isotropic transition induced by photoisomerization. DDLC: dye-
doped liquid crystal illuminated by a vertically polarized laser beam
(P‖), PL: linear polarizer following the y axis (P⊥), L: imaging lens,
and CDD: charge-coupled device camera.

photoisomerization [37], Eq. (25), is similar to that shown by
the previously phenomenological bistable model Eq. (1).

A. Experimental setup

To explore the dynamics as the result of the coexistence
of mono- and bistable spatial regions, we consider the
experimental setup depicted in Fig. 7. A dye-doped liquid
crystal slice is subjected to a Gaussian beam illumination.
The sample consists of an E7-oriented nematic liquid crystal
layer, doped with an azo dye (methyl red, concentration
∼0.5% in weight). The mixture is injected between two
polyvinyl alcohol–coated glass plates with d = 25-mm-thick
spacers, which were rubbed to get a planar anchoring of the
liquid crystal molecules (nematic director �n parallel to the
confining walls). The system is irradiated by a monomode
frequency-doubled Nd3+ : YVO4 laser (λ0 = 532 nm), ver-
tically polarized (following the x axis, see Fig. 7). In the
1D configuration, we apply a symmetric spatial filtering to
limit the beam size in y direction and get a quasi-1D beam
(wx � wy). The nematic director, in the xy plane, is oriented

at 45◦ with respect to the input beam polarization (along the y

axis). A linear polarizer PL (following the x axis) is positioned
at the output of the sample, perpendicularly to the laser beam
polarization. This configuration maximizes the light contrast
between the two phases. The transmitted beam is monitored by
a CCD camera (1280 × 1024 pixels). The control parameter
is the beam intensity I0 via its power P0 and its Gaussian
size w. In this experimental configuration, propagating walls
between the nematic and isotropic phase that are induced by
the photoisomerization process are reported [37].

B. Experimental one-dimensional nematic-isotropic
wall dynamics

First, we focus our experimental work on the quasi 1D
configuration. We spatially limit the beam following the y

axis. Consequently, the aspect ratio (wx/wy) is close to 10. We
apply an input laser power to initiate the photoisomerization
transition. After 10 s, we observe the apparition and the
expansion of the isotropic phase indicated by the black zone
in Figs. 8(a) and 8(b). As a result of the light polarization
and the linear polarizer PL, the nematic and isotropic phase
are distinguished by having, respectively, a gray and black
zone [37]. The ovoid black domain increases symmetrically
following the x axis, and we can distinguish clearly the
nematic phase and the isotropic liquid phase. We plot, in
Fig. 8(c), a spatiotemporal diagram of the intensity profile
along the dotted line to follow the wall dynamics. This
diagram presents the same front dynamics than those predicted
in Figs. 2 and 5(a). Furthermore, from this spatiotemporal
diagram, we can infer the wall evolution as a function of
time x0(t) and compare it with the theoretical prediction
formula (19) of the bistable model. Figure 9 shows this com-
parison. Hence, experimental results show a good agreement
with the one-dimensional theoretical description given by
model Eq. (1). Notice that during this propagation, the walls
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FIG. 8. Experimental nematic-isotropic front propagation. (a,b) 1D experimental snapshots for P0 = 2.2 W, wx = 3.4 mm, and wy =
0.37 mm at 13 and 80 s, respectively. (c) Spatiotemporal diagram of the intensity profile along the dotted line on the (a) snapshot. (d–g) 2D
experimental temporal sequence of snapshots for P0 = 350 mW and wx = wy = 3.4 mm at 55, 65, 125, and 500 s, respectively.
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FIG. 9. Temporal wall location evolution in 1D configuration
x0(t): experimental points, fit with hyperbolic tangent expres-
sion (19).

experience a decrease in velocity until they reach a stationary
state. In brief, the experimental system is a quasi-one-
dimensional nature and one-dimensional model, and Eq. (1)
gives an adequate qualitative description of the experimental
observations.

C. Experimental two-dimensional nematic-isotropic
wall dynamics

We now focus on the photoisomerization process and wall
propagation but in the 2D configuration. The laser beam has
now a revolution symmetry with a beam radius w = wx = wy .
We instantaneously increase P0 from 5 to 350 mW. After
typically 50 s, a circular wall develops in the central region of
the Gaussian light beam, letting a dark disk grow [Fig. 8(d)].
The disk diameter first increases (in the transitory regime)
with a decreasing velocity [Figs. 8(d)–8(f)] and then reaches
a stationary value [see Fig. 8(g)]. The light intensity needed
to reach the phase transition is lower for the 2D configuration
with respect to the 1D configuration. The light extinction in the
disk is a signature of the isotropic state, which is surrounded
by the nematic phase. Notice that without any external forcing
the sample is in the nematic phase at room temperature.
The origin of this isotropic state is the photoisomerization
process induced by light [42,43,45]. The observed wall is
the result of the inhomogeneous profile of the external light
beam. In the inner region of the beam the system exhibits an
isotropic state due to photoisomerization, and as the power
intensity decreases in the outer region the nematic state
remains.

Hence, as the sample is subjected to the external beam, the
isotropic state invades the nematic state until the wall stops,
where the two phases are energetically equivalent, that is, at the
Maxwell point. We have realized a sequence of experimental
measures, where the input power is modified. For 16 input
power values, between P0 = 283 mW and P0 = 333 mW, we
record the one-dimensional spatiotemporal evolutions. From
these spatiotemporal diagrams we have measured the exper-
imental time T to observe the nematic-isotropic transition at
the center of the Gaussian beam. Figure 4(b) shows T versus
input power. Fitting the first eight experimental points by the
formula T = mτ , where m = 1.28 is a multiplying factor and
τ comes from formula (11). Notice that m is a dimension

FIG. 10. One-dimensional spatiotemporal diagram of the exper-
imental two-dimensional front propagation for three different power
inputs: (a) P0 = 283 mW, (b) P0 = 300 mW, and (c) P0 = 317 mW.

coefficient which takes into account the difference between
the dimensionless model and the experimental data. We obtain
a quite good agreement between the first experimental points
and the theoretical formula.

Figure 10 shows different spatiotemporal diagrams of
the experimental two-dimensional wall propagation for three
different input powers. The isotropic domain extends and the
response time shortens as the intensity gets higher. Also, in
this case we have a quite good agreement with the numerical
simulations presented in Fig. 2.

First, we focus on the response time for the system to go
from the nematic phase through the isotropic phase. This study
provides us with information about the onset of the bistability,
characterized by ηup in our theoretical model. Notice that
the transition between the nematic and the isotropic phase
is governed by a mobile interface. At the early stage [see
Fig. 8(d)] the isotropic spatial domain is small, and then
its size increases versus time [Figs. 8(e)–8(g)], to reach a
large extension [Fig. 8(g)]. The wall location during the early
stage carries an incertitude equal to its location value, thus
generating a high incertitude in the first seconds where the
isotropic phase emerges. We plot the evolution of the intensity
profile along a diameter of the isotropic phase black disk of
Figs. 8(d)–8(g). The corresponding spatiotemporal diagram
is shown in Fig. 11(a). Using the Hough transform [46],
we can track the circular wall dynamics and determine its
radius evolution. Figure 11(b) displays the radius evolution
versus time together with the fitted analytical expression (19).
Therefore the theoretical prediction exhibits an excellent
agreement with experimental recordings. The first blue squares
clearly evidence the occurrence of relaxation dynamics, such
as described previously in Sec. II A, Eqs. (9) and (12), and
numerical simulations, Fig. 5. From the above observations, we
can conclude that the dynamics of a two-dimensional interface
in the nematic-isotropic transition induced by photoisomeriza-
tion is equally well described by the bistable model Eq. (21).
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FIG. 11. (a) Experimental spatiotemporal diagram on Figs. 8(d)–
8(g) taken along one black disk diameter. (b) Wall location evolution:

experimental points, fit with hyperbolic tangent expression (19).

IV. EXPERIMENTAL FRONT PROPAGATION IN AN
ANTIDIFFRACTIVE INHOMOGENEOUS KERR CAVITY

The passive Kerr cavity, another nonlinear optical setup,
also displays wall dynamics between monostable and bistable
spatial regions when it is submitted to an inhomogeneous
external forcing such as a Gaussian light beam [47]. This
setup presents optical bistability and is well modeled by the
Lugiato-Lefever equation [48]:

∂E

∂t
= F0(x) − (1 + i�)E + i|E|2E + iα

∂2E

∂x2
. (26)

Here E(x,t) is the normalized slowly varying envelope of
the electric field,  is the detuning parameter, and F0(x) is
the spatially inhomogeneous input field. As in the previous
experiment, we consider a Gaussian forcing so that the input
field has the form F0(x) = E0e

−x2/w2
. The envelope model,

Eq. (26), is a universal model that describes a chain of
coupled oscillators forced close to their natural resonant
frequency, which has been derived in several physical contexts
such as a plasma driven by a radio frequency field [49], a
one-dimensional condensate in the presence of an applied ac
field [50], and a nonlinear passive optical cavity [48].

In the positive diffraction case (α > 0), the system exhibits
pattern and soliton solutions [47,48,51,52]. In the negative
diffraction case (α < 0), the system exhibits front propa-
gation [36,53]. Close to the critical point  = c ≡ √

3,
the model equation, Eq. (26), can be approximated by our
phenomenological model, Eq. (1) [36]. Consequently, we
expect to observe wall dynamics in the Kerr cavity submitted
to an inhomogeneous Gaussian light beam forcing.
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FIG. 12. Kerr cavity submitted to an inhomogeneous Gaussian
light beam. (a) Schematic representation of a Kerr cavity. M1

and M2 are the cavity mirrors, and LC is the liquid crystal
slice. (c) Experimental and (d) numerical spatiotemporal response
to a step function of the input intensity from the lower (dark
area) to the upper (white area) branch of the bistable cycle.
Experiments I0 = 433 W cm−2, d = −5 mm, ϕ = −0.6 rad, wx =
1400 μm, wy = 100 μm, R1 = 81.8%; R2 = 81.4%. (b,d) Numer-
ical simulation of model Eq. (26) with E0 = 1.9,  = 3.0, α =
0.001, wx = 1400 μm, wy = 100 μm, ε = 0.4. (d) Wall location
evolution: and dashed curve account for experimental measure-
ments and hyperbolic tangent fit, formula (19). The experimental fit
parameters are a = 308 μm, b = 0.069, and t0 = 35.2 s.

The experiments have been carried out using a nonlinear
Kerr slice medium inserted in an optical Fabry-Pérot resonator
[Fig. 12(a)]. The Kerr focusing medium is a 50-μm-thick layer
of E7 nematic liquid crystal homeotropically anchored. The
cavity is delimited by two mirrors whose reflection coefficient
are close to 1 (R1 � R2 � 0.9). The laser source, a monomode
frequency-doubled Nd3+ : YVO4 laser (λ0 = 532 nm), is used
as the external inhomogeneous forcing. A more detailed
description of the experimental setup is given in Refs. [47]
and [36]. The middle panels of Fig. 12 show the experimental
and numerical spatiotemporal diagrams of the output intensity
(|Bout|2) for a temporal step function of the input intensity. In
both cases, we observe the emergence of a propagation wall
connecting two different optical intensities. To characterize the

052220-9



ODENT, LOUVERGNEAUX, CLERC, AND ANDRADE-SILVA PHYSICAL REVIEW E 94, 052220 (2016)

wall dynamic, we have measured experimentally its evolution
as a function of time. Figure 12(d) shows wall location
evolution. The wall location follows a hyperbolic tangent
trajectory as predicted by our theory from Eq. (19). Hence,
the interface dynamics in an antidiffractive inhomogeneous
Kerr cavity is well described by the bistable model equation,
Eq. (21).

V. CONCLUSION AND REMARKS

Far from equilibrium, systems usually exhibit a rich
domain wall dynamics between steady states. The majority
of theoretical studies consider a spatially homogeneous driven
forcing. At variance, a greater number of experimental studies
deal with spatially inhomogeneous driven forcing as the result
of boundary conditions, inherent experimental imperfections,
or the intrinsic nature of the forcing. This inhomogeneous
driven forcing can induce unexpected dynamical behaviors.

We have investigated, theoretically and experimentally,
the front dynamics when there is a spatial coexistence
between monostable and bistable spatial regions in a simple
inhomogeneous bistable variational model with either one or
two transverse dimensions. This coexistence induces wall dy-
namics, which corresponds initially, in the monostable region,
to a relaxation dynamics followed by a front propagation with

a variable speed in the bistable region. From a generic bistable
model, we have characterized analytically these dynamical
behaviors, which are confirmed by numerical simulations.
Experimentally, a dye-doped liquid crystal cell and a Kerr
cavity submitted to an inhomogeneous Gaussian light beam
are used to validate our theoretical predictions. The agree-
ment between theoretical and experimental findings is fairly
good.

The consideration of inhomogeneous forcing may allow
dynamical control between different domains. This opens
the possibility of imagining novel devices such as photo-
controlled optical aperture and adaptive lenses.
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