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Slow passage through thresholds in quantum dot lasers
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A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and
excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow
passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The
difference between the turn-on times is measured as a function of the pump rate of change ε and reveals no clear
power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers.
We find that the effective time of the GS turn on follows an ε−1/2 power law provided that the rate of change is
not too small. The effective time of the ES transition follows an ε−1 power law, but its first order correction in
ln(ε) is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS
transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on
the time needed to leave a repellent steady state.
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Semiconductor quantum dot- (QD-) based optical materials
and devices have led to intensive research activities because
of promising technological applications in biophotonics and
optical communications. The recombination of ground-state
(GS) and excited-state (ES) electrons and holes in QD lasers
may contribute to simultaneous lasing at both states [1].
Simultaneous lasing has been investigated in steady-state
operations [2–4], in dynamical regimes of feedback [5],
saturable absorption [6,7], and mode locking [8].

Turn-on experiments where the electrical pump is changed
from a below to an above threshold provide important
information on the laser dynamical response. The turn-on time
is defined as the time when either the GS or the ES intensity is
quickly rising from nearly zero. The laser turn-on time depends
on the rate of change of the pump as it has been theoretically
predicted [9,10] and experimentally confirmed [11]. The
impact of the nonlinear and noninstantaneous capturing of the
carriers into a dot on the laser turn-on dynamics has recently
been investigated for QD lasers operating at the GS transition
[12–15]. But the turn-on effects for QD lasers exhibiting both
the GS and the ES transitions remain currently unexplored.

In this paper, the QD laser turn on is analyzed experimen-
tally and theoretically when lasing occurs at both GS and
ES transitions and the rise time of the pump source is slow
compared to the material and cavity time scales. Slow passages
through single bifurcation points are well documented in
nonlinear optics [16,17], but slow passages through two
successive thresholds are studied here. Although the second
transition is reminiscent of a slow passage through a simple
steady-state bifurcation point, the first transition exhibits an
unexpected time history because some of the population

variables need to be activated before the GS intensity may
jump.

We experimentally find that the laser may turn on with
a significant nanosecond delay between the GS and the ES
emissions. Our main objective is to investigate theoretically
the slow passage through both the GS and the ES thresholds
and determine the turn-on times as functions of the pump
current rate of change. As we will demonstrate, the passage
through the GS bifurcation involves a two stage process that
has a direct impact on the turn on. On the other hand, the
ES transition which comes after the GS transition depends
on the time needed to reach the ES bifurcation point. Scaling
laws are determined experimentally and analytically from rate
equations for either small or large pump currents.

Experimentally, the studied QD laser structure was grown
on a GaAs substrate by molecular-beam epitaxy. The active
region included five layers of self-assembled InAs QDs
separated with a GaAs spacer from a 5.3-nm-thick covering
layer of In0.14Ga0.86As. Finally, the structure was processed
into 4-μm-wide mesa stripe devices. The 1.5–2.5-mm long
lasers with high- and antireflection coatings on the rear and
front facets lase either at the GS (around 1265 nm) or
simultaneously at the GS and ES (around 1190 nm) in the
whole range of pumping. The laser did not show ground-state
quenching for increasing pump current. Short-pulsed electrical
pumping was used to achieve high output power operation and
avoid the effect of overheating on the output pulse shape.

Operation in the pulse-pumped regime is necessary to
explore the turn-on dynamics. Pulses of ∼5-ns rise time
(measured at the 10%–90% level) obtained from a high power
(up to 2-A current) pulse source were used to turn the laser
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FIG. 1. Total (GS + ES) and filtered (ES) intensities.
(a) Experimental turn-on traces for Jp = 1 A and rise time τr = 5 ns.
(b) Numerical simulations using Eqs. (1)–(4). The values
of the fixed parameters are g = 2, Bcap

g = 10, Bcap
e = 100, η =

0.01, and J (t) = 0.4t (0 < t < 500). All intensities are represented
in terms of t ′ = τphott where τphot = 10 ps. The dashed line in (b)
shows the pump current J as a function of the original time t ′. �t

denotes the difference between the GS and the ES turn-on times. The
thick (thin) lines correspond to the total GS + ES (ES) laser output.

on. During the turn-on experiment, the intensity of the laser
field first remains low until it quickly increases exponentially.
The laser turn-on time defines the dynamical GS threshold. The
laser output was detected using a high-speed pin detector with a
cutoff frequency of 30 GHz and a 50-GHz digital oscilloscope.
We simultaneously detect the total output and merely the ES
output using a Bragg filter transmitting the short-wavelength
and reflecting the long-wavelength radiation. We concentrate
on the time difference between the rise up of the GS output
power and that of the ES as measured by the photodetector.
Further details of the experimental technique can be found in
Ref. [14].

Typical experimental time traces are shown in Fig. 1. The
pump current increased linearly in time as J ′(t ′) = (Jp/τr )t ′
where τr = 5 ns is a fixed rise time and Jp is the maximum
pump current. Changing Jp allows us to change the sweeping
rate and to analyze its effect on the two successive turn ons. The
laser turn on at the GS wavelength is seen by an exponential
increase in the output power. After the laser turns on, the GS

FIG. 2. Experimentally measured �t at room temperature (20 ◦C)
and fitting curves. We identify different behaviors for low �t ∼ J−1

and high �t ∼ J −0.4 pump currents J .

output quickly relaxes to a slowly varying steady state that
follows the increasing pump current. The ES output remains
off about 2 ns after the GS turn on. We then observe the ES
turn on as a new exponential increase in the ES output power.
It is followed by a relaxation to a slowly varying steady state
where both GS and ES intensities are nonzero. The reservoir
charge carrier lifetime is typically on the order of 0.1 ns
and cannot explain the nanosecond time difference between
the GS and the ES transitions. Both turn ons experience
significant delays after passing the GS and ES static bifurcation
points due to the inertia of the system response. These delays
result from different physical mechanisms. The delay of the
GS bifurcation is controlled by the slow growth of the dot
population. The delay of the ES bifurcation results from the
time needed to leave a repellent steady state. Figure 1(b) shows
numerical simulations of the dimensionless rate Eqs. (1)–(4).
The intensities are represented in terms of the original time
t ′ = t × τphot where τphot = 10 ps. All other parameters are
documented in the figure caption.

The time difference �t between the GS and the ES turn-on
times shown in Fig. 1(a) depends on the rate of change of
the pump current which is increased by increasing Jp. The
functional dependence of �t on Jp is examined by fitting the
experimental data (see Fig. 2). The fits suggest different scaling
laws for the low and high values of Jp. However, we need to
be cautious in interpreting the power law fits. In particular, we
have noted that fitting the data for the high pump currents leads
to quite different answers depending on the number of data we
consider. This motivates the analysis of the laser rate equations
by looking for approximations of the effective turn-on times
(tth1 and tth2).

The complexities of intradot dynamics constitute multiple
challenging issues to the modeling of simultaneous lasing in
QD lasers. Whereas considering different physical impacts
on simultaneous lasing, all the models [1–3] consider the
appearance of simultaneous lasing as the result of steady
bifurcation transitions. In addition to the laser off state, there
exist three laser on steady states, namely, (1) GS (ES)-on (-off),
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(2) ES (GS)-on (-off), and (3) simultaneous lasing with both
GS and ES states on. In our setup, the laser first undergoes a
bifurcation from the off state to the GS (ES)-on (-off) state as
the pump parameter is slowly increased. It then passes through
a second bifurcation point where simultaneous lasing in the
GS and ES states is possible. Because the pump parameter is
changing in time, the actual bifurcation transitions do not occur
at the static bifurcation points but appear later. The effects of
slow passages through bifurcation points need to be carefully
analyzed for each case [16]. Here, we are facing the problem
of two successive steady bifurcations where the GS and ES
states sequentially become active.

We are using a rate equation model that largely corresponds
to the excitonic models which were originally proposed in
Refs. [1,18] and accounts for the essential intradot processes.
The effect of gain compression is extremely weak in the
vicinity of the thresholds and is, therefore, neglected. The
model consists of the following equations for the GS (ES)
electric field intensity Ig (Ie), the occupational probabilities
of the GS (ES) in a dot ρg (ρe), and the carrier density n in
the wetting layers (WLs), scaled to the two-dimensional QD
density per layer. They are given by

I ′
g,e = [gg,e(2ρg,e − 1) − 1]Ig,e + δ, (1)

ρ ′
g = η[2Fg − ρg − gg(2ρg − 1)Ig], (2)

ρ ′
e = η[Fe − Fg − ρe − ge(2ρe − 1)Ie], (3)

n′ = η[J (t) − n − 4Fe]. (4)

The prime means differentiation with respect to t ≡ t ′/τphot

where τphot = 10 ps is the photon lifetime. η ≡ τphotτ
−1 � 1,

where τ denotes the carrier recombination time. The gain
gg,e(2ρg,e − 1) is defined by the dot population and a gg,e fac-
tor, where gg = 2g and ge = 4g. The factors 2 and 4 account
for the spin degeneracy in the quantum dot energy levels. We
define g as the effective gain factor scaled to the cavity losses
and assume the gain factors and the cavity losses to be identical
for both GS and ES. Fg ≡ B

cap
g ρe(1 − ρg) − Besc

g ρg(1 − ρe)
and Fe ≡ B

cap
e n(1 − ρe) − Besc

e ρe where the terms 1 − ρg,e

correspond to Pauli blocking. The time-dependent recovery of
the QD gain is described by B

cap
g ≡ τ/τ

cap
g and B

cap
e ≡ τ/τ

cap
e ,

where τ
cap
g and τ

cap
en denote capture times. The dimensionless

coefficients B
cap
g,e are in the 10–100 range. To determine the

escape rates Besc
g,e , we use the Kramer relation [19] linking the

capture B
cap
g,e and the escape Besc

g,e rates as

Besc
g,e = Bcap

g,e exp(−�Eg,e/kBT ), (5)

where kB is the Boltzmann constant and T is the plasma
temperature. We assume the GS and ES spacings as �Eg �
50 meV and ES and WL spacings as �Ee � 150 meV. At
room temperature kBT = 25 meV. In Eq. (4), J (t) = J0 + εt

is the time-dependent pump current where ε ≡ Jpτphot/τr is
the rate of change and J0 � 1 is the initial value of the
pump current. A small parameter δ on the right hand side of
Eq. (1) mimics the effect of noise that prevents the intensities
approaching extremely small values during the slow increase
in J (t).

FIG. 3. Bifurcation transition times tth1 and tth2 and �t = tth2 −
tth1 as functions of ε = Jpτph/τr (0.01 < ε < 0.1) in units of τph.
The values of the fixed parameters are J0 = 0.1, g = 2, Bcap

g =
10, Bcap

e = 100, Besc
g,e = 0, and δ = 10−12 (full lines). The two broken

lines from bottom to top are for δ = 10−3 and δ = 10−6, respectively.
The initial conditions correspond to the GS-off state at J = J0.

We wish to analyze the slow passage through the two
successive bifurcation points in detail. To this end, we neglect
the escape processes (Besc

g,e = 0) and plan to determine the
turn-on times of first Ig and then Ie as a function of ε. The
steady bifurcation points are located at JG and JE , and the
actual turn ons occur at Jth1 > JG and Jth2 > JE , respectively.
From the steady-state equations, we determine JG and JE

analytically. If B
cap
e,g > 10, they are well approximated by the

following expressions:

JG =
(

1 + 1

2g

)
and JE =

(
1 + 1

4g

)
Bcap

g

(
1 − 1

2g

)
.

(6)

The expressions in (6) indicate that JG is independent of
the B

cap
e,g , whereas JE is proportional to B

cap
g . In Fig. 3, we

show the numerically computed turn-on times tth1, tth2, and
�t = tth2 − th1 as functions of ε. The times tth1 and tth2 are
determined numerically as the times where Ig,e(t) > Ithres. The
threshold value Ithres = 8 × 10−3 is chosen arbitrarily and is
not significant because the exponential growths of Ig and Ie are
quasi-instantaneous at turn on. The broken lines corresponds to
higher values of the noise parameter δ. As we may expect, the
bifurcation transitions appear sooner if δ is increased, although
its effect is not significant.

Fitting �t as a power law y = axb gives an exponent
b = −1.24 which does not suggest a classical scaling law,
such as −1 or −1/2 [16]. On the other hand, fitting tth1 and tth2

as power laws is more interesting. For tth1, we find b = −0.48,
and for tth2, we obtain b = −0.88. The first threshold exhibits
a clear ε−1/2 scaling law. The second threshold suggests
an ε−1 scaling law but only qualitatively. We conclude that
�t = tth2 − tth1 cannot be fitted by a simple scaling law and
that the two turn ons are controlled by different physical
mechanisms. Figure 4 shows that the GS intensity turn on
is a two stage process. We recall that J = JG is the laser
stability threshold in the absence of the slow variation of the
pump (ε = 0) whereas Jth1 corresponds to the real change
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FIG. 4. Blowup of the GS transition. The broken lines labeled
by ρg and Ig represent the steady states as functions of J (ε = δ=0).
J = JG, Jc, and Jth1 denote the GS steady bifurcation point, the point
where ρg > ρgc = 0.625 for the first time, and the point where Ig(t)
starts to grow, respectively. The fixed parameters are the same as in
Fig. 3 with ε = 0.01 and δ = 10−12. The slow passage starts from the
GS-off state at J = J0.

in stability of the GS-off steady state if ε �= 0. We define
the first stage as the trip from JG to J = Jc(t). Jc(t) marks
the point where ρg(t) surpasses ρgc ≡ 1/2 + 1/(4g), which,
according to Eq. (1) for Ig with gg = 2g marks the point where
the gain gg(2ρg − 1) − 1 becomes positive. Jc(t) depends on
the temporal evolution of ρg(t) which considerably deviates
from its steady-state value ρg if ε = 0. As shown below,
this deviation is O(1) if ε/η = O(1) and will be even more
dramatic if ε/η 	 1. The second stage of the GS turn on
corresponds to the trip from Jc(t) to Jth1.

In order to analyze the first stage where Ig remains
close to zero, we note from the numerical solution that
ρe = O[(Bcap

g )−1] and n = O[(Bcap
e )−1]. These scalings mo-

tivate introducing x = B
cap
e n and y = B

cap
g ρe. Neglecting all

(Bcap
g,e )−1 small terms, Eqs. (2)–(4) simplify as

ρ ′
g = η[2y(1 − ρg) − ρg − gg(2ρg − 1)Ig], (7)

y ′ = ηBcap
g [x − y(1 − ρg)], (8)

x ′ = ηBcap
e (J − 4x). (9)

From the coefficients multiplying the right hand sides of these
equations, we note that x and y are fast variables compared to
ρg and quickly approach their quasi-steady-state values given
by

x = J/4, (10)

y = J/[4(1 − ρg)]. (11)

The remaining Eq. (7) can be rewritten as

ρ ′
g = η[J/2 − ρg − gg(2ρg − 1)Ig]. (12)

Before Ig quickly turns on, Ig remains close to zero. Neglecting
the term multiplying Ig in Eq. (12) and with the initial condition
ρg(0) = J0/2, we determine the following solution for ρg:

ρg(t) = J (t)

2
− ε

2η
[1 − exp(−ηt)]. (13)

The second term in (13) indicates an important effect of the
slowly varying pump since ρg(t) substantially deviates from
its quasisteady regime ρg = J (t)/2 if ε/η = O(1) or larger.
Having ρg(t), we solve Eq. (1) for Ig which is separable. We
find

Ig = Ig(0) exp[η−1ggF (ηt)], (14)

where the growth rate F (s) is defined by

F (s) ≡ ε

η
[1 − exp(−s)] +

[
J0 − 1 − g−1

g − ε

η

]
s + ε

η

s2

2
.

(15)

The function F (s) is negative during the interval 0 < s <

sth1 ≡ ηtth1 which means that Ig is exponentially small during
this time interval. On the other hand, Ig becomes exponentially
large as soon as s > sth1. The critical time sth1 is defined as the
nonzero root of Eq. (15). In implicit form, sth1 = sth1(ε/η) is
given by

ε

η
=

(
1 − J0 + g−1

g

)
sth1

1 − exp(−sth1) − sth1 + s2
th1
2

. (16)

In Fig. 5, we compare tth1 = sth1/η where sth1 is provided
by Eq. (16) with the numerical estimate previously shown
in Fig. 3. The agreement is quantitative for 5 × 10−2 < ε <

1.1 × 10−1. If ε < 5 × 10−2, the analytical solution overesti-
mates the turn-on delay found numerically. It is worthwhile

FIG. 5. Comparison between analytical and numerical estimates
of the turn-on delays. Same values of the parameters as in Fig. 3 with
δ = 10−12 and η = 0.01. Curves labeled by a and b are drawn from
Eqs. (16) and (17), respectively.
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FIG. 6. Blowup of the ES transition. JE and Jth2 denote the ES
bifurcation point and the point where Ie starts to grow, respectively.
The fixed parameters are the same as in Fig. 3 with ε = 0.01 and
δ = 10−12. The slow passage started from the GS-off state at J = J0.

to look for the ε/η large limit of (16) which is also shown in
Fig. 5. In this limit, sth1 → 0 as

sth1 =
√

6
(
1 − J0 + g−1

g

)η

ε
, (17)

which implies an ε−1/2 scaling law for tth1 = sth1/η.
To summarize, the time tth1 of the GS bifurcation transition

follows an ε−1/2 law in the first approximation, and the delay
is significant as soon as ε/η is O(1) or larger.

We next concentrate on how Ie turns on. Ie remains close
to zero until J = Jth2. Figure 6 shows the delayed bifurcation
transition as J (t) passes the ES static bifurcation point JE .
Close to the ES bifurcation point, Ig, ρg, ρe, and n are
following the GS steady state. From the expressions of the
GS steady state, we find that

ρe = J

4
[
B

cap
g

(
1
2 − 1

4g

) + 1
] (18)

where we took into account that B
cap
e is large. Equation (1) for

Ie can then be rewritten as

I ′
e = α(J − JE)Ie + δ, (19)

where α and JE are defined by

α = 4g

2
[
B

cap
g

(
1
2 − 1

4g

) + 1
] , (20)

JE = 2

[
Bcap

g

(
1

2
− 1

4g

)
+ 1

](
1 + 1

4g

)
. (21)

Equation (19) is linear and can be solved with the initial
condition I (0) = I0. The solution is given by

I = I0 exp

{
α

2ε
[(εt + (J0 − JE)]2 − (J0 − JE)2]

}

+ δ

√
2

αε
exp

[
α

2ε
{[εt + (J0 − JE)]2}

]

×
√

π

2

{
erf

[√
α
2ε

(εt + J0 − JE)
]

−erf
[√

α
2ε

(J0 − JE)
]

}
, (22)

where y = erf(x) is the error function. Assuming now J (t) −
JE as a positive O(1) quantity and noting that J0 − JE is
a negative O(1) quantity, erf(±∞) = ±1 as ε → 0. The
expression (22) then reduces to a sum of two exponentials
given by

I = I0 exp

[
α

2ε
{[εt + (J0 − JE)]2 − (J0 − JE)2}

]

+ δ

√
2π

αε
exp

[
α

2ε
{[εt + (J0 − JE)]2}

]
. (23)

The first exponential is an O[exp(−1/ε)] small quantity
for 0 < t < −2ε−1(J0 − JE). On the other hand, the second
exponential is an O[exp(1/ε)] large quantity as soon as J

passes JE . However, its action will be delayed if we assume
δ as an O[exp(−1/ε)] small quantity. The critical time above
which the second exponential will increase is then given by

tth2 = JE − J0

ε
− 2

α

[
ln

(
δ

√
2π

α

)
− 1

2
ln(ε)

]
. (24)

Moreover, the value of J at t = tth2 is

Jth2 = JE − 2ε

α

[
ln

(
δ

√
2π

α

)
− 1

2
ln(ε)

]
. (25)

We have verified that the approximation (25) is in quantitative
agreement with the value obtained by integrating Eq. (19)
numerically (the fixed parameters are the same as in Fig. 3,
ε = 0.01 and δ = 10−12). The first term in (24) suggests an ε−1

scaling law, but the second term in (24) indicates a correction
in ln(ε) which can be significant.

We reported on the turn-on dynamics of a QD laser
operating simultaneously at the GS and ES which can be
important for applications, such as all-optical switches and
converters used in all-optical networks. The slow change
in the pump current is responsible for delayed bifurcations,
and the time interval between the GS and the ES effective
transitions is recorded as a function of the rate of change ε.
Fitting the data by a simple power law is however delicate. By
studying the GS and ES slow passage problems numerically
and analytically, we found that the GS transition is delayed
by an ε−1/2 quantity which becomes significant if the ratio
ε/η is O(1). On the other hand, the slow passage through the
ES transition is characterized by a ε−1 scaling law smoothed
by a ln(ε) correction term. As illustrated in Fig. 3, the main
contribution to �t comes from the ES transition time for small
rates of changes, and we may then expect an ε−1 power law
dependence. On the hand, for larger values of the rate of
change, the two turn-on times are coming closer, and �t is
the difference between two different scaling laws.
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