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This paper focuses on the dispersion properties and mechanism of the one-dimensional strongly nonlinear
acoustic metamaterials (NAMMs) based on the homotopy method. The local bifurcation mechanism, which is
different from conventional local resonance, is found. It is demonstrated that the local period-doubling bifurcation
of multiple cells will induce chaotic bands in the NAMMs, which can significantly expand the bandwidth for
wave suppression. The saddle-node bifurcation leads the system state jumping to the chaotic branch. Furthermore,
the amplitude-dependent dispersion properties enable NAMMs to manipulate elastic waves externally. Study of
broadband tunable abilities reveals that stronger nonlinearity (larger nonlinear coefficient or higher amplitude)
presents a broader nonlinear band gap and larger transmission loss. Moreover, with less attached mass, a low
frequency and broadband are achievable simultaneously. This research may provide useful approaches for elastic
wave control.
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I. INTRODUCTION

Acoustic metamaterials (AMMs) are typically artificial
periodic media structured on a size scale smaller than the
wavelength of external stimuli [1–3]. There has been a great
deal of interest in designing AMMs to exhibit interesting and
extraordinary negative indices [3–9]. Numerous studies [3–11]
focus on linear AMMs (LAMMs) based on the locally resonant
mechanism first found by Liu et al. [2]. The locally resonant
band gaps in LAMMs are widely used for wave manipulation
[1,12,13]. However, the band gaps and wave propagation
in LAMMs are manipulated mainly through material and
structural parameters.

The presence of nonlinear interaction can enhance the
responses of periodic structures [1] and can be used for acous-
tic elements [14,15]. Nonlinear periodic structures (NPSs)
[16–18] exhibit special band-gap properties, such as amplitude
dependence [19], wave coupling [20], subharmonic frequency
[21,22], discrete breathers [23], solitons [24,25], and Rayleigh-
type surface waves [26]. Therefore, NPSs and nonlinear
AMMs (NAMMs) have been attracting increasing attention.
Previous investigations have mainly focused on discrete chains
and granular crystals [19] interacting nonlinearly through
Hertzian contact [27] building upon Nesterenko’s works
[28]. Simulations and experiments demonstrate that there
are bifurcations and highly nonlinear traveling waves in
granular crystals [17,18,29]. Amplitude-dependent dispersion
properties [30] and wave beaming [31] in periodic granular
media have been observed. Acoustic switching, rectification
devices, and logic elements have been realized based on the
bifurcations [17] and band-gap effects [18]. Subsequently,
wave propagation in layered NPSs was considered and
second-harmonic waves were observed [32]. Furthermore, the
critical amplitude for energy transmission [33] and bifurcation-
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induced band-gap reconfiguration [34] in one-dimensional
(1D) NPSs have been studied experimentally. Herbold et al.
[35] studied the wave propagation in a diatomic granular
crystal chain and found that the band-gap effect has a
significant influence on signal transformation; they proved
that its limited frequencies of the acoustic band gap can be
tuned by varying the particle’s material properties, mass, and
initial compression. A 1D strong NAMM has been proved
to increase the sound speed and acoustic impedance [36]. A
nonlinear acoustic lens with a tunable focus was achieved
with granular crystals [37]. Midtvedt et al. [38] designed
nonlinear phononics using atomically thin membranes and
studied their localized flexural modes. The works mentioned
above reveal that the dispersion properties, mechanisms, and
physical effects of strong NAMMs are interesting but have not
been fully studied.

This paper considers a basic 1D model of a NAMM. In
Sec. II we describe our model; the numerical method for
vibration responses is introduced, and nonlinear modes and
chaotic responses of simplified cells are studied. Our main
results are presented in Secs. III and IV. In Sec. III we find
that there is a chaotic band in NAMM, which significantly
expands the bandwidth for wave suppression; the mechanism
analysis demonstrates that the chaotic band is induced by the
local bifurcations of multiple cells and the bifurcation-induced
state transitions are revealed. Subsequently, the methods to
manipulate the nonlinear band gaps with a chaotic band are
presented in Sec. IV. The homotopy approach adopted to
calculate the dispersion curves is elaborated in the Appendix.

II. MODEL AND BASIC DYNAMICS

A. The 1D model of nonlinear acoustic metamaterial

In the 1D basic model of a NAMM, the nonlinear oscillators
with cubic stiffness (fnl = k1x + k2x

3) are attached to the 1D
linear chain, as shown in Fig. 1. This model can explain the
important dynamics of the NAMM.

2470-0045/2016/94(5)/052206(10) 052206-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.052206


FANG, WEN, YIN, YU, AND XIAO PHYSICAL REVIEW E 94, 052206 (2016)

FIG. 1. Basic model of a 1D NAMM.

Defining u and y as displacements of the linear and
nonlinear oscillators in each cell, respectively, with the Bloch
theorem un+1 = unexp(−iκa) of the periodic structures, the
generalized motion function of the system is transformed into

ω2u′′(τ ) + α2u(τ ) = λβ1(y − u) + λβ2(y − u)3,

ω2y ′′(τ ) = −β1(y − u) − β2(y − u)3. (1)

The definitions of the parameters are as follows: τ =
ωt , ωs = √

k0/m, λ = m0/m, β1 = k1/m0, β2 = k2/m0, p =
κα, κ is a wave vector, α symbolizes the lattice constant
α = ωs

√
2(1 − cos p), and the generalized frequency is � =

ω/ωs . The prime denotes the differentiation with respect to
the variable τ .

The numerical integral approach is also adopted to ex-
plore the response properties of the nonlinear system. The
excitation displacement ulb(t) = A0 sin ωt . In the simulations,
the mass m = 1. The natural frequency of the primary
structure is ωs = √

10π . The total nonlinear stiffness of the
attached nonlinear oscillator is the first differential of the
nonlinear restoring force, that is, β1 + 3β2


2. We objectively
assess the strength of nonlinearity by comparing the linear
stiffness β1 with the nonlinear stiffness 3β2A

2
0. Defining

the strength factor of nonlinearity as σ = 3β2A
2
0/β1, if

σ � 1, it is a weak nonlinearity; if 0.1 < σ < 0.3, it is
a moderate nonlinearity; and if σ > 0.3, it is a strongly
nonlinear system. In the simulations below, the five cases
with different β2 are employed to represent different non-
linear strengths. The parameters are λ = 0.5, β1 = 15π,A0 =
0.005; L1, β2 = 0; N1, β2 = 2×104(σ = 0.032, weakly non-
linear); N2, β2 = 1×105(σ = 0.16, moderately nonlinear);
N3, β2 = 2×105(σ = 0.32, strongly nonlinear), N4, β2 =
1×106(σ = 1.6, strongly nonlinear). Here L denotes linear
and N nonlinear.

B. Nonlinear dynamics of simplified cells

The basic characteristics of the NAMMs can be described
with the help of a simplified model of a single cell, which
is simplified as a two degree of freedom (2DOF) nonlinear
system, as shown in Fig. 2(a). To be consistent with the
responses of NAMMs, the excitation displacement applied to
the linear oscillator of the simplified model is ulb(t).

With the harmonic balance method in Eq. (2), we can solve
the steady amplitudes X = [A B]T of the simplified model

[K − ω2M]X + 3

4
βnl(A − B)3 = Fa,

βnl =
[
λβ2

−β2

]
, Fa =

[
ω2

0A0

0

]
, (2)

M =
[

1 0
0 1

]
, K =

[(
ω2

0 + λβ1
) −λβ1

−β1 β1

]
.
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FIG. 2. (a) Simplified model of a single cell. (b) Frequency
responses of the simplified model. The dotted section of the lines
of N1 and N3 are unstable multiple solutions. Here the displacement
transmissibility is defined as TA = A(B)/A0.

The solutions in the real domain express the fundamental
nonlinear dynamic properties of the simplified model, as
illustrated in Fig. 2(b).

The linear 2DOF system has two resonant modes corre-
sponding to two linear modes (LMs). An LM is also a periodic
trajectory. The nonlinearity has relatively less influence on the
first LM, as shown in Fig. 2(b) [see also Figs. 4(a) and 4(c)].
However, the nonlinearity makes the second resonant LM
disappear instead with nonlinear modes (NMs), which result in
a broad range of weak response in Fig. 2(b). A nonlinear mode
is defined as a two- dimensional invariant manifold in phase
space [39–41]. As illustrated in Fig. 3, the invariant manifold of
a linear mode is a straight line whose slope is 1/[1 − (ω/ωa)2],
with ωa = √

β1. In contrast, the invariant manifolds of the two
NMs are curves [42]. The quasiperiodic long-term motion of
the first NM forms a flexural region near the curve. However,
the chaotic motion of the second NM in a long time interval
forms a region containing disordered curves. For the system
without damping, the lengths of the straight lines are infinite,
but the volumes of the invariant manifolds of the two NMs are
finite, which means that the motions are bounded. Therefore,
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FIG. 3. Displacements (top graph) and invariant manifolds (bot-
tom graph) of the simplified model in N3. In displacement plots,
the red and blue lines represents u(t) and y(t), respectively. (a) First
normal mode � = 0.74 and in-phase motion. (b) Second normal
mode � = 1.65 and out-of-phase motion. The dash-dotted straight
line and green curve represent the LM and NM, respectively. The
slope of the straight line is 1/[1 − (ω/ωa)2], where ωa = √

β1. In this
case, � = 0.74 is quasiperiodic but � = 1.65 is chaotic.
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FIG. 4. Responses of the simplified single cell and NAMMs with
different cell numbers under different excitation amplitude A0 with a
constant frequency �ex = 2 (and λ = 0.5, β1 = 15π , and β2 = 10 ×
104). (a) Numerically calculated power spectra of the simplified cell.
(b) Numerically calculated power spectra of the nonlinear chain with
two cells. (c) Main frequency components of the displacement u(t) in
the simplified cell. In (a) and (c), magenta, red, and green dashed lines
correspond to the first LM, the second LM, and �ex = 2, respectively;
the circled numbers 1 and 2 are bifurcation points. (d) Maximum
displacement amplitude u(t) of the single-cell change with excitation
amplitude A0.

the nonlinear modes have capacities to suppress the resonances
in the linear regime.

This capacity to suppress resonance results from the
nonlinear mode bifurcations and period-doubling bifurcations.
Furthermore, these bifurcations may cause chaotic responses
in the systems. The power spectra of a single cell and two cells
indicate this procedure.

As shown in Figs. 4(a) and 4(b), both the power spectra
of the simplified cell and the chain with two cells generate
bifurcations under different ranges of driving amplitudes.
Under the excitations �ex = 2 (this frequency is chosen in
the optical branch in metamaterial below), the simplified
cell generates bifurcations of the periodic solutions near
the LMs and �ex. The main frequency components in the
displacement responses of the single cell are identified with
a numerical method and are illustrated in Fig. 4(c). At point
1, period-doubling bifurcations appear in the neighborhood
of the second LM [40] and �ex, which causes the motions
to degrade from periodic into quasiperiodic trajectories; in

the interval between 1 and 2, the branch of the second LM
merges with the excitation branch. After critical point 2, much
more period-doubling bifurcations appear, so the motions
cascade into chaos in the simplified cell. Point 2 is a saddle-
node bifurcation point where a jump occurs. Further increasing
the parameters will merge the frequency peaks; meanwhile, the
peaks become sparser and move bilaterally but mainly upward.
The power spectra of the chain with two cells also show this
cascades route to chaos: Period bifurcations are stimulated
near the four LMs but mainly near the two higher ones; when
A0 reaches a certain value, the motions will cascade into chaos.
Furthermore, much lower amplitudes are needed for the two
cells to cause chaotic motions than that of a single cell, because
the chain with two chains has larger complexities (four degrees
of freedom). Similarly, in the multicell chain model, even with
a small A0, much denser bifurcations will be produced near
the multiple LMs and then chaos is generated.

The discussion above has expounded the frequency re-
sponses, the nonlinear modes, bifurcations, and the chaos
induced by them in a simplified single cell and two-cell
chains. In the following we discuss how these properties
influence the band gaps and responses of the nonlinear acoustic
metamaterial.

III. DISPERSION AND MECHANISM

A. Dispersion and response properties
of the 1D metamaterial chain

The homotopy analysis method (HAM) [43], which is
compatible with strongly nonlinear systems, is adopted in this
paper to calculate the dispersion curves of a nonlinear periodic
structure. The detailed HAM is elaborated in the Appendix.

To validate the analytical solutions and investigate the gen-
eral characteristics of NAMMs, we use the directly numerical
integration method on the finite periodic structures with 26
cells. Furthermore, a displacement boundary is applied to the
left-end linear oscillator of the primary chain: The motion
equation of the first oscillator is mü1 = k0(u2 + ulb−2u1) +
fNL. The excitation amplitude A0 is also the amplitude of
the initial guessed solution u0(t) of u(t) in the HAM. The
boundaries of the right-end linear oscillator are free and its
steady responses are analyzed. The vibration transmissibility
is defined as TA = Amax/A0, where Amax is the maximum
amplitude of the response displacement of the last linear
oscillator from the actuator. For the systems with damping,
a linear damping m0μ(ẏ − u̇) is added in the nonlinear
oscillators. Only weak damping is considered because the
strong damping will suppress the nonlinear effect.

The influence of the nonlinearity degrees on band gaps
and responses is investigated Figs. 5 and 6. The dispersion
curves have two branches: acoustic and optical branches.
These comparative studies indicate that both LAMMs and
NAMMs have elastic wave band gaps, but there are essential
distinctions of the band-gap structures between them: The
HAM accurately predicts the boundaries of band gaps and
dispersion curves of both weak and strong NAMMs, but the
upper boundaries of band gaps of NAMMs become blurred in
both TA and power spectral density (PSD).

For finite LAMMs, the locally resonant mechanism gen-
erates a complete stop band near the natural frequency of
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FIG. 5. (a) and (c) Frequency responses and (b) dispersion curves of LAMMs and NAMMs. The simulation time is 400 s. (a) Chain without
damping. (c) Chain with weak damping μ = 0.01; in this case, we find the maximum amplitude in the steady response interval 220–400 s.
Different color curves in (b) correspond to the legends in (a) and (c).

the attached linear resonator [4,8] where the plane wave is
attenuated. By contrast, the wave propagation occurs without
attenuation in the passband, in which the LAMMs will
generate multimode resonances. Unfortunately, the attached
local resonators double the modal numbers of a finite structure,
so the number of the resonances in the passband increases
simultaneously. Increasing the cell number will also increase
the resonances. These results indicate that LAMMs will
generate violent responses in the passband, although the
disturbances are attenuated in the band gap under nonmode
excitation. Moreover, 1:1 resonances and the dense modes
near this frequency are always prominent, so the wave energy
is localized in a narrow band.
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FIG. 6. Power spectral densities from the sine-sweep excitations.
The sweeping frequency increases slowly from 0.1 to 10 Hz in 400 s.

The band-gap structures of the NAMMs are complex. In
the range of the acoustic branch, the frequency responses
(the maximum displacements) of NAMMs are similar to
the corresponding linear ones, where the near-linear mode
resonances still exist and vibration energy can be transmitted
with a little attenuation. The simplified cells are helpful
to explain this phenomenon: The responses of NAMMs in
acoustic branches mainly depend on the low-frequency modes
of multiple cells, but the nonlinearity mainly affects the high-
frequency modes, therefore, they are similar to the LAMMs
in this domain. However, there is an important difference.
As shown in Fig. 3, the nonlinear modes have finite phase
volumes, which mean that the amplitudes of NMs in acoustic
branch are bounded even for the system without damping. The
property also benefits low-frequency wave suppression.

For a weak NAMM with a low amplitude, its complete
stop band is similar to that of the LAMMs. However, in the
optical branch, the dense modal resonances are significantly
suppressed, which causes the TA of NAMMs to be much
smaller than that of LAMMs. This effect on the optical branch
(OB) is due to the hardening characteristic of the cubic spring.
The frequency range is defined as the OB band. Furthermore,
as the dispersion curves show, increasing the strength of
nonlinearity will broaden the band gaps (without an OB band)
while the TA in the band gaps and OB bands decrease markedly.
Power spectral densities from sine-sweep excitations in Fig. 6
also prove this result. Therefore, the width of the band gap
reflects the wave transmissibility.

For the N4 case, the nonlinearity is strong enough and
the maximum steady amplitudes are even lower than the
minimum values of LAMMs. Its optical branch is approached
by the HAM algorithm with convergence-control parameters
h1 = 1 and h2 = −7. Because many frequency components
are generated above � = 2.3, as shown in Figs. 5 and 6,
the frequency range of the optical branch of such a strong
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FIG. 7. Frequency spectra of the responses of LAMMs and
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NAMM exceeds � = 2.3. This case indicates that OB band
in the NAMM must be taken into consideration rather than
considering band gap effect only, especially for the strongly
nonlinear ones. Moreover, the interacting modes and the
subharmonic (or superharmonic) resonances in NAMMs may
be generated in the band gap; therefore, some of the energy
can transfer into the band gap such that the nonlinear band
gap may not be the complete stop band.

The influence of weak damping on dispersion properties is
also studied. Both TA and PSD indicate that although the weak
damping partly attenuates the resonances in pass bands and
weaken the high-frequency components, it will not change
the essential properties stated above, because a weak damping
will not stop the system from cascading into chaos for strong
nonlinearity.

B. Mechanism: Bifurcation-induced chaotic band

To explore the mechanism of the OB bands of NAMMs
significantly suppressing the wave propagations, the monofre-
quency responses of the metamaterials are presented. In Fig. 7
three excitation frequencies � = 1.894, 2.23, and 3 are in the
nonlinear band gap, the OB band, and the high-frequency stop
band of N3, respectively. In addition, � = 1.894 is exactly a
resonant frequency. As is known, the wave energy in LAMMs
is localized in 1:1 resonance or modal resonance frequencies.
In contrast, for NAMMs, the frequency spectra indicate that a
monofrequency excitation will generate a broadband response
and exhibits band-gap behaviors. Therefore, the energy is
redistributed to the broadband spectra but not localized at
the 1:1 resonance or modal resonance frequencies as with
LAMMs, which is an energy dispersion phenomenon. Further
analysis of the spectra indicates that the strong nonlinearity
induces chaotic responses, which formulate a chaotic band in
Figs. 5(a) and 5(c). The chaotic band connects the nonlinear
band gap and the high-frequency stop band. Furthermore,
a low-frequency excitation can generate a broadband high-
frequency response that exceeds the cutoff frequency of the
passband, which is superharmonic and with mode interaction.
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FIG. 8. Frequency responses of LAMMs and NAMMs with four
and eight cells. Here nc represents that there are n cells in the chain.
The parameters come from the N2 case.

We found that this is another mechanism in metamaterials
that is different from the conventional local resonance and this
mechanism in NAMMs enables both the band gap and chaotic
band to suppress the wave propagations, which significantly
expands the bandwidth for wave attenuation. Moreover, under
the excitation in the high-frequency stop band, the response of
NAMMs is similar to that of LAMMs, which is similar to the
case under small amplitudes.

The dynamics of nonlinear cells shows the process cas-
cading into chaos. For the simplified single cell, bifurcations
are generated near the two LMs (mainly near the higher
one) and the excitation frequency �ex and it is easier to
generate bifurcations of periodic trajectories near the four
LMs of a two-cell chain and �ex. However, in the multi-DOF
NAMM model, much denser bifurcations are produced near
the multiple LMs in the OB band, so we cannot identify the
huge number of bifurcations: Then chaos is generated.

To better reveal the state transitions of the NAMM with
multiple cells, we studied their bifurcation properties. To
generate a stable stop band and a chaotic band that suppresses
the resonances, only four cells are needed, as illustrated in
Fig. 8. Further increasing the cell number hardly changes the
response properties in the chaotic band.

To understand the transition between chaotic and periodic
states occurring in the NAMM, we conduct parametric
continuation using the Newton-Raphson (NR) [44] method
on a NAMM chain with four cells under two driving fre-
quencies �ex = 2 and 2.2. The responses from numerical
integration of the motion equation of NAMMs with different
numbers of cells are calculated. The results are illustrated in
Figs. 9(a)–9(d). The damping effect is not considered here.
Applying the Newton-Raphson method, we solve the family
of periodic orbits as a function of driving amplitude A0. The
linear stabilities of periodic solutions are judged by Floquet
multipliers of the Poincaré map of the state motion equations
of the nonautonomous system [45]. When all multipliers are in
the unit circle, the considered periodic solution is stable. When
the multipliers leave the unit circle, bifurcation occurs. Each
saddle-node (SN) bifurcation is responsible for changing the
stability of periodic solutions. As a result of period-doubling
bifurcation, the period of the solution is doubled.

In Figs. 9(a) and 9(b) the two frequencies present two
typical bifurcation diagrams of the NAMM model. The
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FIG. 9. Bifurcation, stability, and responses. The maximum displacement Amax as a function of driving amplitude A0 under two driving
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maximum displacement responses (in 400 s) of NAMMs with
different numbers of cells changing with excitation amplitude
A0 are shown in Figs. 9(c) and 9(d). We should mention that
the integral time will influence Amax but will not change the
state transitions.

Let us first take Fig. 9(a) as example. There is a stable
periodic branch in the interval 0 < A0 < 2.92 × 10−3. A
period-doubling (PD) bifurcation point appears at A0 =
2.45 × 10−3. Generally, a PD bifurcation will start another
branch. However, all the period-doubling branches of the
NAMM are almost identical to the original monoperiodic
branches and their linear stabilities are identical too, which
means that all the branches above the PD bifurcation points
become quasiperiodic obits. Before the PD bifurcation, the
NAMM behaves as a LAMM, as shown in Fig. 9(c). At
the first SN bifurcation point A0 = 2.92 × 10−3, the stability
transition makes the system jump to another branch. The jump
point in Fig. 9(c) fits the SN bifurcation well. However, no
stable periodic or quasiperiodic solutions are found with the
numerical NR and Floquet methods in the following branch.
Figure 9(c) illustrates that the NAMMs with 4, 8, and 16 cells
jump to the chaotic branch. Although the periodic solutions
in the interval 0.011 < A0 < 0.015 are stable, the responses
still are chaotic. The averaged variation trends of the response
curves are in accord with the blue quasiperiodic branch in the
bifurcation diagram: Amax increases slowly and even decreases
with A0. Therefore, we can deduce that it is the chaotic

response of the complex system that causes the nonexistence
of stable periodic family solutions.

The bifurcation diagram under �ex = 2.2 in Fig. 9(b) has
more complex structures but the laws are similar. The first PD
bifurcation appears at A0 = 2.15 × 10−3 near the first SN bi-
furcation. However, the state jumps to another stable quasiperi-
odic branch then. Similarly, the responses in this branch still are
chaotic. Along the branch, except for a small interval near the
second SN bifurcation point (in the magnified plot), no stable
periodic family solutions are found because of chaos. The
responses in Fig. 9(d) are consistent with the laws in Fig. 9(b).

The analysis above demonstrates that the period-doubling
bifurcation causes the chaos and the SN bifurcation point
makes the state jump to chaotic branches. In brief, the chaotic
band in NAMMs (as a whole) is induced by the period-
doubling bifurcations of multiple cells (in parts). We define
this mechanism as a local bifurcation. Analyses of nonlinear
modes of simplified cells indicate that the strong nonlinearity
can suppress the resonant responses in quasiperiodic and
chaotic regimes, so NAMMs can suppress the resonant modes
(in LAMMs) in the OB bands.

IV. MANIPULATING BAND GAPS
WITH A CHAOTIC BAND

The different properties of NAMMs are casued by the
nonlinear stiffness 3β2


2 of the attached oscillators. Both
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FIG. 10. Influences of nonlinear coefficients and amplitudes on
band gaps of NAMMs (with λ = 0.5 and β1 = 15π ): (a) β2 = 1×105

and (b) A0 = 0.005.

A0 and β2 influence the nonlinear stiffness 3β2

2, therefore

the band properties changing with β2 and A0 are similar, as
illustrated in Figs. 10(a) and 10(b).

The energy-frequency dependence of the bifurcations
causes the amplitude-frequency dependence of the band gaps
of NAMMs. With increasing A0, the lower boundary of the
nonlinear band gap moves slowly, while its upper boundary
shifts much faster to the high frequency; the upper boundary
of the OB band remians almost constant for weak and moderate
nonlinearities, but will increase when strong nonlinearity
occurs. Therefore, the widths of the nonlinear band gap
and total band increase. Higher amplitude gives rise to
larger transmission loss, because higher amplitudes have more
remarkable nonlinear effects. Therefore, the local bifurcation
enhances the capacity and broadens the band to suppress elastic
waves. Therefore, the amplitude dependence enables NAMMs
to manipulate the elastic plane-wave propagations and this
advantage is more prominent for strong NAMMs.

The nonlinear stiffness coefficient β2 can also induce
bifurcations to modulate the chaotic band. Combining the
properties in Fig. 2, it is known that a larger β2 causes
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FIG. 11. Influences of mass ratio on (a) the frequency responses
of NAMMs with 16 cells and (b) the band gaps. For L2, β1 = 50π ;
for N, β1 = 15π, β2 = 10 × 104, and A0 = 0.01. Here no (+) OB
denotes without(with) OB band.

lower responses and a smaller TA when the chaotic band is
formulated. Increasing β2 can also broaden the nonlinear band
gap (and the total band with the OB band will increase fast
for strongly nonlinear NAMMs), while the lower boundary
remains almost steady.

The mass ratio λ attached to the matrix attracts extensive
attention in practice. As shown in Fig. 11, for both LAMMs
and NAMMs, the lower boundaries of the band gaps shift
downward with increasing λ. Although the band gaps’ widths
of LAMMs are expanded by increasing β1, the expense is the
elevation of their locations. Therefore, a broader band gap
with less attached mass, and a low frequency and broadband
for LAMMs may be contradictory [20]. By contrast, when
λ>0.5, the dispersion characteristics of NAMMs enable them
to achieve low frequency and broadband band gaps simulta-
neously. For the strong NAMMs with a low λ, the widths with
an OB band may vary in a nonmonotonic way. That is because
when λ→0, the connections between the nonlinear oscillators
and the primary masses approach rigidity, which make the
structure tend to be a monatomic chain, whose normalized
cutoff frequency of the pass band is �c = 2. Furthermore, as
shown in Fig. 11(a), the average transmissibility in the chaotic
band is weakly dependent on λ, therefore the resonances can
be suppressed with less attached mass.
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V. CONCLUSION

We have studied the dispersion properties and bifurcation
behaviors of NAMMs based on the HAM approach and nu-
merical method. The local bifurcation mechanism in NAMMs,
which is different from conventional local resonance, was
found. It was demonstrated that the chaotic band in NAMMs is
induced by the local period-doubling bifurcations of multiple
cells. Bifurcations cause the disappearance of the multimodal
resonances in the OB band and the generation of energy
dispersion and mode interaction phenomena instead, which
significantly expand the bandwidth for wave suppression.
The saddle-node bifurcation makes the system state jump
to the chaotic branch, along which, although the periodic
solutions found by continuation approach are stable in a
small interval, the responses still are chaotic. Furthermore,
the nonlinear modes in the acoustic branch have bounded
amplitudes even for the system without damping, which also
benefits low-frequency wave suppression.

The amplitude-dependent nonlinear band gaps enable
NAMMs to manipulate waves externally in the broadband.
General rules of the parameters used to neatly tune the band
gaps are studied: Stronger nonlinearity (which increases the
amplitude A0 or the nonlinear stiffness coefficient β2) presents
a broader nonlinear band gap and causes a larger transmission
loss, while obtaining a broader band gap with less attached
mass and gaining low frequency and broadbands are achievable
simultaneously (but not contradictory) for nonlinear acoustic
metamaterial. Moreover, only four cells are needed to generate
a stable stop band and a chaotic band that suppresses the
resonances; the average transmissibility in the chaotic band is
weakly dependent on the mass ratio.
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APPENDIX: THEORETICAL METHOD FOR
CALCULATING DISPERSION RELATIONS

For linear metamaterial β2 = 0, Eq. (1) is transformed into a
linear eigenvalue problem, which results in a linear dispersion
equation

ω4 − (α2 + β1 + λβ1)ω2 + α2β1 = 0. (A1)

The locally resonant elements can generate the stop
bands of elastic waves. This equation also indicates that the
dispersion properties of linear metamaterials are relevant to
the structure parameters only, but are independent of the
amplitudes. The motion differential equation for the linear
monatomic chain is ü + α2u = 0 and the eigenfrequency
solution is ωc = α. Therefore, for a finite linear monatomic
chain, the normalized highest frequency of the passband is
�max = ωc, max/ωs = 2.

Because multiscale techniques and perturbation methods
based on linearized solutions in (A1) are proper for weak
nonlinear periodic structures, this paper adopts the HAM
proposed by Liao [43] to calculate the dispersion relationships.
This method is compatible with strongly nonlinear systems. In

the HAM, the zeroth-order deformation equations are

(1 − q)Lu[U − u0(τ )] = qh1H1(τ )Nu[U,Y,�],

(1 − q)Ly[Y − y0(τ )] = qh2H2(τ )Ny[U,Y,�], (A2)

where q ∈ (0,1]; u0(τ ) and y0(τ ) are initially guessed solutions
of unknown parameters u(τ ) and y(τ ), respectively; hi and
Hi(τ ) are auxiliary parameters and functions that can adjust
the convergence region and velocity of the homotopy series
solutions; and L(·) and N(·) are linear and nonlinear operators,
respectively, as defined in Eq. (A3). The subscripts u and y

represent the corresponding displacements

Lu(f ) = ω2
0

(
d2f

dτ 2
+ f

)
, Ly(f ) = ω2

0
d2f

dτ 2
,

Nu[U,Y,�(q)] = �2(q)
∂2U (τ,q)

∂τ 2

+α2U (τ,q)−λβ1(Y−U )−λβ2(Y − U )3,

Ny[U,Y,�(q)] = �2(q)
∂2Y (τ,q)

∂τ 2

+β1(Y − U ) + β2(Y − U )3. (A3)

The properties of the linear operators are

Lu(c1 sin τ + c2 cos τ ) = 0, Ly(c3τ + c4) = 0. (A4)

The initial guesses are

u0(τ ) = A0 sin τ, y0(τ ) = B0 sin τ, B0 = α2 − ω2
0

λω2
0

A0,

(A5)

where A0 is also the parameter of interest to control the elastic
waves in the nonlinear metamaterials. Furthermore, the high-
order deformation equations are

Lu[um(τ ) − χmum−1(τ )] = h1H1(τ )Ru
m[U,Y,�],

Ly[ym(τ ) − χmym−1(τ )] = h2H2(τ )Ry
m[U,Y,�], (A6)

where

χm =
{

0, m = 1
1, m > 1

and

Ru(y)
m [U,Y,�] = 1

(m − 1)!

∂m−1Nu(y)

∂qm−1

∣∣∣∣q = 0 (A7)

with

Ru
m[U,Y,�] = 1

(m − 1)!

∂m−1Nu

∂qm−1

∣∣∣∣q = 0

=
m−1∑
j=0

u′′
m−1−j (τ )

(
j∑

i=0

ωiωj−i

)
+ α2um−1(τ )

− λβ1[ym−1(τ ) − um−1(τ )]

− λβ2

m−1∑
j=0

j∑
i=0

[ym−1−j (τ ) − um−1−j (τ )][yi(τ )

−ui(τ )][yj−i(τ ) − uj−i(τ )],
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Ry
m[U,Y,�] = 1

(m − 1)!

∂m−1Ny

∂qm−1

∣∣∣∣q = 0

=
m−1∑
j=0

y ′′
m−1−j (τ )

(
j∑

i=0

ωiωj−i

)

+β1[ym−1(τ ) − um−1(τ )]

+β2

m−1∑
j=0

j∑
i=0

[ym−1−j (τ ) − um−1−j (τ )][yi(τ )

−ui(τ )][yj−i(τ ) − uj−i(τ )].

The subscript m denotes the mth-order variable. The
solutions then can be approximated by the former Nth order at
q = 1,

u(τ ) ≈
N∑

m=0

um(τ ), y(τ ) ≈
N∑

m=0

ym(τ ), ω ≈
N∑

m=0

ωm. (A8)

To determine the coefficients ci in (A4), let us define the initial
boundaries of the high-order series as

um(0) = u′
m(0) = 0, m � 1.

With the base functions {sin τ, sin 3τ, . . . , sin(2m − 1)τ },
Ru

m(τ ) and R
y
m(τ ) can be expressed as

Ru
m(τ ) = am,1 sin τ +

M∑
j=2

am,j sin(2j − 1)τ ,

(A9)

Ry
m(τ ) =

M∑
j=1

bm,j sin(2j − 1)τ .

The parameters am,j and bm,j are relevant to the unknown
frequencies ωj−1. Because the expressions in (A9) already

include all base functions and the solutions of the linear op-
erators also contain the base functions, the auxiliary functions
can be defined as constants Hi(τ ) = 1. Furthermore, to avoid
the secular terms τ sin τ and τ cos τ in um(τ ),am,j = 0 must be
in (A9). This formula leads to the solution of ωj −1. In addition,
to avoid the secular terms τm in ym(τ ), c3 = c4 = 0 must be
in (A4). The boundary condition um(0) = 0 leads to c2 = 0.
Moreover, the coefficient c1 can be obtained with u′

m(0) = 0.
However, for arbitrary convergence-control parameters h1

and h2, the Taylor series in Eq. (A8) expanded in the zero
domain converges slowly or even cannot converge at q = 1,
which means that the two parameters should be chosen
properly. The homotopy Padé approximant [43] provides
the convergent solutions in a sufficiently large region. The
[m,n]-order Padé approximant is expressed as

�m,n(q) =
(

m∑
k=0

Pkq
k

)/(
1 +

n∑
k=1

Pm+1+kq
k

)
, (A10)

where Pk depends on ωm. Setting q = 1 in Eq. (A10) will
obtain a rapidly convergent solution; therefore, the [m,n] Padé
approximant of the frequency is ω(m,n) = �m,n(1). Generally,
ω(2,2) and ω(3,3) are sufficiently accurate for the nonlinear
metamaterial model. For example,

ω(2, 2) = ω0 + ω2
1(ω4 − ω3) + ω3

2 + ω1ω2(ω2 − 2ω3)

ω2
2 + ω2

3 + ω1(ω4 − ω3) − ω2(ω4 + ω3)
.

(A11)

The homotopy Padé technique is a combination of the
conventional Padé technique with the homotopy analysis
method. If the convergence-control parameters (especially the
h1 and h2) and the order of the Padé approximant are chosen
properly, the approach will converge to the exact solutions
even under strong nonlinearities.
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