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The influence of potential asymmetries on stochastic resonance (SR) subject to both multiplicative and additive
noise is studied by using two-state theory, where three types of asymmetries are introduced in double-well potential
by varying the depth, the width, and both the depth and the width of the left well alone. The characteristics of SR
in the asymmetric cases are different from symmetric ones, where asymmetry has a strong influence on output
signal-to-noise ratio (SNR) and optimal noise intensity. Even optimal noise intensity is also associated with the
steepness of the potential-barrier wall, which is generally ignored. Moreover, the largest SNR in asymmetric
SR is found to be relatively larger than the symmetric one, which also closely depends on noise intensity ratio.
In addition, a moderate cross-correlation intensity between two noises is good for improving the output SNR.
More interestingly, a double SR phenomenon is observed in certain cases for two correlated noises, whereas it
disappears for two independent noises. The above clues are helpful in achieving weak signal detection under
heavy background noise.
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I. INTRODUCTION

Stochastic resonance (SR) was initially coined to explain
the periodic recurrences of Earth’s ice ages [1,2]. Since SR is a
counterintuitive behavior that weak input information is able to
be amplified and optimized by the addition of moderate noise
[3], such a behavior has attracted considerable attention from
theoretical research [4,5] to engineering applications [6–9].
Gammaitoni et al. [10] also has shown the large number of SR
applications in science and technology to enhance and detect
weak signals, ranging from paleoclimatology to electronic
circuits, lasers, and chemical systems to the connection with
some situations of biological interest.

Up to now, there are many theoretical studies on SR in
conventional bistable systems [11–13]. On the one hand, since
many physical systems need to consider various noise sources,
some studies pay attention to the symmetric bistable SR driven
by different noise sources. For example, McNamara, Wiesen-
feld [14], and Roy [15] derived the output signal-to-noise ratio
(SNR) to quantify SR in a symmetric bistable system with
additive Gaussian noise by using two-state theory, where the
SNR undergoes a resonancelike curve as a function of the noise
intensity. Duan et al. not only studied the output SNR gain of
a parallel array of SR [16] but also investigated the vibrational
resonance effect under the action of additive noise [17]. It
is found that the SNR gain in a parallel array exhibits two
maxima under different internal noise intensity or sinusoidal
vibration amplitude. Moreover, the vibrational resonance
effect is discovered in the parallel array. These results suggest
that vibrational devices characterize the potential applications
in array signal processing. Galdi et al. [18] evaluated the
performance of a signal detector based on symmetric bistable
SR driven by additive Gaussian white noise, which shows that
the SR detector is superior to the linear one for extracting weak
time-harmonic signals overwhelmed in Gaussian white noise.
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Later, Barzykin and Seki [19] observed SR phenomenon in a
linear system induced by multiplicative noise with exponential
correlation rather than additive noise. It is found that a maxi-
mum of SNR is observed as a function of both the noise level
and autocorrelation time. However, such a behavior disappears
as the correlation increases. Li and Han [20] also discovered
the SR phenomenon in a linear system subject to multiplicative
dichotomous noise, whereas it disappears for additive Gaus-
sian white noise [21]. Even Berdichevsky and Gitterman [22]
studied the effect of both multiplicative and additive noise on
SR in an overdamped linear system. The results show that
the SR is absent for Gaussian white noise, while it occurs
for asymmetric dichotomous noise and moreover strongly de-
pends on the cross-correlation intensity between multiplicative
and additive noise. Jia et al. [23,24] also examined the SR in a
symmetric bistable system jointly subject to multiplicative and
additive noise. It is observed that for the two noises without
correlation the SNR is independent of the initial condition
of the system, while for two correlated noises the SNR is
not only dependent on the cross-correlation intensity but also
on the initial condition. Guo et al. [25] further explored SR
behavior in a symmetrically piecewise bistable system excited
by both multiplicative and additive noise. It is discovered that
the SNR vs noise intensity curve has a single peak, indicating a
traditional SR phenomenon. Moreover, the height of the peak
increases as the multiplicative noise intensity increases.

Obviously, the above-mentioned literature mainly focuses
on the influence of different noise sources on symmet-
ric bistable SR, and some interesting phenomena are also
discovered for different noise sources. On the other hand,
however, since the symmetry in real physical or natural
systems is difficult to preserve, asymmetry has been introduced
to fluxgate magnetometers and superconducting quantum
interference devices (SQUIDs) to detect weak signals [26,27].
Originally, Wio and Bouzat [28] extended the two-state theory
to the bistable systems with asymmetric potentials induced by
additive noise, where the transition rates between two wells
are evaluated as the inverse of the mean first passage time
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(MFPT) through the widely used Kramers approximation,
and therefore an analytic expression of output SNR is able
to be obtained under the adiabatic approximation. The result
shows that the SNR increases as the symmetry of the potential
increases. Afterwards, Jin et al. [29] and Li [30] investigated
the SR phenomenon in an asymmetric bistable system subject
to additive noise, where the potential is composed of a
symmetric bistable potential plus an asymmetric term. For
an asymmetric bistable potential, the asymmetry can weaken
the SR driven by additive noise, which indicates that the
symmetric SR under the action of additive noise is superior to
asymmetric one. Bouzat and Wio [31] further studied the effect
of potential symmetry on SR in a three-field reaction-diffusion
system subject to additive Gaussian white noise, where the
asymmetry also weakens the SR behavior. Moreover, Arathi
and Rajasekar [32] also discovered the characteristics of
SR in an asymmetric Duffing oscillator under the action
of additive noise by using numerical analysis. In addition,
Li et al. [33] analyzed the influence of asymmetry on the
noise enhanced stability, where the asymmetric potential is
obtained by tilting the symmetric bistable potential. Finally,
Borromeo and Marchesoni [34] explored the characteristics
of SR with a deformable asymmetric double-well potential
in their optomechanical read-out device under the action of
additive noise, where a spectral signature of the double SR
effect exists.

Though there are many studies on SR in asymmetric
bistable systems by tilting an otherwise symmetric double-well
potential, i.e., by adding a constant bias which changes both
depth and location of the two wells, rather than adding
a typically force excitation including a periodic tilt, the
influences of potential asymmetries have not been explored
completely, especially the difference between well depth and
well width under the action of noise and a harmonic excitation.
Moreover, most of studies on asymmetric SR focus on only one
noise source. In practice, it is inevitable to encounter various
noise sources, especially the synchronous action of both
additive and multiplicative noise, e.g., the external and internal
noise in electronic devices. There even exists a correlation
between two noises under certain situations. Therefore, the
present paper attempts to study the influence of certain forms
of potential asymmetries on bistable SR under the synchronous
action of both a harmonic excitation and multiplicative and
additive noise with or without the correlation between them.
For this purpose, the bistable potentials with three different
types of asymmetries are initially constructed in Sec. II,
which include a well-depth asymmetry, a well-width one,
and a both well-depth and well-width one, respectively. Then
Sec. III explores the influence of asymmetries on SR under the
simultaneous action of both additive and multiplicative noise
with and without correlation between the two noises, where
the analytic expression of output SNR is derived to evaluate
the influences of potential asymmetries and cross-correlation
intensity, etc., on SR. Finally, a discussion is given in Sec. IV
and conclusions are drawn in Sec. V.

II. ASYMMETRIC BISTABLE POTENTIALS

Though asymmetric SR has been studied by tilting an
otherwise symmetric double-well potential, the influence of

well-depth and well-width asymmetries alone on output SNR
has not been explored. In order to explore the difference
between them, the conventional bistable potential is modified
as a new potential with three different types of asymmetries,
which is described as

Ui(x) =
{−ax2/2 + bx4/4 x � 0,

−aAix
2/2 + bBix

4/4 x < 0,
(1)

where i = 1,2,3, A1 = B1 = α, A2 = 1/α2, B2 = 1/α4, A3 =
1, B3 = 1/α2, and a,b,α > 0. α is named as an asymmetric
ratio and stands for the degree of asymmetry, where a larger
α means a higher degree of asymmetry for a certain range
of α. It can be noticed from Eq. (1) that the shape of the
right well located at x > 0 is unaffected by α in all three
potentials. In potential U1(x), α just controls the depth of the
left well, i.e., αa2/(4b). Two stable and one unstable states are
at x± = ±√

a/b and xu = 0, respectively. Obviously, the well
width of potential U1(x) remains as 2

√
a/b, which no longer

depends on α. Therefore, potential U1(x) only reflects the
influence of asymmetric well depth on bistable SR. In potential
U2(x), however, the depths of the two wells remain as a2/(4b),
whereas two stable states locate at x− = −α

√
a/b and x+ =√

a/b, respectively. Therefore, potential U2(x) attempts to
explore the influence of well-width asymmetry on SR alone.
Finally, in potential U3(x) both the width and the depth of
the left well depend on α. It is to investigate the influence
of both well-depth and well-width asymmetry on SR. The
above-mentioned three different potentials are easily achieved
in experiments. For example, they can be obtained by adjusting
the position and strength of left-side magnet in the mechanical
model of the harmonic oscillators in Ref. [35]. In submicron
biwires, Zimmerman et al. [36] varied the depth of one well in
a bistable potential by controlling an external magnetic field.
Therefore, it is important to explore the influence of the three
asymmetries on SR.

III. THE INFLUENCE OF POTENTIAL ASYMMETRIES

Unlike most studies on asymmetric SR just considering one
noise source, multiplicative and additive noise widely used
to simulate internal and external noise of nonlinear devices
is considered as a random force in this section to explore
the influence of three asymmetries on output SNR under the
simultaneous action of the two noise sources and a harmonic
excitation. First, assuming that there is no correlation between
the two noises, the influence of potential asymmetries on
SR is evaluated by calculating output SNR. However, since
there may exist a certain correlation between them in practice,
the influence of potential asymmetries on SR subject to two
correlated noises is also further investigated.

A. The influence of potential asymmetries on SR subject to two
independent noises

In the presence of both harmonic excitation and multiplica-
tive and additive noise, the overdamped motion of a Brownian
particle in three types of asymmetric potentials is considered,
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which can be described as a Langevin equation,

dx(t)/dt = −U ′
i (x) + A cos(�t) + x(t)ξ (t) + η(t), (2)

where U ′
i (x) = ∂Ui(x)/∂x and ξ (t) and η(t) denote multi-

plicative and additive noise and satisfy the following statistical
properties, respectively:

〈ξ (t)〉 = 0,〈ξ (t)ξ (t + τ )〉 = 2Dδ(τ ),
(3)

〈η(t)〉 = 0,〈η(t)η(t + τ )〉 = 2εδ(τ ),

where D and ε are the intensity of both multiplicative and
additive noise, respectively, and A and � are the amplitude
and angular frequency of the periodic force, i.e., harmonic
excitation, respectively. In addition, let R = D/ε represent the
noise intensity ratio between the two noises. In this section, we
suppose that additive noise is independent of the multiplicative
noise, which reads as

〈ξ (t)η(t + τ )〉 = 〈η(t)ξ (t + τ )〉 = 0. (4)

According to the statistically equivalent description for the
probability density function (PDF) ρ(x,t), the Fokker-Planck
(FPK) equation corresponding to the Langevin equation in

Eq. (2) with Eqs. (3) and (4) can be written as

∂ρ(x,t)

∂t
= ∂

∂x
[U ′

i (x) − Dx − A cos(�t)]ρ(x,t)

+ ε
∂2

∂x2
(Rx2 + 1)ρ(x,t). (5)

On the one hand, in the presence of the periodic force
A cos(�t), the potential Ui(x) is modulated by the periodic
force. As a result, the potential is time periodic. Assuming
that the amplitude of the periodic force is small enough, i.e.,
A � 1, in the absence of noise it is insufficient to induce a
Brownian particle to hop from one well to the other. Therefore,
the stable and unstable states of this system are considered to
be invariable. On the other hand, assuming that the variation of
the periodic force is slow enough, i.e., � � 1 or the adiabatic
limit, there is enough time to make the system reach local
equilibrium in the period of 1/�. Then, quasi-steady-state
PDF ρs(x,t) corresponding to Eq. (5) is written as

ρs(x,t) = N |Dx2 + ε|−1/2 exp

[
−φ(x,t)

D

]
, (6)

where N is a normalization constant and φ(x,t) is a generalized
potential given by

φ(x,t) =
{

b
2x2 − (

a
2 + b

2R

)
ln |Rx2 + 1| − A

√
R tan−1(

√
Rx) cos(�t) x � 0,

bBi

2 x2 − (
aAi

2 + bBi

2R

)
ln |Rx2 + 1| − A

√
R tan−1(

√
Rx) cos(�t) x < 0.

(7)

According to two-state theory in Ref. [28], the above
bistable case can be simplified to a two-state system with
the occupation probabilities n±(t) which satisfy the condition
n+(t) + n−(t) = 1. The master equation governing the evolu-
tion of n+(t), i.e., 1 − n−(t), is

dn+(t)

dt
= −dn−(t)

dt
= W−(t)n−(t) − W+(t)n+(t)

= W−(t) − [W−(t) + W+(t)]n+(t), (8)

where W±(t) is the transition rates out of stable states x± and
it is time periodic since the external force is time periodic. The
transition rates can be expanded by using Taylor series under
small parameter conditions as

W+(t) = μ1 − β1A cos(�t) + o(A),
(9)

W−(t) = μ2 + β2A cos(�t) + o(A),

where parameters μ1,2 and β1,2 depend on the detailed
potential structures of the asymmetric bistable system, such
as well depth, well width, barrier height, and wall steepness,
i.e., the steepness of potential wall. According to Ref. [15,28],
this analytic expression of output SNR is able to be generalized
to include the asymmetric cases where μ1 �= μ2 and β1 �= β2.
The output SNR can be obtained by both integrating Eq. (8) and
then calculating the corresponding autocorrelation function,

which is expressed as

SNR = πA2(μ1β2 + μ2β1)2

4μ1μ2(μ1 + μ2)
, (10)

where parameters μ1,2 and β1,2 are able to be analytically
calculated as

μ1 = W+(t)|s(t)=0, β1 = −dW+(t)

ds(t)
|s(t)=0,

(11)

μ2 = W−(t)|s(t)=0, β2 = dW−(t)

ds(t)
|s(t)=0,

with s(t)=A cos(�t).
In order to calculate the transition rates W±(t) out of the

states x±, the MFPT τ± of the resonance output x(t) to reach
the states x∓ with initial conditions x(0) = x± is able to be
first calculated, which is given by the Kramers time,

τ± = 2π |U ′′
i (x±)U ′′

i (xu)|−1/2 exp

[
φ(xu,t) − φ(x±,t)

D

]
,

(12)

where the notation U ′′
i (x) denotes the second derivative of

Ui(x) with respect to x. Then the transition rates W±(t) in this
bistable system with three types of asymmetric potentials are
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obtained:

W+(t) = a√
2π

exp

{
− 1

D

[
− a

2
+

(
a

2
+ b

2R

)
ln

∣∣∣∣aR

b
+ 1

∣∣∣∣ + A
√

R tan−1

(√
aR

b

)
cos(�t)

]}
,

(13)

W−(t) = a
√

Ai√
2π

exp

{
− 1

D

[
− aAi

2
+

(
aAi

2
+ bBi

2R

)
ln

∣∣∣∣aAiR

bBi

+ 1

∣∣∣∣ − A
√

R tan−1

(√
aAiR

bBi

)
cos(�t)

]}
.

Therefore, according to Eq. (10) the analytic expression of output SNR in an asymmetric bistable system subject to two
independent noises can be derived as

SNR = πμ1μ2A
2
[
tan−1 √

aR/b + tan−1 √
aAiR/(bBi)

]2

4Dε(μ1 + μ2)
, (14)

where parameters μ1,2 are calculated by virtue of Eq. (11) as follows:

μ1 = W+|s(t)=0 = a√
2π

exp

{
− 1

D

[
− a

2
+

(
a

2
+ b

2R

)
ln

∣∣∣∣aR

b
+ 1

∣∣∣∣
]}

,

(15)

μ2 = W−|s(t)=0 = a
√

Ai√
2π

exp

{
− 1

D

[
− aAi

2
+

(
aAi

2
+ bBi

2R

)
ln

∣∣∣∣aAiR

bBi

+ 1

∣∣∣∣
]}

.

In terms of Eq. (14), the influence of potential asymmetries
on SR subject to two independent noises can be discussed
in detail. For simplicity, the potential parameters are fixed to
a = 1 and b = 0.5 in all numerical analysis, respectively. In
potential U1(x), the influence of only well-depth asymmetry on
output SNR is able to be analyzed, which is shown in Fig. 1.
Figure 1 (a) depicts the output SNR as a function of both
multiplicative noise intensity D and asymmetric ratio α. It is
noticed that for a fixed α the output SNR initially raises and
then drops as D increases, which is the typical characteristic
of SR. Moreover, for a given D output SNR attains a peak
and then declines rapidly as α increases, whereas for a small
enough D it is difficult to induce the occurrence of SR. It
is the reason that the cooperation between small noise and
periodic force cannot also induce the particle to jump across
the potential barrier. Note that all potentials are symmetric
when α = 1. Obviously, it is noticed from Figs. 1(a)–1(c) that
SNR peaks are nearly obtained at α < 1 instead of α = 1 for
different D, ε, and A. Such a behavior suggests that there exists
an optimally asymmetric well depth for the fixed D, ε, or A to
make the output SNR of asymmetric SR larger than symmetric
one. In addition, it can also be seen from Figs. 1(a)–1(c) that the
enhancement capability of SR declines rapidly when α > 1. It
is the reason that both the left wall of the potential barrier and
the left well gradually grow steeper and deeper, respectively,
as α increases, thereby making the interwell transition of the
particle more difficult. Figure 1(d) further illustrates that SNR
peaks initially raise and then decline with the increase of
α, whereas the corresponding optimal noise intensity Dmax

at which the SNR peak is obtained continuously increases.
Afterwards, the influence of both well-depth asymmetry and
additive noise intensity ε on output SNR is also shown in
Figs. 1(b) and 1(e). One can observe that a small ε more easily
excites the SR, whereas a large one will weaken SR. Similar
to multiplicative noise intensity D, the SNR peaks in Fig. 1(e)
also exhibit a nonmonotonic behavior with respect to α and
optimal additive noise intensity εmax enlarges monotonously
with the continuous increase in α. Since the barrier height

of the left well and left-wall steepness of the potential barrier
increase as α varies from small to large, sufficiently large noise
intensity (Dmax or εmax) is required for the particle to move
from the left well to the right one. Finally, Fig. 1(c) exhibits
the variation of SNR versus both A and α. Without a doubt, a
larger A can excite higher SNR for different α. Similarly,
the output SNR still behaves as a nonmonotonic function
of asymmetric ratio α in Fig. 1(c). For different degrees of
well-depth asymmetry, the amplitude A of the periodic force
always plays a positive role in the SNR increase. Figure 1(f)
depicts the influence of noise intensity ratio R on output SNR.
One can see that for a small additive noise intensity ε = 0.01
SNR peaks begin to increase and then decline as the increase
in R, whereas for ε = 0.5 SNR peaks decay monotonously.
It indicates that output SNR ont only depends on the noise
intensity ratio, but also strongly on additive noise intensity.
Furthermore, αmax at which SNR peaks are attained also rises
monotonously as R increases, which is consistent with the
results in Figs. 1(d) and 1(e). Comparing Fig. 1(a) with 1(b), it
is found that small additive noise easily induces the occurrence
of SR, but this SR system with well-depth asymmetry is more
likely to suppress large multiplicative noise when α < 1. Such
a behavior is important for SR to achieve weak signal detection.

Figure 2 depicts the influence of well-width asymmetry
on output SNR. Similar to the well-depth asymmetry, it is
apparent that there still exists an optimal asymmetric ratio α for
a given D, ε, or A to make the output SNR of asymmetric SR
larger than symmetric one. Unlike the influence of well-depth
asymmetry on output SNR, however, Figs. 2(a)–2(c) show
that the output SNR of SR with well-width asymmetry has
a slower decay as α increases. Moreover, it is noted that the
SNR peaks in Figs. 2(a)–2(c) are nearly obtained at α > 1
rather than α < 1 in Figs. 1(a)–1(c). The above results suggest
that the increment in well-width asymmetry has a weak effect
on output SNR and more easily induces the occurrence of
SR than well-depth one under the same situation. To some
extent, well-width asymmetry is more likely to increase the
output SNR. For example, the maxima of SNR in Figs. 2(b)
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FIG. 1. SNR for well-depth asymmetry subject to two independent noises as a function of (a) both multiplicative noise intensity D and
asymmetric ratio α, where A = 0.02 and ε = 0.01; (b) both additive noise intensity ε and α, where D = 0.01 and A = 0.02; (c) both periodic
force amplitude A and α, where D = 2 and ε = 0.01; (d) D, where A = 0.02 and ε = 0.01; (e) ε, where D = 0.01 and A = 0.02; and (f) α,
where A = 0.02 and ε = 0.01. Note that the color of the curves in the inset is consistent with that in figure (f).

and 2(e) are relatively larger than those in Figs. 1(b) and 1(e).
In addition, it is interesting in Figs. 2(d) and 2(e) that the SNR
peaks present a nonmonotonic characteristic with respect to α,
whereas the corresponding Dmax and εmax decrease continually
as α increases. The same phenomenon also occurs in Fig. 2(f),
where αmax gradually decreases as R increases. Though the left
well becomes wider as asymmetric ratio α increases, the left
wall of potential barrier grows smoother, thereby making the
particle hop the potential barrier more easily. Therefore, lower
noise intensity is required for pushing the particle from the left
well to the right one. In Fig. 2(f), since αmax becomes smaller
and smaller as the noise intensity ratio R increases, thereby
producing a steeper wall of the potential barrier, a larger noise
intensity ratio R is required for particle hopping from one well

to the other. However, the steepness of potential-barrier wall is
always ignored in most literature. This observation is helpful
to design and construct a better potential for developing the
potential of SR in weak signal detection. Finally, there is no
doubt that the increase of the amplitude A still has a positive
effect on output SNR under well-width asymmetry as shown
in Fig. 2(c).

In this case of Fig. 3, width and depth of the left well are
all controlled by asymmetric ratio α. For a fixed multiplicative
or additive noise intensity in Fig. 3(a) or 3(b), the output SNR
presents a nonmonotonic function versus α and its peak is
nearly attained at α < 1, which is similar to the influence
of only well-depth asymmetry on output SNR. Unlike the
influence of well-depth or well-width asymmetry on output
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FIG. 2. SNR for well-width asymmetry subject to two independent noises as a function of (a) both multiplicative noise intensity D and
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SNR alone, however, Dmax and εmax in Figs. 3(c) and 3(d)
start to be nearly invariable as α increases, but Dmax and εmax

enlarge as α further increases. It is the reason that for a small
α the influence of well-depth asymmetry on both Dmax and
εmax is merely counteracted by that of well-width asymmetry
and therefore they are nearly invariable, whereas for a slightly
large α the influence of well-depth asymmetry is dominant and
thereby results in the increase of Dmax and εmax similar to that
in Fig. 1. By the comparison among the influences of three
asymmetries on output SNR, it is discovered that output SNR
is sensitive to the variation of well-depth asymmetry, while
it is more robust to the variation of well-width asymmetry.
Therefore, a precise SR control can be achieved by adjusting
well-width asymmetry. In the three cases, the amplitude A of
periodic force always plays a positive role in improving output
SNR. Moreover, there exist optimal α and R to make output

SNR largest. Particularly, output SNR not only depends on R

but also is associated closely with multiplicative and additive
noise intensity.

B. The influence of potential asymmetries on SR subject to two
correlated noises

In practice, it is possible that there exists a certain
correlation between multiplicative and additive noise. In this
section, therefore, the influence of three types of asymmetries
on SR driven by two correlated noises is further investigated by
virtue of two-state theory. Hence, Eq. (4) should be rewritten as

〈ξ (t)η(t + τ )〉 = 〈η(t)ξ (t + τ )〉 = 2λ
√

Dεδ(τ ), (16)

where λ is the cross-correlation intensity between two noises
and obeys |λ| � 1. The FPK equation corresponding to Eq. (2)
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with Eqs. (3) and (16) can be described as

∂ρ(x,t)

∂t
= ∂

∂x
[U ′(x) − Dx − λ

√
Dε − A cos(�t)]ρ(x,t) + ε

∂2

∂x2
(Rx2 + 2λ

√
Rx + 1)ρ(x,t). (17)

Similarly, we suppose that the amplitude and frequency of the periodic force are small enough, i.e., A,� � 1, which can
make the bistable system reach local equilibrium in the periodic of 1/�. Hence, the quasi-steady-state PDF ρs(x,t) of the system
subject to two correlated noises can be written as

ρs(x,t) = N |Dx2 + 2λ
√

Dεx + ε|−1/2 exp

[
−φ(x,t)

D

]
, (18)

where the generalized potential function φ(x,t) can be expressed as

φ(x,|λ| < 1,t) =
⎧⎨
⎩

b
2x2 − 2bλ√

R
x − κ1

[
b(1−4λ2)

2R
+ a

2

] + κ2
[
a + b(3−4λ2)

R
− A

√
R

λ
cos(�t)

]
x � 0,

bBi

2 x2 − 2bBiλ√
R

x − κ1
[

bBi (1−4λ2)
2R

+ aAi

2

] + κ2
[
aAi + bBi (3−4λ2)

R
− A

√
R

λ
cos(�t)

]
x < 0,

(19)

and

φ(x,λ = ±1,t) =
{

b
2x2 ∓ 2b√

R
x − 5b

2R
+ 1√

Rx±1

[ ± ( − a + b
R

) + A
√

R cos(�t)
] − κ3

(
a − 3b

R

)
x � 0,

bBi

2 x2 ∓ 2bBi√
R

x − 5bBi

2R
+ 1√

Rx±1

[ ± ( − aAi + bBi

R

) + A
√

R cos(�t)
] − κ3

(
aAi − 3bBi

R

)
x < 0,

(20)

with

κ1 = ln |Rx2 + 2λ
√

Rx + 1|, κ2 = λ√
1 − λ2

tan−1

√
Rx + λ√
1 − λ2

, κ3 = ln |
√

Rx ± 1|. (21)

Note that the generalized potential should satisfy the continuity of function, but the constant terms in Eqs. (19) and (20) are
not given out. According two-state theory, the MFPT τ± of the resonance output x(t) to reach the states x∓ with initial conditions
x(0) = x± is able to be first calculated by the Kramers time and the transition rates W±(t) can be further obtained,

W+ = a√
2π

exp

(
− 1

D

{
− a

2
+ 2λ

√
ab

R
+ �1

[
b(1 − 4λ2)

2R
+ a

2

]
− �1

[
a + b(3 − 4λ2)

R
− A

√
R

λ
cos(�t)

]})
,

W− = a
√

Ai√
2π

exp

(
− 1

D

{
− aAi

2
+ 2λ

√
abAiBi

R
+ �2

[
bBi(1 − 4λ2)

2R
+ aAi

2

]

− �2

[
aAi + bBi(3 − 4λ2)

R
− A

√
R

λ
cos(�t)

]})
, (22)

for |λ| < 1 and

W+ = a√
2π

exp

(
− 1

D

{
− a

2
± 2

√
ab

R
+

(
a − 3b

R

)
ln

∣∣∣∣
√

aR

b
± 1

∣∣∣∣ + �3[−a + b

R
± A

√
R cos(�t)]

})

W− = a
√

Ai√
2π

exp

(
− 1

D

{
− aAi

2
∓ 2

√
abAiBi

R
+

(
aAi − 3bBi

R

)
ln

∣∣∣∣
√

aAiR

bBi

∓ 1

∣∣∣∣
+ �3

[
− aAi + bBi

R
± A

√
R cos(�t)

]})
(23)

for λ = ±1, where parameters �1,2,3 and �1,2,3 are given as follows:

�1 = ln

∣∣∣∣aR

b
+ 2λ

√
aR

b
+ 1

∣∣∣∣, �1 = λ√
1 − λ2

(
tan−1 λ + √

aR/b√
1 − λ2

− tan−1 λ√
1 − λ2

)
,

�2 = ln

∣∣∣∣aAiR

bBi

− 2λ

√
aAiR

bBi

+ 1

∣∣∣∣, �2 = λ√
1 − λ2

(
tan−1 λ − √

aAiR/(bBi)√
1 − λ2

− tan−1 λ√
1 − λ2

)
, (24)

�3 = 1

1 ± √
b/(aR)

, �3 = 1

1 ∓ √
bBi/(aAiR)

.

Therefore, in terms of Eq. (10) the output SNR in bistable system with all three types of asymmetric potentials and two
correlated noises can be calculated as

SNR = πA2(μ1β2 + μ2β1)2

4μ1μ2(μ1 + μ2)
=

πμ1μ2A
2
[

tan−1 λ+√
aR/b√

1−λ2 − tan−1 λ−√
aAiR/(bBi )√

1−λ2

]2

4Dε(μ1 + μ2)(1 − λ2)
(25)
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FIG. 3. SNR for both well-depth and well-width asymmetry subject to two independent noises as a function of (a) both multiplicative noise
intensity D and asymmetric ratio α, (b) both additive noise intensity ε and α, (c) D, and (d) ε. Note that other parameters are the same as in
Fig. 1.

for |λ| < 1, where parameters μ1,2 are given as

μ1 = a√
2π

exp

(
− 1

D

{
− a

2
+ 2λ

√
ab

R
+

[
a

2
+ b(1 − 4λ2)

2R

]
ln

∣∣∣∣aR

b
+ 2λ

√
aR

b
+ 1

∣∣∣∣
− λ√

1 − λ2

[
a + b(3 − 4λ2)

R

](
tan−1 λ + √

aR/b√
1 − λ2

− tan−1 λ√
1 − λ2

)})

μ2 = a
√

Ai√
2π

exp

(
− 1

D

{
− aAi

2
− 2λ

√
abAiBi

R
+

[
aAi

2
+ bBi(1 − 4λ2)

2R

]
ln

∣∣∣∣aAiR

bBi

− 2λ

√
aAiR

bBi

+ 1

∣∣∣∣
− λ√

1 − λ2

[
aAi + bBi(3 − 4λ2)

R

][
tan−1 λ − √

aAiR/(bBi)√
1 − λ2

− tan−1 λ√
1 − λ2

]})
(26)

and for λ = ±1

SNR = πμ1μ2A
2{1/[1 ± √

b/(aR)] − 1/[1 ∓ √
bBi/(aAiR)]}2

4Dε(μ1 + μ2)
, (27)

with

μ1 = a√
2π

exp

{
− 1

D

[
−a

2
± 2

√
ab

R
+

(
a − 3b

R

)
ln

∣∣∣∣
√

aR

b
± 1

∣∣∣∣ + −a + b/R

1 ± √
b/(aR)

]}
,

(28)

μ2 = a
√

Ai√
2π

exp

{
− 1

D

[
−aAi

2
∓ 2

√
abAiBi

R
+

(
aAi − 3bBi

R

)
ln

∣∣∣∣
√

aAiR

bBi

∓ 1

∣∣∣∣ + −aAi + bBi/R

1 ∓ √
bBi/(aAiR)

]}
.

Therefore, the influence of potential asymmetries on SR
subject to two correlated noises is able to be explored by virtue

of Eqs. (25) and (27). Our goals in this section mainly focus
on the influence of both asymmetries and cross-correlation
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FIG. 4. SNR for well-depth asymmetry subject to two correlated noises as a function of (a) cross-correlation intensity λ, where ε = 0.01
and D = 1.2; (b) multiplicative noise intensity D, where ε = 0.01 and α = 0.5; (c) additive noise intensity ε, where D = 0.1 and α = 0.5;
and (d) asymmetric ratio α, where λ = 0.6 and ε = 0.01. Note that the amplitude of periodic force always remains as A = 0.02.

intensity between two noises on output SNR. Figures 4(a)–4(d)
show output SNR as a function of cross-correlation intensity
λ, multiplicative noise intensity D, additive noise intensity
ε, and asymmetric ratio α, respectively. In Fig. 4(a), for a
given α output SNR presents a nonmonotonic function with
respect to λ. Furthermore, λmax corresponding to SNR peaks
shifts from the positive correlation to negative one as the
increment in α. It is vital for weak signal detection that SNR
peaks at positive correlation are always larger than ones at
negative correlation. It is noticed that for a fixed λ output
SNR is not only a nonmonotonic function of either D or
ε, but also SNR peaks for D initially start to decline and
then increase with λ varying from negative to positive, as
shown in Fig. 4(b), whereas SNR peaks for ε first raise and
then decline in Fig. 4(c). The above results demonstrate that
the existence of an optimal cross-correlation intensity λ can
make the output SNR largest. In well-depth asymmetry, it
is interesting that the corresponding Dmax and εmax initially
decrease and then increase as the increment in λ in Figs. 4(b)
and 4(c), which is completely distinct from that under the
action of two independent noises. In addition, it can be seen
from Figs. 4(a)–4(c) that the highest SNR peaks are always
obtained at λ �= 0. It indicates that the certain cross-correlation
intensity between multiplicative and additive noise is able to
improve the output SNR and is further of benefit for weak
signal detection. It is possible that the correlation between
the two noises causes the system to remember its initial
position and therefore the output SNR depends on the initial
conditions x(0) = x±. Finally, for different noise intensity

ratio R the output SNR versus α also has a nonmonotonic
trend in Fig. 4(d), which is similar to the SR behavior induced
by two independent noises in Fig. 1(f). However, αmax at which
SNR is maximum gradually increases as R enlarges. Since the
left well becomes deeper and deeper as α increases, a larger
noise intensity ratio is required for inducing particle hopping
from the left well to the right well.

Figure 5 exhibits the influence of well-width asymmetry
on SR under the action of two correlated noises. In Fig. 5(a),
though SNR versus λ still has a nonmonotonic behavior, λmax

corresponding to SNR peaks moves from negative correlation
to positive one as the increment in α, which is completely
different from that in Fig. 4(a). As opposed to Fig. 4(b), for
a given α = 0.5 the largest SNR peak under different λ in
Fig. 5(b) is obtained when the cross-correlation intensity λ is
the negative maximum instead of the positive one. Likewise,
εmax and Dmax for different λ initially decrease and then
increase in Figs. 5(b) and 5(c). Moreover, Fig. 5(d) illustrates
that there exists an optimal R to amplify the output SNR.
Particularly, the double SR phenomenon is also observed from
the inset of Fig. 5(d) for a certain range of noise intensity ratio
R and cross-correlation intensity, where ε = 0.5, λ = 0.9, and
D varying from 0.2 to 0.8 with an increment of 0.2. Obviously,
double SR phenomenon depends not only on noise intensity
ratio R but also strongly on additive noise intensity ε and
cross-correlation intensity λ. In addition, it is exciting that
αmax in Fig. 5(d) continually decreases as R increases, which
is different from the influence of well-depth asymmetry in
Fig. 4(d). It is the reason that a smaller αmax results in a steeper
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FIG. 5. SNR for well-width asymmetry subject to two correlated noises as a function of (a) cross-correlation intensity λ, (b) multiplicative
noise intensity D, (c) additive noise intensity ε, and (d) asymmetric ratio α. Note that other parameters are the same as in Fig. 4.

left wall of the potential barrier and therefore a larger noise
intensity ratio is needed to excite the particle motion from the
left well to the right one.

Finally, Fig. 6 exhibits the influence of both well-depth and
well-width asymmetry on output SNR. One can easily observe
from Fig. 6(a) that output SNR versus cross-correlation
intensity has a nonmonotonic behavior for a given asymmetric
ratio. Moreover, λmax corresponding to SNR peaks moves from
positive correlation to negative one as the increment in α

and SNR peaks also decline gradually. Such a behavior is
similar to that of well-depth asymmetry, while it is opposite
to that of well-width asymmetry. Meanwhile, output SNR
has wider variation range for λ than that of well-depth
asymmetry, which is similar to that of well-width asymmetry.
In Fig. 6(b), it is found that the SNR peaks at λ = ±0.9
are nearly equal, which is different from that under the
action of either well-depth or well-width asymmetry alone.
In addition, SNR peaks in Fig. 6(c) become larger and larger
as λ varies from negative to positive. Though SNR peaks in
Fig. 6(d) have a nonmonotonic phenomenon as R amplifies, the
corresponding αmax is nearly invariable. The above results may
be produced by the simultaneous action of both well-depth and
well-width asymmetries. Therefore, there are both similarities
and differences between them.

In terms of Eq. (27), Figs. 7 and 8 show the influences
of well-depth and well-width asymmetries on output SNR
when cross-correlation intensity λ = ±1, respectively. It is
observed from Fig. 7 that output SNR versus either D or ε

has a double-peak characteristic when λ = 1 for well-depth
or well-width asymmetry, where double resonance peaks are

named as first and second resonance peaks from left to right,
respectively. Moreover, optimal multiplicative noise intensity
D2

max at which the second resonance peak is obtained keeps
invariable in Figs. 7(a) and 7(c) as the increment in α,
even in Figs. 8(a) and 8(c) when λ = −1. However, optimal
noise intensity D1

max at which the first resonance peak is
attained increases for well-depth asymmetry as the increment
in α in Fig. 7(a) and decreases for well-width asymmetry in
Fig. 7(c). More interestingly, SNR versus D transfers from
a double-peak structure to a single-peak one in the inset
of Fig. 8(a) when ε = 0.2 and λ = −1. The first resonance
peak disappears in Fig. 8(c) for well-width asymmetry when
λ = −1. Different from multiplicative noise intensity D, it
is noticed for additive noise intensity ε that optimal additive
noise intensity ε2

max increases gradually as the increment in α,
as shown in Figs. 7(b) and 7(d), whereas ε1

max declines for well-
depth asymmetry and increases for well-width asymmetry as α

increases. However, the double SR phenomenon disappears for
additive noise intensity ε when λ = −1, as shown in Figs. 8(b)
and 8(d). In addition, one can easily discover that the increment
in α can weaken the first resonance peaks, such as in Figs. 7(a)
and 7(c) and Fig. 8(a). Without a doubt, double SR not only
depends on cross-correlation intensity λ and asymmetric ratio
α, but also is associated closely with noise intensity D and ε;
for example, double SR disappears in Fig. 8(a) when ε = 0.2.

IV. DISCUSSION

In Sec. III A, we examine the influence of three types
of asymmetries on output SNR to quantify the SR under
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Fig. 4.
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ε = 0.02, and (b) additive noise intensity ε, where D = 0.02; for well-width asymmetry as a function of (c) multiplicative noise intensity D,
where ε = 0.02, and (d) additive noise intensity ε, where D = 0.1. Note that the amplitude of periodic force always remains as A = 0.02.
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FIG. 8. SNR when cross-correlation intensity λ = −1: for well-depth asymmetry as a function of (a) multiplicative noise intensity D,
where ε = 0.02, and (b) additive noise intensity ε, where D = 0.2; for well-width asymmetry as a function of (c) multiplicative noise intensity
D, where ε = 0.2, and (d) additive noise intensity ε, where D = 0.2. Note that the amplitude of periodic force always remains as A = 0.02
and the color of the curves in the inset is consistent with that in figure (a).

the action of multiplicative and additive noise without cor-
relation between them. Interestingly, the SNR peaks nearly
are obtained at α < 1 for well-depth asymmetry, whereas
they are found at α > 1 for well-width asymmetry. Such a
behavior indicates that there exist optimally asymmetric well
depth and well width to make the output SNR larger than the
symmetric one. This behavior is completely different from
that in Refs. [28–31], where the largest SNR of asymmetric
SR under the action of additive noise is always obtained when
the tilting bistable potential is symmetric. It is the reason that
Refs. [28–31] not only consider one additive noise source,
but also their asymmetries are obtained by adding a constant
bias to an otherwise symmetric potential, thereby resulting
in asymmetric well width and well depth. Moreover, the tilt
does affect the slope of two wells, where the higher-lying
one becomes shallower and shallower and the lower-lying one
becomes steeper and steeper as the tilt increases, implying
longer dwell times in the lower-lying well. However, the shape
of the right well in our study is unaffected by asymmetric ratio
α in all three potentials. The slope of the left wells in all
three potentials varies with α: (1) for well-depth asymmetry,
the slope of the left well becomes steeper and steeper as α

increases; (2) for well-width asymmetry, the slope of left well
becomes shallower and shallower; (3) for both well-depth
and well-width asymmetry, the slope is mainly controlled
by well-depth asymmetry. Therefore, the slope changes of
the left well in (1) and (3) are similar to that of the tilting
potential. In Ref. [34], Borromeo and Marchesoni explored the

characteristics of SR in a deformable bistable system with an
asymmetric barrier under the action of additive white noise,
where the depths of the two wells are equal or symmetric
and a double SR phenomenon is discovered. It is similar
to the well-width asymmetry in our study, but the slope of
its two wells are all variable while the slope of the right
well in our study is invariable. However, the double SR in
Sec. III B is discovered in certain cases for two correlated
noises, whereas it disappears for two independent noises. The
above comparison between the present and previous work
shows that the characteristics of SR are closely associated with
external excitation and structures of potential. Tiny differences
on external excitation and the structures of potential may result
in different SR behavior. Double SR may be attributed to the
cross-correlation intensity, which causes the resonance output
to depend on the initial condition of the system. In addition, one
can observe that the magnitude of harmonic excitation always
plays a positive role in improving SNR, which is consistent
with those earlier results.

V. CONCLUSIONS

In order to explore the influence of asymmetries on SR
under simultaneous action of multiplicative and additive noise,
conventional bistable potential is modified as a double-well
potential with three types of asymmetries. On the one hand, for
two independent noises, SNR peaks present a nonmonotonic
behavior as the increment in α and the largest SNR peak
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is always obtained at α �= 1. Such a behavior demonstrates
that asymmetric SR is superior to the symmetric one for a
certain range of asymmetric ratio α. However, it is interesting
that optimal noise intensity Dmax and εmax increase as α

increases in well-depth asymmetry, but the reverse effect is
observed in well-width asymmetry. Even in both well-depth
and well-width asymmetry Dmax and εmax remain invariable as
the increment in α and then rise with the further increase of
α. Similarly, αmax also increases with the increase of noise
intensity ratio R in well-depth asymmetry, whereas αmax

declines in well-width asymmetry. On the other hand, for
two correlated noises, output SNR versus cross-correlation
intensity λ has a nonmonotonic characteristic and moreover
SNR peaks move from positive correlation to the negative one
in well-depth asymmetry as the increment in α, but reverse
motion direction is found in well-width asymmetry. In addi-
tion, Dmax and εmax also exhibit a nonmonotonic behavior as λ

varies from negative to positive, but αmax increases gradually
as R amplifies in well-depth asymmetry, and, inversely, αmax

declines in well-width asymmetry. More interestingly, double
SR is discovered in certain cases, which not only depends on λ

and α but also is closely related with noise intensity D and ε.

The above clues are helpful in achieving weak signal detection
in the applications ranging from paleoclimatology to electronic
circuits, lasers, and chemical systems by using asymmetric SR
which can be obtained by experimental design or some existing
natural systems such as Schmitt triggers, Duffing oscillators,
fluxgate magnetometers, and SQUIDs. The asymmetric SR
is expected to achieve deep-space exploration, e.g., gravity
waves. In this paper, we examine the influence of potential
asymmetry on SR under the action of both multiplicative and
additive noise. In future work, we will examine the relationship
between asymmetric potentials and asymmetric excitations
such as symmetric saw-tooth wave, rectified sine wave, etc.,
thereby achieving effective control of asymmetric SR.
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