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A computationally quick and conceptually simple method to recover time delay of the chaotic system from
scalar time series is developed in this paper. We show that the orbits in the incomplete two-dimensional
reconstructed phase-space will show local clustering phenomenon after the component reordering procedure
proposed in this work. We find that information captured by the incomplete two-dimensional reconstructed
phase-space is related to the time delay τ0 present in the system, and will be transferred to the reordered
component by the procedure of component reordering. We then propose the segmented mean variance (SMV)
from the reordered component to identify the time delay τ0 of the system. The proposed SMV shows clear
maximum when the embedding delay τ of the incomplete reconstruction matches the time delay τ0 of the chaotic
system. Numerical data generated by a time-delay system based on the Mackey-Glass equation operating in
the chaotic regime are used to illustrate the effectiveness of the proposed SMV. Experimental results show that
the proposed SMV is robust to additive observational noise and is able to recover the time delay of the chaotic
system even though the amount of data is relatively small and the feedback strength is weak. Moreover, the time
complexity of the proposed method is quite low.
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I. INTRODUCTION

Delay phenomena, which are due to the finite signal
propagation speed or the memory effects, are ubiquitous in
various systems, including nonlinear optics [1,2], biology
[3,4], chemistry [5,6], and climatology [7,8]. It is found that
even a very simple time-delay chaotic system can produce
highly complex dynamics with a lot of degree of freedom
[9], which makes such systems very attractive. We can find a
lot of relevant applications based on the delay phenomena in
nonlinear optics, for example, the chaotic radar [10] and lidar
[11], the optical chaos encryption [12], rainbow refractometry
[13], and ultrahigh-speed physical random number generation
[14]. The time delay is important for chaos communication
since the dynamics of such delayed chaotic systems can be
identified and modeled once their time delay is recovered
[15,16]. Consequently, the identification of time delay present
in chaos communication systems would weaken their security
and confidentiality [17,18]. Besides, it is necessary to deter-
mine whether there are time delays present in the scalar time
series if one wants to develop suitable models for simulation
and forecasting purposes.

For the reasons aforementioned, it is very necessary to
study the time-delay signature present in the chaotic system.
However, the great challenge is that the corresponding under-
lying equations or even the relevant governing mechanisms are
often unknown and the time series that is always contaminated
by noise is insufficient sometimes in the study of nonlinear
dynamical systems. There were a lot of approaches proposed
to recover the time delay τ0 of the system from recorded
time series, e.g., the autocorrelation function (ACF) and
the delayed mutual information (DMI) [19,20], the filling
factor analysis [21], extrema statistics [22,23], information
theory methods [24,25], the practical criterion [26], and the
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permutation entropy and the permutation statistical complexity
(CJS) [27,28]. The aim of this work is to recover the time delay
present in the time-delay chaotic system when the underlying
equation is not known and the amount of data is relatively
small. Generally speaking, the phase-space reconstruction is a
fundamental tool for chaotic time-series analysis. Nonetheless,
it is inappropriate to apply this technique to a time-delay
system since even a first-order delay differential equation
can possess high-dimensional chaotic dynamics [29], and we
cannot directly reconstruct the phase-space of such a system
since the phase-space of such a system has to be regarded as
infinite-dimensional [23]. Recently, a new technique, which
is called the incomplete reconstruction of the dynamics [30],
gives us new insight into the way to capture the structural
information of the dynamics. In the present paper, a new
method based on the information captured by the incomplete
reconstruction of the dynamics will be introduced to recover
the time delay of the system.

Before that, we propose a simple procedure called com-
ponent reordering, in order to show the local clustering
phenomenon of the orbits of the chaotic system in the in-
complete two-dimensional reconstructed phase-space. We find
that information captured by the incomplete two-dimensional
reconstructed phase-space not only is related to the time
delay present in the system, but also can be transferred to
the reordered component by this procedure. Then, in order
to recover the time delay of the system, the segmented mean
variance (SMV) is derived from the reordered component.
The proposed SMV will show pronounced maximum when
the embedding delay τ of the incomplete reconstruction
is close to the time delay τ0 of the time-delay system.
Numerical data generated from a time-delay system based
on the Mackey-Glass system operating in the chaotic regime
are used to illustrate the validity of the proposed SMV. A
series of successful time delay identifications demonstrate that
the structural information captured by the incomplete two-
dimensional reconstructed phase-space is enough to recover
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the time delay of the system from the scalar time series
analysis. The proposed method is easy to operate with a small
amount of computation, and it also has a good robustness
against additive observational noise. Most importantly, it can
recover the time delay of the system even though the amount
of data is relatively small and the feedback strength of the
system is weak.

The present paper is structured as follows. In Sec. II, the
delay-coordinate reconstruction is briefly introduced first, then
the component reordering procedure is developed; after that
the local clustering phenomenon of the chaotic time series
is described by utilizing the numerical data generated by
the Hénon map and the Mackey-Glass equation; finally, the
segmented mean variance (SMV) is proposed to recover the
time delay present in the scalar time series. In Sec. III,
the feasibility and reliability of the proposed SMV are first
checked by utilizing the numerical time series generated by the
time-delay systems based on the well-known Mackey-Glass
equation, then the effects of the additive observational noise,
data length, small time delay, and feedback strength on the
proposed SMV are tested. At last, a simple comparison of
time consumptions between the CJS, the ACF, and the proposed
SMV for different data lengths is obtained. In Sec. IV, some
brief conclusions are given.

II. THE LOCAL CLUSTERING PHENOMENON AND THE
SEGMENTED MEAN VARIANCE

A. Delay-coordinate reconstruction

The reconstruction of the phase-space plays a very impor-
tant role in chaotic time series analysis since the structure of
phase-space is very helpful, and it is also a fundamental tool
for nonlinear time series analysis. The widely used method to
reconstruct the phase-space of the dynamics of the chaotic
system is the delay-coordinate reconstruction proposed by
Takens et al. [31,32]. Specifically, let {xn}Nn=1 be a scalar time
series of length N , and let m be the embedding dimension
and τ be the embedding delay. Then the m-dimensional
reconstructed phase-space of this time series consists of the
following vectors:

Vn = [xn,xn+τ ,xn+2τ , . . . xn+(m−1)τ ], (1)

where n = 1,2, . . . ,N − (m − 1)τ . Though the embedding
dimension m and the embedding delay τ are very essential
for the delay-coordinate reconstruction, good value for them
are not easy to be estimated due to the data length, noise,
nonstationarity, algorithm parameters, and the like [33] in
practice. About estimating good value for the embedding
dimension m and the embedding delay τ , please see Refs.
[33,34] and the references therein.

Actually, the full structure of the dynamics of the chaotic
system is not always necessary, and a partial knowledge of
the dynamics is helpful for data analysis purpose sometimes.
In Ref. [30], it was found that forecast models that utilized
the incomplete reconstruction of the dynamics can obtain
accurate predictions of the future course of the dynamics.
And in Ref. [35], the approach based on the incomplete
two-dimensional reconstructed phase-space was successfully
applied to distinguish between noise and chaotic signals. In the

present paper, we will show that we can recover the time delay
τ0 present in the chaotic time series based on the information
captured by the incomplete two-dimensional reconstructed
phase-space.

The incomplete reconstruction means that the choice of
embedding dimension m does not satisfy the conditions of Tak-
ens’ theorem [31]. It should be noted that the full reconstructed
phase-space can be obtained for low-dimensional chaotic time
series if the embedding dimension m and the embedding
delay τ satisfy the conditions of the Takens’ theorem. The
value of embedding dimension m for the reconstruction of
phase-space of the dynamics is set to 2 in this paper, which
means that the phase-space is incompletely reconstructed for
high-dimensional chaotic systems.

B. The component reordering procedure

When the embedding dimension m is fixed, another
parameter, the embedding delay τ , will have a major impact on
the incomplete two-dimensional reconstruction of the phase-
space. Obviously, the structure captured by the incomplete
two-dimensional reconstructed phase-space is quite diverse if
different embedding delay τ is used. Based on it, we will
propose an efficient method to recover the time delay of the
system from chaotic time series in the present paper. Before
that, a simple but important procedure, which is called the
component reordering, will be presented first. To the best of our
knowledge, this is the first time that the component reordering
procedure is introduced.

Let {xn}Nn=1 be a scalar time series of length N and τ

be the embedding delay of the incomplete two-dimensional
reconstruction. Then the component reordering procedure is
implemented as follows:

(1) Obtaining the first component {xf
n }N−τ

n=1 = {xn}N−τ
n=1 and

the second component {xs
n}N−τ

n=1 = {xn}Nn=τ+1 of the incomplete
two-dimensional reconstructed phase-space,

(2) Sorting the first component {xf
n }N−τ

n=1 with ascending
order, let nnew be the new subscript after sorting. Let zn = xs

nnew
,

then {zn}N−τ
n=1 will be a new time series.

We will call {zn}N−τ
n=1 the reordered component for the reason

that it is actually a reordered version of the second component
{xs

n}N−τ
n=1 . The component reordering procedure can be better

described with a simple example; suppose that we have a
short time series {xn}7

n=1 = {1.1,7.1,6.1,2.3,4.5,5.3,8.2} and
we set the embedding delay τ = 1, then we can obtain

the first component {xf
n }6

n=1 = {1.1,7.1,6.1,2.3,4.5,5.3} and
the second component {xs

n}6
n=1 = {7.1,6.1,2.3,4.5,5.3,8.2}

of the original time series. By sorting the first component
with ascending order, we can get the new subscript nnew =
1,4,5,6,3,2; correspondingly, we can obtain the reordered
component {zn}6

n=1 = {7.1,4.5,5.3,8.2,2.3,6.1} by utilizing
the new subscript.

C. The local clustering phenomenon

After obtaining the reordered component, we have observed
that there is a special relationship between the incomplete two-
dimensional reconstructed phase-space and its corresponding
reordered component. To better describe this relationship, we
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first consider the following equation for Hénon map [36]:

xn+1 = yn + 1 − ax2
n

(2)
yn+1 = bxn.

The typical values a = 1.4 and b = 0.3 are chosen to
produce a deterministic chaotic time series. The Hénon map
is used here because it has a low-dimensional attractor and
the relationship can be described more clearly. It should be
stressed that the discrete chaotic map itself is not the focus of
this paper.

In Fig. 1 we plot the phase-space, the incomplete two-
dimensional reconstructed phase-space, and the corresponding
reordered component of Hénon map. From Figs. 1(a) and
1(b) it can be observed that the incomplete reconstruction
recovers all of the structure of this system since the delay-
coordinate reconstruction of this data with m = 2 and τ = 1
is indeed the actual map just scaled. However, the main
point of Fig. 1 concerns the similarity between Figs. 1(b)
and 1(c), which represent the incomplete two-dimensional
reconstructed phase-space and its corresponding reordered
component, respectively. By studying the reordered compo-
nent, we also find that the values of the adjacent data of
the reordered component are very close when the similarity
is well displayed, as if these data are locally clustered
by the component reordering procedure. We will call that
the local clustering phenomenon in this paper. In other
words, the local clustering phenomenon contains two mean-
ings: the similarity between the incomplete two-dimensional
reconstructed phase-space and its corresponding reordered
component and the clustering of the data in the reordered
component.

The similarity between the incomplete two-dimensional
reconstructed phase-space and the corresponding reordered
component of Hénon map is perfectly displayed since the
phase-space of Hénon map is well reconstructed. It should be
noted that the similarity exists when other values of τ are used
and disappears when τ is large enough for Hénon map, which
we do not plot in this paper. It seems that the local clustering
phenomenon depends on the embedding delay τ of the incom-
plete reconstruction. However, for a time-delay chaotic system,
which can produce highly complex dynamics—the incomplete
two-dimensional reconstructed phase-space cannot capture
the full structure of the dynamics—does the local clustering
phenomenon still exist? To answer this question, we consider
the well-known Mackey-Glass equation [3]:

dx

dt
= αx(t − τ0)

1 + xγ (t − τ0)
− x, α,γ > 0, (3)

where τ0 is the time delay feedback, α is the feedback strength,
γ is the degree of nonlinearity, and t is a dimensionless time.
The typical values τ0=60, α = 2, and γ = 10 are chosen to
make the system operate in the chaotic regime. For the purpose
of obtaining the Mackey-Glass time series, the fourth-order
Runge-Kutta method [37] is used to numerically integrate the
equation from Eq. (3), and the integration step and sampling
step are �t = 0.01 and δt = 0.2 time units, respectively. The
time delay present in the Mackey-Glass time series is 300
(τ0/δt = 300) under these parameters.
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FIG. 1. (a) Phase-space of Hénon map; (b) incomplete two-
dimensional reconstructed phase-space of Hénon map (embedding
dimension m = 2 and embedding delay τ = 1); (c) Reordered
component with τ = 1. N = 800 data points are used.

In Fig. 2 we plot the incomplete two-dimensional recon-
structed phase-space with embedding delay τ = 300 and its
corresponding reordered component of the Mackey-Glass time
series. Besides, we also plot the reordered component with
embedding delay τ = 600 and τ = 133 in Fig. 2, while their
corresponding incomplete reconstructed phase-space are not
plotted for the sake of brevity. From Figs. 2(a) and 2(b) it
can be observed that the local clustering phenomenon still
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FIG. 2. (a) Incomplete two-dimensional reconstructed phase-space of Mackey-Glass time series (embedding dimension m = 2 and
embedding delay τ = 300) and reordered component with embedding delay, (b) τ = 300, (c) τ = 600, (d) τ = 133.

exists, though it is poorly displayed (compared with the Hénon
scenario).

The local clustering phenomenon illustrates that the infor-
mation captured by the incomplete two-dimensional recon-
structed phase-space is transferred to the corresponding re-
ordered component by the procedure of component reordering.
Hence, we can extract some important features of the dynamics
of the time-delay chaotic system from the corresponding
reordered component. It is also more convenient to study the
reordered component rather than the incomplete reconstructed
phase-space since the dimension of the phase-space is reduced.

As shown in Fig. 2, the reordered component has three
different forms when different embedding delays τ of the
incomplete reconstruction are considered, and these forms are
related to the time delay τ0 of the system. The relationships
between the embedding delay τ of the incomplete reconstruc-
tion and the time delay τ0 present in the system are described
as follows:

I τ = τ0,

II τ = nτ0,n = 2,3, . . . , (4)

III τ �= nτ0,n = 1,2,3, . . . .

In case I, i.e., the embedding delay τ of the incomplete recon-
struction is equal to the time delay τ0 of the system, the amount

of information captured by the incomplete reconstructed
phase-space is the most, as shown in Fig. 2(a). Accordingly,
the information contained in the reordered component is the
most and the local clustering phenomenon is well displayed,
as shown in Fig. 2(b). In case II, the reordered component
also shows some fundamental structure of the dynamics of
the system since the structural information captured by the
incomplete two-dimensional reconstructed phase-space is also
considerable, as shown in Fig. 2(c). In case III, however,
the reordered component acts like random time series for
the reason that the incomplete two-dimensional reconstructed
phase-space cannot capture any structural information of the
dynamics of the system, as shown in Fig. 2(d). It should be
noted that there is no local clustering phenomenon at this
time. From Figs. 2 and 1 we also observe that the local
clustering phenomenon of the Mackey-Glass time series is
not demonstrated as well as that of the Hénon map, the reason
is that the incomplete two-dimensional reconstructed phase-
space cannot capture the full dynamics of the Mackey-Glass
system.

D. The segmented mean variance

As described above, for a time-delay chaotic system, the
property of the reordered component is closely related to the
relationship between the embedding delay τ of the incomplete
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reconstruction and the time delay τ0 of the system. We find that
the local clustering phenomenon is well displayed when the
embedding delay τ of the incomplete reconstruction is equal
to the time delay τ0 present in the system since the structural
information captured by the incomplete two-dimensional
reconstructed phase-space is the most in this situation. Inspired
by the local clustering phenomenon, we present a simple
approach to recover the time delay τ of the system from
the reordered component in this paper. This method, which
will be called the segmented mean variance (SMV), is based
on the calculation of the mean and variance of the reordered
component. The calculation procedure of the SMV is described
as follows:

(1) Dividing the reordered component {zn}N−τ
n=1 into

L groups: Zl = {z(l−1)K+1,z(l−1)K+2, . . . ,zlK},l = 1,2, . . . ,L,
with K = �N/L� being the amount of data of each group and
�P � denoting an integer less than or equal to P ;

(2) Calculating the mean μ̂l and the variance σ̂ 2
l of each

group Zl,l = 1,2, . . . ,L,

μ̂l = 1

K

K∑

k=1

z(l−1)K+k,

(5)

σ̂ 2
l = 1

K − 1

K∑

k=1

(
z(l−1)K+k − μ̂l

)2
;

(3) Computing the mean of μ̂l and σ̂ 2
l ,l = 1,2, . . . ,L,

μ̂ = 1

L

L∑

l=1

μ̂l,σ̂
2 = 1

L

L∑

l=1

σ̂ 2
l ; (6)

(4) Calculating the variance of μ̂l,l = 1,2, . . . ,L,

σ̂ 2
0 = 1

L − 1

L∑

l=1

(μ̂l − μ̂)2; (7)

(5) Then the SMV is obtained as follows:

SMV = K

σ̂ 2
σ̂ 2

0 . (8)

According to the relationships described in Eq. (4), the
SMV will show three different types of values. In the first
case, the values of data of each group Zl,l = 1,2, . . . ,L are
almost the same because of the well presented local clustering
phenomenon, therefore, the mean of segmented variances σ̂ 2

is of small value. Meanwhile, the values of data of different
groups are different, then the segmented means σ̂ 2

0 is of large
value. A small value of σ̂ 2 and a large value of σ̂ 2

0 will lead
to a large SMV in this situation. It should be noted that the
parameter K in Eq. (8) is just a multiplication factor, which
makes the SMV follow F distribution if the time series {xn}Nn=1
is a Gaussian white noise [35].

In the second case, though the local clustering phenomenon
is not presented as well as that of the first case, the incomplete
two-dimensional reconstructed phase-space also can capture
some fundamental information of the dynamics of the system.
Though the value of the SMV is large enough, it is still much
smaller than that of the first case. In the last case, there is no
helpful information contained in the reordered component, and
the local clustering phenomenon disappears. The reordered

component acts like a random time series. Thus, the mean of
segmented variances σ̂ 2 is of large value and the variance of
segmented means σ̂ 2

0 is of small value, so the value of the
proposed SMV is relatively small. Above all, we can recover
the time delay present in the system according to the values of
the SMV.
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FIG. 3. (a) SMV as a function of the embedding delay τ for
number of data segments L = 5. (b) The CJS as a function of the
embedding delay τ for embedding dimension m = 8. (c) The ACF of
the Mackey-Glass time series. N = 106 data points are used.
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III. NUMERICAL RESULTS AND DISCUSSIONS

As stated in Sec. II, the values of the proposed SMV are
relatively different according to the relationship between the
embedding delay τ of the incomplete reconstruction and the
time delay τ0 of the system, which means that we can identify
the time delay present in the scalar time series according
to the values of the proposed SMV. In this section, some
experiments will be given in order to check the effectiveness
and reliability of the proposed SMV. Besides, for the purpose
of comparison, the permutation statistical complexity (CJS)
[27] and the ACF are used as the gold standards. The ACF is
a conventional and widely used method to determine the time
delay present in the time series, and it will be evaluated by
exploiting the autocorr.m file in MATALB of release 2016a.
The CJS is a relatively new method proposed to identify the
time delay of the system and its performance is relatively
good [27]. Note that the calculation of CJS is related to the
phase-space reconstruction [38]; it also needs two parameters,
namely the embedding delay τ and embedding dimension
m when evaluating the CJS. Generally speaking, to obtain
a reliable statistics when evaluating the CJS, the length N

of the time series and the embedding dimension m should
satisfy the condition N � m! [39], or they should satisfy the
condition N � 5m! [40] at least. In the following experiments,
the embedding dimensions for CJS are chosen according to the
latter condition. About this approach, please see Refs. [38] and
[27] for details. It should be pointed out that the starting points
of the CJS and proposed SMV are totally different, though they
both are related to the phase-space reconstruction.

Numerical data used in the following simulations are
generated by the time-delay systems based on the Mackey-
Glass equation. First of all, the effectiveness of the SMV
will be tested by calculating the SMV as a function of the
embedding delay τ of the incomplete reconstruction, and the
effect of the number of data segments L on the proposed SMV
will be discussed. Then, the effect of additive observational
noise, data length, small value of time delay, and feedback
strength on the proposed SMV will be checked. Finally, the
time complexity of the proposed SMV is obtained for different
data lengths.

A. The effectiveness of the SMV

In order to check the effectiveness of the proposed method,
we calculate the SMV as a function of the embedding delay
τ of the incomplete reconstruction for the Mackey-Glass
time series generated by Eq. (3). The results are shown in
Fig. 3(a). It can be clearly observed that the proposed SMV
has well-defined and sharp maxima when the embedding delay
τ of the incomplete reconstruction is close to the time delay
τ0 of the system, i.e., for τ near 300(τ0/δt = 300). In this
situation, the structural information of the system captured
by the incomplete two-dimensional reconstructed phase-space
is the most and the local clustering phenomenon is well
presented. Consequently, the value of the SMV is the largest.
Moreover, the proposed SMV also shows clear peak when
the embedding delay τ of the incomplete reconstruction is
approximately double the time delay τ0 of the system, i.e.,
for τ near 600(τ0/δt = 600), while the value of the proposed
SMV is much smaller in the case of other embedding delays.
Thus, the results shown in Fig. 3(a) are perfectly consistent
with the discussion in Sec. II.

From Fig. 3(a) it can also be observed that there is a light
time-delay overestimation. This time-delay overestimation
can be attributed to the internal response time or inertia of the
Mackey-Glass system [27]. It is difficult to estimate the inertia
accurately, and most of the methods proposed to recover the
time delay present in the recorded time series [41,42] are
affected by the inertia. We also calculate the CJS and the ACF
for the same Mackey-Glass time series because they are also
affected by the inertia, and for comparison purpose the results
are shown in Figs. 3(b) and 3(c). It can be observed from
Fig. 3(b) that there are a lot of spurious peaks in the CJS,
while these spurious peaks do not appear in our approach and
the ACF.

The number of data segments L is important for calculation
of the proposed SMV. It should be pointed out that L should
satisfy the following condition:

2 � L � �(N − τmax)/2�, (9)
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FIG. 4. (a) SMV as a function of embedding delay τ for the numbers of data segments 2 � L � 10. (b) Enlargement near the time delay
τ0 of the system in order to observe more clearly the effect of the number of data segments L on the SMV. N = 2 × 105 data points are used.
The number of data segments associated with the different curves from top to bottom are L = 6,5,7,4,8,9,10,3,2.
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FIG. 5. SMV as a function of number of data segments L for
embedding delay τ = 303. The maximum value of the SMV occurs
when L = 6. N = 2 × 105 data points.

where τmax is the largest embedding delay of the incomplete
reconstruction one chooses and N is the data length. From
Eq. (7) we can find that L �= 1 is obvious, and if L >

�(N − τmax)/2�, the amount of data in each group is K = 1;
the calculation of SMV is meaningless in this situation. It is
obvious that the values of the proposed SMV are different if
we choose different numbers of data segments L. In order to
check the effect of L on the SMV, in Fig. 4(a) we plot the
SMV as a function of embedding delay τ of the incomplete
reconstruction for different numbers of data segments L, and
in Fig. 4(b) we plot the enlargement near the time delay τ0 the
system in order to observe more clearly. From Fig. 4, it can be
observed that the values of the SMV corresponding to L = 5
and L = 6 are bigger than that of other data segments L. To
better explain this, the proposed SMV as a function of the
number of data segments L for τ = 303 (because of the time
delay overestimation) is plotted in Fig. 5. It can be observed
that the SMV is maximized when L = 6 in this situation
(the time series is generated from Eq. (3) and N = 2 × 105

data points are used), while the corresponding number of
data segments may not be L = 6 for other data lengths and
time series derived from other time-delay chaotic systems.
Nevertheless, the proposed SMV can always recover the time
delay of the system as long as the number of data segments L

one chooses satisfies the condition in Eq. (9). From now on,
the number of data segments L will be fixed to 5 for the sake
of uniformity in this article.

In practical applications, there are more than one time delay
in the system sometimes. In order to test the performance of the
SMV in this case, we consider the generalized Mackey-Glass
equation [43] with two time delays:

dx

dt
= 1

2

2∑

k=1

αx(t − τ0,k)

1 + xγ (t − τ0,k)
− x. (10)

To obtain the numerical data, the same integration method
and parameters (α = 2, γ = 10) as in the single time delay
case are used. In Fig. 6(a) we plot the SMV as a function
of the embedding delay τ of the incomplete reconstruction
in the case of a generalized Mackey-Glass system with two
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FIG. 6. (a) SMV and (b) the CJS as a function of the embedding
delay τ for a Mackey-Glass system with time delays τ0,1 = 60 and
τ0,2 = 96. (c) The ACF obtained from the same Mackey-Glass time
series. The number of data segments for the SMV is L = 5; the
embedding dimension for CJS is m = 8. N = 1 × 106 data points are
used.

time delays (τ0,1 = 60, τ0,2 = 96). The proposed SMV shows
obvious peaks when the embedding delays of the incomplete
reconstruction are close to the time delays of the system,
i.e., τ ∼ 300 (τ0,1/δt = 300) and τ ∼ 480 (τ0,2/δt = 480).
Similar to the case of one time delay, there is also a slight time
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FIG. 7. (a) SMV as a function of the embedding delay τ of the incomplete reconstruction for different levels of the observational noise. The
noise levels associated with the different curves (NL = 0.1,0.3,0.5,0.7,0.9,1.1) increases from top to bottom. The number of data segments
is L = 5 and N = 106 data points are used. (b) Enlargement near the time delay τ0 of the system in order to observe more clearly the effect of
the NL on the SMV.

delay overestimation. From Fig. 6(a) it can also be seen that
the SMV shows peaks when the embedding delay is close to
τ = 180(480 − 300 = 180) and τ = 780(480 + 300 = 780),
but less pronounced. The occurrence of these peaks is similar to
the intermodulation in inverters; their presence do not affect the
estimation of the time delays of the system. As a comparison,
the CJS and the ACF are also calculated from the same time
series, the results are shown in Figs. 6(b) and 6(c). From
Fig. 6(b) we can also observe the intermodulation phenomena,
besides, a lot of spurious peaks appeared on the left side of
the time delays of the system, which has a bad effect on the
identification of the time delays of the system. For the ACF,
the intermodulation phenomenon also exists and it has a bad
effect on the recovery of the time delays present in the system
since the amplitude of the peak associated to τ = 180 is too
large, as can be seen from Fig. 6(c). Thus, it can be concluded
that our method still works well in the case of two time delays,
and its performance is better than that of the CJS and the ACF.

B. The effect of an additive observational noise

The next goal of this paper is to analyze the effect of
an additive observational noise on the proposed method. It
is meaningful since the experimental time series is always
contaminated by observational noise in practice. For this
purpose, a Gaussian white noise with different noise levels
is added to the numerical data generated by the Mackey-Glass
system with one time delay. The noise level (NL) is defined as
the ratio of the standard deviation of the noise and the standard
deviation of the original signal.

In Fig. 7(a) we plot the SMV as a function of embedding
delay τ of the incomplete reconstruction for different levels of
observational noise, and in Fig. 7(b) we plot the enlargement
near the time delay τ0 of the system in order to observe
more clearly. It can be observed that the proposed method
is very robust in the presence of the observational noise.
The computation of the SMV is based on a comparison of
all the points in the first component of the incomplete two-

dimensional reconstructed phase-space, and the relationship
among the points of the first component can not be completely
destroyed by the observational noise. Hence, the proposed
SMV can recover the time delay of the system in the presence
of observational noise.

C. The effect of data length

In practice, the data we need may not be always sufficient,
and most of methods fail to recover the time delay τ0 of the
system due to the data shortage. Thus, it is of significance
to study the effect of data length on the proposed SMV. The
effect of data length on the CJS and the ACF is also studied for
the purpose of comparison. The embedding dimension m = 6
is considered when calculating the CJS in the case of a small
amount of data. The observational noise with NL = 0.2 is
added to the Mackey-Glass time series. Figure 8 compares
the results obtained for the SMV, the CJS, and the ACF for
two different data lengths N = 50 000 and N = 10 000. From
Figs. 8(a) and 8(d) it can be seen that our approach is able to
recover the time delay τ0 of the system successfully in all cases.
The amplitude of the peak associated with the time delay τ0 of
the system just becomes lower when the amount of data is of
small value. The CJS can easily reveal the correct time delay τ0

in the first case, as shown in Fig. 8(b), whereas it fails to recover
the time delay of the system when N = 10 000, as shown in
Fig. 8(e). It should be noted that other embedding dimensions
(m = 3, 4, 5) for CJS cannot recover the time delay τ0 of the
system in the second case. Actually, the CJS cannot recover the
time delay τ0 any more when the amount of data is relatively
small, i.e., for N < 10 000. As for the ACF, it can identify
the time delay of the system in the case of a large amount of
data, as shown in Fig. 8(c). Its performance becomes worse
when the data length is of relatively small value, as shown in
Fig. 8(f). It should be pointed out that the correct position of
the time delay is the trough [the red point shown in Figs. 8(c)
and 8(f)], which is surrounded by two large peaks around
τ = 300. These two large peaks will affect the recovery of the
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FIG. 8. Comparison between the SMV, the CJS, and the ACF for the Mackey-Glass time series with different data lengths and NL = 0.2:
(a), (b), and (c) N = 50 000, and (d), (e), and (f) N = 10 000. The red point in (c) and (f) corresponds to the value of ACF of the correct
time delay τ = 303 (because of the overestimation). The number of data segments L for the proposed SMV is equal to 5. The embedding
dimensions for the CJS in (b) and (e) are both 6.

true time delay present in the time series for the ACF. As a
matter of fact, one cannot identify the correct time delay in this
situation.

In order to better describe the effect of data length on
these three methods and for the purpose of comparison, we
will exploit the location of the embedding delay τ associated
with the largest SMV to verify the accuracy of time delay

identification in the present paper. In consideration of time
delay overestimation, a vicinity W (τ0) of the time delay τ0 of
the system is defined as [44]

W (τ0) = [τ0 − ε × τ0,τ0 + ε × τ0], (11)

where ε is the mismatch coefficient, and ε is set to 4% in
this paper. The time delay is still considered to be estimated
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FIG. 9. Identification rate ρ as a function of data length for the
proposed SMV, the CJS, and the ACF: (a) NL = 0, (b) NL = 1.2.
The number of data segments L for the SMV is equal to 5. The
embedding dimension m for the CJS is 6, and the simulation is carried
out with 1000 Monte Carlo experiments and is averaged.

successfully once the embedding delay τ associated with the
largest SMV locates in the vicinity W (τ0). The identification
rate ρ is defined as the ratio of the number of successful
identifications and the number of trials. The simulation is
carried out with 1000 Monte Carlo experiments and is
averaged; the results are depicted in Fig. 9. Note that the results
for ACF are obtained by searching the smallest value of the
ACF, in other words, the estimation is still believed to be
correct if the delay associated with the smallest value of the
ACF locates in the vicinity W (τ0).

Observe in Fig. 9(a) that the proposed SMV is able to
recover the time delay of the system in all situations. For
the CJS, it performs well when data length is greater than
10 000, yet it fails to recover the time delay of the system
when N = 10 000. Besides, it can be seen from Fig. 9(a) that
the identification rate of the ACF is zero when the data length is
smaller than 50 000, which means that the ACF cannot identify
the time delay of the system in the case of small amount of
data. Hence, for large time delay, the proposed SMV performs
better than the CJS and the ACF when the size of data without
noise pollution is small.

In Fig. 9(b) we compare the identification rates of the
proposed method, the CJS, and the ACF obtained from a
Mackey-Glass time series contaminated by the observational
noise with NL = 1.2. It can be seen in Fig. 9(b) that the
proposed SMV still works well when the data length is larger
than 20 000, yet it cannot reveal the time delay present in the
time series when N = 10 000 and N = 15 000 due to the effect
of higher level of the observational noise. The CJS performs
well in the case of large amount of data, i.e., for N > 25 000,
and it has no ability to identify the time delay of the system
when N = 25 000 while the SMV does. As for the ACF, it
can recover the time delay when the data length is greater
than 45 000, but it fails to determine the correct time delay
of the system in other situations. From Fig. 9(b) it can be
concluded that the performance of the SMV for large time
delay is better than that of the CJS and the ACF in the case
of small amount of data and higher level of observational
noise.

D. The effect of small value of time delay

The results obtained from above simulations show that the
proposed method is an effective method to recover large time
delay (e.g., τ0 = 60) of the system. In this subsection we will
check the effect of small value of time delay on the proposed
SMV. To this end, in Fig. 10 we plot the SMV as a function
of the embedding delay τ of the incomplete reconstruction
in the case of a Mackey-Glass system with small time delay
(τ0 = 20, τ0 = 10, and τ0 = 5). It can be observed from Fig.
10 that the SMV shows sharp and well-defined peak when the
embedding delay τ of the incomplete reconstruction is close
to the time delay τ0 of the system in all situations, which
means that the proposed SMV also can recover small time
delay present in the time series.

E. The effect of feedback strength

It is well known that the recovery of the time delay would be
difficult if the feedback strength is small, it was also pointed out
that the identification of the time delay of the system would be
impossible when the optical feedback of the chaotic semicon-
ductor laser was weak [42]. In order to check the performance
of the proposed SMV in this severe time-delay identification
scenario, numerical simulation of the data generated by Eq. (3)
with the same parameters (τ0 = 60, γ = 10) but low feedback
strength (α = 1.4) is analyzed. Moreover, additive Gaussian
white noise with NL = 0.2 is added. Meanwhile, the CJS

and the ACF are also used to identify the time delay of the
system for the purpose of comparison. The results are shown in
Fig. 11.

We can see from Fig. 11(a) that the proposed SMV shows
pronounced maximum when the embedding delay τ of the
reconstruction is close to the time delay of the system, which
means that the proposed method can recover the time delay
of the system even though the feedback strength is small.
Moreover, we can also observe from Fig. 11(a) that the
amplitude of the peak associated with τ = 600 becomes larger
than that of the peak associated with τ = 600 in Fig. 8(a), this
is due to the effect of the low feedback strength. As for the CJS,
it fails to recover the time delay in this situation, as shown in
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FIG. 10. The SMV as a function of the embedding delay τ for a
Mackey-Glass system with (a) τ0 = 20, (b) τ0 = 10, and (c) τ0 = 5.
The insets show the enlargement near the time delay τ0 of the system
in order to observe more clearly. The number of data segments for
the SMV is L = 5; N = 1 × 105 data points are used.

Fig. 11(b). The ACF also shows obvious peak yet less sharper
than that of the SMV around τ = 300, which means that the
ACF also can identify the time delay of the system in the case
of small feedback strength, as can be seen in Fig. 11(c). It
should be stressed that the original trough shown in Fig. 3(c)
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FIG. 11. Comparison between the SMV, the CJS, and the ACF
with low feedback strength (α = 1.4) and noise level NL = 0.2: (a)
the SMV, (b) the CJS, and (c) the ACF. The number of data segments
for the SMV is L = 5, the embedding dimension for CJS is m = 6.
N = 15 000 data points are used.

is turned into a peak in Fig. 11(c) because of the low feedback
strength.

From Fig. 11 we can conclude that the performances of the
proposed SMV and the ACF are much better than that of the
CJS in the case of weak feedback strength.
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TABLE I. Time consumptions of the CJS, the ACF, and the SMV
with different data lengths (unit:s).

N = 600 N = 3600 N = 25 200 N = 201 600

CJS 1.5166 × 10−4 5.0204 × 10−4 0.0033 0.2471
ACF 1.1347 × 10−4 3.7658 × 10−4 0.0022 0.1583
SMV 7.5021 × 10−4 2.5334 × 10−4 0.0011 0.0705

F. The time complexity

The time complexity is also an important consideration in
practical applications, especially when the amount of data is
relatively large. From Sec. II we know that the calculation of
the SMV is quite simple since one only need to compute the
mean and variance of the data. In contrast, the computation
of the CJS is somewhat complicated when the embedding
dimension m is of large value. In order to compare the
time complexity of these three approaches, the average time
consumptions via 200 Mente Carlo runs of the SMV, the
ACF, and the CJS for different data lengths are shown in
Table I, the data lengths N we choose here is corresponding
to the embedding dimension m = 5, 6, 7, 8 for CJS subjected
to N = 5m!. It should be pointed out that in each run 50
delays are evaluated for all three methods. We can observe
from Table I that the time consumptions of the proposed SMV
and the CJS are the smallest and the largest, respectively. It is
found that the time consumptions of the SMV are lower than
that of the ACF and the CJS in all situations, and the difference
becomes obvious when the amount of data is of large value.
The simulations are run on the computer with a 3.40 GHz
Intel Core i7-2600K CPU and an 8.00 GB RAM. The release
of MATLAB is 2016a.

IV. CONCLUSIONS

Time-delay chaotic systems are widely used in practice
because of their high degree of nonlinearity and complex
dynamics. In such systems, time delay always plays a vital role

and can provide additional information about the relationship
between different components. The recovery of time delay
present in the time series is one of the key problems in
the study of time-delay chaotic systems. However, time-
delay identification is not an easy task due to the shortage
of a prior knowledge, the small amount of data, and the
effect of noise. In this paper, a computationally quick and
conceptually simple approach is introduced to deal with
this task. Before that, we propose an important procedure
called the component reordering to show the local clustering
phenomenon of the chaotic system based on the incomplete
two-dimensional reconstruction of dynamics of the system. We
find that the amount of information captured by the incomplete
two-dimensional reconstructed phase-space is associated with
the time delay present in the time-delay chaotic system.
Furthermore, the structural information of the dynamics will
be shown in a one-dimensional time series (the reordered
component) because of the local clustering phenomenon. An
application of this phenomenon is to distinguish between
chaotic signal and Gaussian noise [35]. In this paper, we have
shown that the local clustering phenomenon can be used to
recover the time delay present in the time series. For this
purpose, a statistic SMV is developed from the reordered
component.

Numerical data generated by the time-delay systems based
on the well-known Mackey-Glass equation are used to test
the effectiveness and reliability of the proposed method.
Numerical results show that the proposed SMV is robust to
additive observational noise and is able to recover the time
delay of the chaotic system with small feedback strength.
What’s more, it is found that the performance of the proposed
method is also good in the case of small amount of data
contaminated by a large amount of observational noise.
The time complexity of the proposed SMV is also quite
low.
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