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Macroscopic extended systems with dissipation and injection of energy can exhibit particlelike solutions.
Dissipative kinks with an oscillatory cloak and a family of localized states that connect uniform symmetric states
in a magnetic wire forced with a transversal oscillatory magnetic field and in a parametrically driven damped
pendula chain are studied. The oscillatory cloak is composed of evanescent waves emitted at the kink position
and generated by a resonant mechanism. These waves mediate the kink interaction and generate a family of
localized states.
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I. INTRODUCTION

Macroscopic particlelike solutions in extended dissipative
systems have been observed in different fields, such as domains
in magnetic materials, chiral bubbles in liquid crystals, inter-
faces in chemical reactions, kinks in granular media, fronts
in populations dynamics, liquid crystals, and nonlinear optics,
among others [1–3]. Hence, one can infer the universality of
particlelike solutions in nonequilibrium systems [4]. Although
these states are spatially extended, they exhibit properties
typically associated with particles. Consequently, one can
characterize them with a family of continuous parameters
such as the position and the core width. A natural strategy
to obtain these solutions would be to integrate the systems
under small variations corresponding to energy dissipation [5].
These types of systems are termed “quasireversible” [6]. Since
integrable systems exhibit natural frequencies, a way to force
these systems is through temporal modulation of parameters
that characterize the system under study. This type of forcing is
called parametric [7]. In the past few decades, scientific efforts
were focused on improving our understanding of kinks [8].
These solutions are characterized by connecting two equivalent
symmetric states. Methods such as variation of parameters and
inverse scattering have played a key role in understanding the
dynamics of particlelike solutions. However, for dissipative
systems—with large injection and dissipation of energy—the
dynamic characterization of particlelike solutions remains an
open question.

The aim of this article is to study dissipative kinks with
an oscillatory cloak and a family of localized states that
connect uniform symmetric states. We consider two physical
systems that exhibit these structures, namely a magnetic
wire forced with a transversal oscillatory magnetic field, and
a parametrically driven damped pendula chain. These kink
solutions are characterized by the emission of evanescent
waves from the front position (cf. Fig. 1). Using an analogy of
hopping pattern behavior observable in combustion carried
out under controlled conditions [9,10], we consider that
propagation of evanescent waves observed in our simulations
could be, for want of a more descriptive name, referred to as
“flaming 2π kinks.” The oscillatory cloaks are generated by
a resonance mechanism between the natural frequency and
external forcing. These evanescent waves mediate the kink
interaction and generate a family of localized states.

II. FLAMING 2π KINKS IN PARAMETRICALLY DRIVEN
MAGNETIC WIRE

The dynamics of ferromagnetic wires are characterized
by the normalized magnetization m(t,z) [11], where {z,t}
account for the spatial coordinate along the wire and time,
respectively. A one-dimensional easy-plane ferromagnetic
macroscopic wire is described by the dimensionless Landau-
Lifshitz-Gilbert equation [11],

∂tm = −m × (hex − βmzez + ∂zzm − α∂tm), (1)

where {ex,ey,ez} are the unit vectors along the respective
Cartesian axes, β > 0 accounts for the anisotropy of the wire
and it favors configurations where the magnetization lies on
the xy plane, the term proportional to α is a Rayleigh-like
dissipation function known as Gilbert damping, and it accounts
for energy losses, h is the dimensionless intensity of the
external magnetic field in the x direction, and the term
∂zzm corresponds to the Laplacian operator accounting for
short-range magnetic interactions [11]. To get an idea of
the magnitude of the parameters, for example for CsNiF3,
|m| ≈ 2.2 × 105 A/m, β ≈ 39, temporal and spatial scales
are around 20 ps and 5 nm, and the dissipation parameter is of
the order α ≈ 0.02 [12].

For a positive external field, h > 0, the stable equilibrium
of the system is the magnetization pointing along the magnetic
field, m = ex , a magnetization vector aligned with the vertical
axis [see Fig. 1(a)]. Perturbations around this equilibrium
are characterized by a natural frequency ω0 = √

hβ [13].
The dissipation can be counterbalanced by considering a
combination of a constant and an oscillatory external magnetic
field, h(t) = H0 + h0 cos(ωt). Notice that the dynamics of the
above model (1) conserve the norm of m. Hence, spherical
coordinates are an adequate representation to describe the
magnetic dynamics of the driven wire. This system has kink
solutions. The orientation of magnetization vectors creates a
marked spatial pattern: at the left and right ends of the chain,
magnetization vectors are predominantly directed along the
external field, while at the central part of the chain they undergo
a complete rotation, clearly revealing the presence of a kink
solution [8]. Figure 1 shows a schematic representation of the
magnetic kink solution. Here the spatiotemporal evolution and
magnetization components of this particlelike solution were
obtained from numerical simulations of Eq. (1). Numerical
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FIG. 1. Flaming 2π kink in a parametrically driven magnetic
wire obtained from numerical simulation of Eq. (1) with h(t) =
H0 + h0 cos(ωt), H0 = 2, h0 = 0.8, ω = 6, β = 10, and α = 0.02.
(a) Schematic representation of magnetization m(z) upon a driven
magnetic wire. (b) Magnetization components of the flaming mag-
netic kink. (c) Spatiotemporal evolution of the flaming kink. The
horizontal dashed line in the diagrams shows the time when the
images of (b) were obtained. (d) Corresponding φ profile in the
spherical representation of the magnetization. {�,σ,λ} are the ampli-
tude, wavelength, and steepness of the evanescent wave, respectively.
(e) Corresponding θ profile in the spherical representation of the
magnetization.

simulations were conducted using the fifth-order Runge-Kutta
method scheme for temporal integration, finite differences of
sixth order for spatial discretization, and Neumann boundary
conditions (∂zm = 0 at the borders). From the spatiotemporal
evolution, we can infer that the kink solution is characterized
by the emission of evanescent waves from the front position
(see Fig. 1). In the quasireversible limit, these waves disap-
pear [5].

To study in detail the flaming kinks, we consider the
following spherical representation for magnetization vector
m = sin(θ )[cos(φ)ex + sin(φ)ey] + cos(θ )ez. In this represen-
tation, the magnetization is described by the polar θ (t,z)
and azimuthal φ(t,z) angles [see Figs. 1(d) and Fig. 1(e)].
When the magnetic anisotropy coefficient is large enough
(β � 1), the magnetization vector is located mainly in the
xy plane, and the magnetic field acts in the same way
as gravity for coupled mechanical oscillators [14,15]. In
addition, let us consider small dissipation, an external field, and
the scaling relations |θ − π/2| ∼ α ∼ h ∼ ∂zzφ ∼ 1/β � 1
and φ ∼ ∂tφ ∼ 1. Using a spherical representation and this
scaling in Eq. (1), one finds at leading order that the polar
angle becomes a slave variable θ [φ] ≈ π/2 + ∂tφ/β, and the

FIG. 2. Flaming 2π kink in a vertically driven chain of
coupled pendula obtained from numerical simulation of Eq. (2) with
ω2

0(t) = ω2
0 + γ cos(ωt), ω2

0 = 1, γ = 0.3, ω = 1.4, and μ = 0.1.
(a) Schematic representation of a vertically driven dissipative chain
of coupled pendula. (b) Spatiotemporal evolution of a motionless
flaming kink. (c) Profile of a flaming kink; {�,σ,λ} are the amplitude,
wavelength, and steepness of the evanescent wave, respectively.

azimuthal angle satisfies [14]

∂ttφ = −ω2
0(t) sin(φ) + ∂ξξφ − μ∂tφ, (2)

where μ ≡ αβ, ξ ≡ z/β1/2 is a normalized spatial coordinate,
and ω2

0(t) = βH0 + βh0 cos(ωt). The aforementioned model
stands for a vertically driven dissipative chain of cou-
pled pendula [16]. The parameters {ω0 ≡ βH0,γ ≡ βh0,μ}
account for the natural frequency, the amplitude of the applied
force, and the oscillation damping coefficient. Hence, the
parametric-driven dissipative sine-Gordon model produces
results that considerably resemble the magnetization dynamics
in a magnetic chain described with the Landau-Lifshitz-Gilbert
equation.

In the next section, we introduce a pendula chain. This set
of coupled oscillators is well-described by the sine-Gordon
model.

III. FLAMING 2π KINKS IN A PARAMETRICALLY
DRIVEN PENDULA CHAIN

Let us consider a plane pendulum of length l0. The
pendulum oscillates in the x-y plane in the presence of
gravitation acceleration g pointing along −ex , as illustrated
in Fig. 2. The mechanical motion is governed by dttφ =
−ω2

0 sin(φ) − μdtφ, where the natural frequency is ω2
0 = g/l0,

and the damping parameter μ accounts for dissipation. Notice
that the above equation is the same as Eq. (2) when the
magnetization is uniform, ∂zzm = 0. In the pendulum, as
well as in the magnetic system, the angle φ accounts for the
dynamics in the xy plane. On the other hand, the polar angle
of the magnetization vector, θ = arccos(mz), is related to the
angular velocity of the pendulum, β(θ − π/2) ≈ ∂tφ.
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FIG. 3. Characterization of a flaming 2π kink for a vertically
driven chain of pendula with βH0 = 1. (a) Phase space as a function of
frequency and amplitude forcing with μ = 0.1. The tongues account
for the strong resonances (1 : 1 and 1 : 2). The flaming 2π kinks are
observed in the dark region. (b) Amplitude of evanescent waves � as
a function of forcing frequency by different dissipation coefficients
and forcing intensities (c). Wavelength σ (d) and steepness λ (e) of
evanescent waves as a function of frequency forcing ω.

A pendula chain is a system composed of several of the
oscillators described above, where each one of them couples
to its neighbors by torsion springs, as shown in Fig. 2(a). In the
continuum limit, the linear coupling between a pendulum and
its neighborhood is written in terms of a Laplacian operator,
∂ξξφ. The torsion spring mechanism is equivalent to the short-
range magnetic interaction that couples magnetic moments in
ferromagnetic materials. This system in the continuum limit is
described by the sine-Gordon model Eq. (2).

Numerical simulations of the sine-Gordon Eq. (2), for
small forcing intensities and large dissipation, exhibit 2π kink
solutions, that is, the zero equilibrium is connected with the
2π state [8]. Figure 2 shows a schematic representation, a
spatiotemporal evolution, and a profile of a flaming 2π kink
observed in a vertically driven dissipative chain of coupled
pendula. The evanescent waves are well characterized by
an amplitude �, a steepness λ, and a wavelength σ [see
Fig. 2(b)]. Notice there is a good agreement between flaming
2π kinks observed in a forced magnetic wire and a forced
chain of pendula. Figure 3(a) illustrates the region of parameter

space where the flaming 2π kinks are observed. This region
was obtained numerically from Eq. (2) by the persistence
of the flaming 2π kink under the small modification of the
parameters. From this figure, one can conclude that the flaming
2π kinks are observed in a wide range of frequencies and
forcing amplitudes.

To identify the mechanism of flaming 2π kinks, we
have computed the amplitude �, the wavelength σ , and the
spatial damping λ (steepness) [see Figs. 1(d) and 2(c)] of the
evanescent waves as a function of the dissipation, frequency,
and amplitude of the forcing. The lower panels of Fig. 3
show these results. The amplitude of evanescent waves as a
function of the forcing frequency exhibits a resonance when
the forcing frequency coincides with the natural frequency
(ω/ω0 ≈ 1). Figure 3 shows this resonance for different
dissipation and intensity forcing coefficients. The behavior
of these curves is not well described by linear or weakly
nonlinear resonance [7,17]. Therefore, one can conclude that
the appearance of evanescent waves is the result of a resonance
between the parametric forcing and the natural frequency
of the pendula. That is, at close to 1 : 1 resonance, the
amplitude of the evanescent wave is large (ω/ω0 ≈ 1), which is
disclosed in Figs. 3(b) and 3(c). Moreover, in the quasireversal
limit ({γ,μ} � 1), the amplitude of the evanescent waves
is negligible, and the flaming 2π kinks and 2π kinks
are indistinguishable. Likewise, we have characterized the
wavelength σ and steepness λ of the evanescent waves as
a function of frequency forcing (see the bottom panels of
Fig. 3). The steepness increases with frequency higher than the
natural frequency. The wavelength exhibits a resonance when
the forcing frequency coincides with the natural frequency.
This wavelength does not match with the wavelength of
the dispersion relation obtained from linear theory around
a vertical state. Hence, from the above observations, the
properties of evanescent waves are of a nonlinear type.

IV. LOCALIZED FLAMING STATES

Due to the space reflection invariance ξ → −ξ , both kinks
connecting 0-2π and 2π -0 exist. The last state is usually
termed “antikink.” Both states correspond to a front solution
connecting two symmetric states. The interaction between spa-
tially monotone fronts in one-dimensional dynamical systems
is attractive [18,19], i.e., the fronts attract and eventually an-
nihilate. This scenario changes when fronts exhibit stationary
spatial damped oscillations, the front interaction decays at
large distance, and it alternates between attractive and repul-
sive [19]. Therefore, under these conditions, the system under
study shows a family of localized structures characterized
by having a collapsed snaking bifurcation diagram [19,20].
Namely, in the parameter region that corresponds to the
coexistence of localized states, one can clearly see that
localized states characterized with a shorter width occur in a
wider range of parameters; in contrast, the localized structures
of considerable length require precise parameter fine-tuning.
In the case of fronts connecting two standing waves (not
evanescent), the interaction does not decay quickly with
distance, alternating between attractive and repulsive modes.
Hence, a family of localized structures with a homoclinic
snaking bifurcation diagram is expected [21]. At variance with
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FIG. 4. Localized flaming states in a vertically driven chain of
coupled pendula obtained from numerical simulation of Eq. (2) with
the same parameters as in Fig. 2. (a) Schematic representation of
a bound state composed of a flaming 2π kink and a 2π antikink.
Profile at a given time (b) and spatiotemporal temporal evolution (c)
of a localized flaming structure. (d) Phase space of the flaming 2π

kink position {�,�̇} and their stationary localized flaming states,
respectively.

the previous description, localized structures obtained from
kink interaction coexist simultaneously.

In our case of flaming 2π kinks, the interaction is governed
by evanescent waves. Figure 4 shows a localized structured
composed of a flaming 2π kink and a flaming 2π antikink
observed in a vertically driven chain of coupled pendula.
Monitoring periodically the flaming 2π kink with forcing
frequency ω (extended Poincaré section), the flaming 2π kinks
are motionless. Indeed, in the extended Poincaré section, the
flaming 2π kinks are stationary and characterized with spatial
damping oscillations [similar to that shown in Fig. 2(b)],
that is, in the extended Poincaré section φ(x → ±∞) →
φ0e

∓λx sin( 2πx
σ

). Hence, it is natural to expect that the inter-
action between the kinks will be dominated by contributions
from the oscillation tails. To prove this, let us consider a pair
of a kink and an antikink, located a considerable distance from
each other. Let � be the distance between the positions of
each kink [see Fig. 4(b)]. Using the general theory of kink
interaction [19] and assuming a temporal scale separation, for

mx
1
0

-1

my

mz

z0 100

z0 100

t

0

0 0.351-0.348

π
ω10 

z0 100

z0 100

mx

my

mz

z0 100

z0 100

z0 100

mx

my

mz

z0 100

z0 100

z0 100

mz

z0 100

t

0

0 0.301-0.295

π
ω10 mz

z0 100

t

0

0 0.252-0.256

π
ω10 mz

(b)
1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

z0 100

t

0

0 1-1

π
ω10 mx

z0 100

t

0

0 1-0.99

π
ω10 mx

z0 100

t

0

0 1-1

π
ω10 mx

z0 100

t

0

0 1-1

π
ω10 my

z0 100

t

0

0 1-1

π
ω10 my

z0 100

t

0

0 1-1

π
ω10 my

zy

x

h(t)(a)

FIG. 5. Flaming localized states in a magnetic wire forced with
a transversal oscillatory magnetic field. (a) Arrow representation
of a bound state composed of a flaming 2π kink and a flaming
2π antikink at a given time. (b) Cartesian components of the
magnetization for three particlelike states with different widths. For
every magnetization component, the magnetization profile is shown
above the corresponding spatiotemporal diagram. The horizontal line
in the diagram shows the instant when the profiles were obtained. For
this figure, we used the same parameters as in Fig. 1.

systems with inertia upon the extended Poincaré section, the
dynamics between the kink could be described by

�̈ + μ�̇ = −a�e∓λ� sin

(
2π�

σ
+ ϕo

)
, (3)

where the phenomenological coefficients {a,ϕo,�} are nu-
merically computed. The dynamics of the kink interaction
satisfies a Newton-type equation with a force that decays
exponentially with distance and alternates between positive
and negative values. Hence, the system has a family of
steady states of the form �n = (πn − ϕo)/σ for large enough
n = {1,2, . . . }, which alternate between node and saddle
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equilibria. Figure 4(d) illustrates in its lower panels three
stable localized structures with different sizes. To confirm
the dynamics predicted by the previous phenomenological
model, Eq. (3), we have reconstructed the phase space for
the flaming kink interaction by numerically measuring the
evolution of the position �(t) and the rate of change �̇(t)
of a pair of kinks. Figure 4(d) shows the phase space of the
flaming 2π kink position and its stationary localized flaming
states, respectively. This phase space presents a quite good
agreement with the phenomenological model Eq. (3). Then
the results extracted from the extended Poincaré section are
consistent.

We can infer that the interaction between flaming kinks
is mediated by the evanescent waves, which permits the
generation of bound states (cf. Fig. 4). To verify the
robustness of this property, we have conducted numerical
simulations of magnetic wire forced with a transversal
oscillatory magnetic field. Figure 5 shows three of the flaming
localized states obtained for the same parameters used in
Fig. 1. Those figures were obtained using the following type
of initial condition: m = cos[φk(z − zk) + φak(z − zak)]ex +
sin[φk(z − zk) + φak(z − zak)]ey , where {φk(z − zak),φak(z −
zak)} are, respectively, the flaming 2π kink and the flaming
2π antikink solution of sine-Gordon, and the coordinates
{zk,zak} stand for the positions of the flaming kinks. These
numerical simulations show that the family of localized states
formed by the flaming kinks are a common phenomenon of
parametric systems that exhibit kinks. Note that for small
bound states there is a standing wave connecting the kink
positions [see Fig. 5(c)]. However, as the width of the flaming
localized states becomes larger, a standing wave is observed
in the center only, while propagative waves are observed
near kink positions. This structure is a direct consequence
of the evanescent nature of the waves emitted by the
flaming kinks.

V. CONCLUSIONS AND REMARKS

We have studied dissipative kinks with an oscillatory cloak
and a family of flaming localized states that connect uniform
symmetrical states in a magnetic wire forced with a transversal
oscillatory magnetic field and in a parametrically driven
damped pendula chain. We have termed these particlelike
solutions “flaming kinks.” The oscillatory cloak is composed
of evanescent waves from the kink position and is generated
by a resonant mechanism between the frequency of parametric
forcing and the natural frequency of the extended oscillator.
These evanescent waves mediate the kink interaction and
generate a family of localized states. Using an extended
Poincaré section and numerical simulations, we have inferred
the flaming kink interaction. Numerical simulations of a
magnetic wire forced with a transversal oscillatory magnetic
field and a parametrically driven damped pendula chain show
quite fair agreement with our findings.

We have characterized the parameter space for a parametri-
cally driven damped pendula chain where the flaming 2π kinks
are observed. However, elucidating the mechanisms by which
these flaming 2π kinks disappear is in progress. Localized
particles in two dimensions with evanescent waves have been
observed in droplets on a vertically driven fluid [22]. The
dynamics of these two-dimensional particles is similar to those
seen in the flaming kinks. Study in this direction is in progress.
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