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Spatial splay states and splay chimera states in coupled map lattices
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We study the existence and stability of splay states in the coupled sine circle map lattice system using analytic
and numerical techniques. The splay states are observed for very low values of the nonlinearity parameter,
i.e., for maps which deviate very slightly from the shift map case. We also observe that depending on the
parameters of the system the splay state bifurcates to a mixed or chimera splay state consisting of a mixture
of splay and synchronized states, together with kinks in the phases of some of the maps and then to a stable
globally synchronized state. We show that these pure states and the mixed states are all temporally chaotic for
our systems, and we explore the stability of these states to perturbations. Our studies may provide pointers
to the behavior of systems in diverse application contexts such as Josephson junction arrays and chemical
oscillations.
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I. INTRODUCTION

Extended dynamical systems which model coupled phase
oscillators such as the coupled map lattice system [1–5]
which we study here show a wide variety of spatiotemporal
behavior. The existence of different types of states and
their respective dynamics depend largely on the connection
topology and the strength of coupling between the individual
oscillator sites as well as on the initial condition. Some
of the dynamical behavior seen for such systems includes
synchronized behavior, spatiotemporally periodic behavior,
mixed or chimera states, splay states, and numerous others.
In this paper, we discuss the existence and stability of splay
states in a coupled map lattice of sine circle maps [3] which is
a discrete space, discrete time version of systems of coupled
phase oscillators and their bifurcations to a variety of states,
including mixed states which we call the splay chimera states.

The splay state, or the antiphase state, is a special type
of phase-synchronized state, and is often seen in arrays of
coupled phase oscillators. Let θ (0),θ (1),θ (2), . . . ,θ (N − 1) be
the phases of N such coupled oscillators. If the phases of the
oscillators were to maintain a splay state then the phase of any
kth oscillator, θ (k), is given by θ (0) + 2πT k

N
, where T denotes

the period of the splay state, and k = 0, . . . ,N − 1 [6–12].
Such dynamical states can occur in large numbers. If we have
a splay state with N coupled oscillators, then there are (N − 1)!
equivalent splay states leading to the phenomenon of attractor
crowding [13]. If it is possible to switch reliably between these
splay states in a physical system, then it can be used as a storage
element [14]. A variant of this definition of the splay state has
been used in Ref. [15]. This adopted a definition where a splay
state is given by θ (k) = θ (0) + 2πk/N,k = 0, . . . ,N − 1, i.e.,
the phases are evenly distributed around a unit circle. This
corresponds to T = 1 in the former definition. In the present
paper, we use this definition of Refs. [15–17] as our definition
of the splay state and call these states “spatial splay states” to
distinguish them from the earlier definition.

*joydeep@physics.iitm.ac.in
†gupte@physics.iitm.ac.in

As mentioned above, coupled phase oscillator arrays exhibit
a variety of pure states, such as the synchronized and splay
states. In addition, they can also exhibit a variety of chimera
states or mixed states, e.g., chimera states with phase synchro-
nized and phase desynchronized subgroups of oscillators have
been observed in phase oscillator arrays with continuous time
evolution [18–20]. Here we discuss the existence and stability
of spatial splay states as well as splay chimera states in a
system of coupled sine circle maps. The splay chimera states
seen here are mixed states in which the phases of some of the
maps of the system show a splay-like diagonal structure, and
others show phase synchronized and phase jump behavior.

We note that pure splay states have been observed in
laboratory systems like arrays of coupled Josephson junctions,
coupled multimode laser systems, and coupled Staurt-Landau
oscillators. The stability of such states has been studied in
coupled Josephson junction arrays [6–9]. Splay states have
been found to be neutrally stable in the presence of a purely
resistive load [6,7] and have been found to be stable states with
purely capacitive loads [8]. Strogatz and Mirollo gave an exact
theory that explained this neutral stability [10]. Nichols and
Wiesenfield have shown analytically, that if N → ∞, splay
states can become attracting or repelling or neutrally stable
depending on the coupling and the conductance term in the
governing equations [9]. In an array of globally pulse-coupled
rotators pure splay states are found to marginally stable [11].
The application of such states in general to beam steering
[21] and beam forming in the context of repulsively coupled
Stuart-Landau oscillators was discussed [22]. In delay coupled
Stuart-Landau systems, the stabilization of splay states was
achieved using the speed gradient method from control theory
[12].

As mentioned above, we study the splay states and splay
chimera states in the context of a system of coupled sine circle
maps, a model for a system of oscillators. A diffusively coupled
system of sine circle maps has been studied in Ref. [23].
Coupled map lattice systems where time and space are discrete,
but map variables are continuous, have always been considered
useful models of extended systems, as they are analytically
and computationally more tractable than continuous flows
but retain the complexity and variety which can be found in
their solutions. Chimera states of different kinds have already
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been observed in coupled map lattice systems [3–5]. We show
here that a sine circle map CML with two groups of maps
sharing a global coupling can show pure spatial splay states
which bifurcate to mixed states with increasing strength of
nonlinearity in the individual maps. In the presence of even
higher nonlinearity, these mixed states bifurcate to globally
synchronized states. We also study the temporal behavior of
the system and find that it is chaotic in nature as well as the
sensitivity of the system to perturbations.

Our paper is organized in the following manner: Sec. II
discusses the model and form of coupling, which is global
coupling for a system with two subgroups, and distinct values
of intragroup and intergroup coupling. Section III discusses
the spatial splay states and their temporal fixed points and
stability, as well as multiple copy spatial splay states and their
stability. The Gershgorin circle theorem is used to find the
bounds on the eigen-values, and these are compared with
numerically obtained eigenvalues. We discuss the temporal
behavior of the two-copy spatial splay states in Sec. IV A,
using Lyapunov exponents and the order parameter as our tools
of analysis. Section IV B discusses the bifurcation behavior of
the splay states, mixed states are discussed in Sec. IV C, and the
stability of the spatial splay state to perturbation is discussed in
Sec. IV D. Section V summarizes our conclusions. We utilize
several theorems from linear algebra for our stability analysis.
These are summarized in Appendix A. We also discuss the
stability of the k-copy splay state in Appendix B.

II. THE MODEL

We use a globally coupled sine circle map lattice system
with two groups of maps, in which all elements in one group
are coupled to each other with a given coupling strength, and
to all the elements in the other group with another coupling
strength [3]. Each single sine circle map [24] evolves by the
equation

θn+1 = θn + � − K

2π
sin(2πθn) mod 1, (1)

where � is the frequency ratio parameter in the absence of
nonlinearity and K determines the strength of the nonlinearity.
This map shows Arnold tongues organized by frequency lock-
ing and quasiperiodic behavior [25]. Physical systems where
behavior similar to frequency locking and quasiperiodicity in
the circle map is seen, are forced Rayleigh-Benard convection
[26], cardiac cells, and biological models [27]. The single map
shows universality in mode-locking structure prior to both
period doubling routes to chaos, and quasiperiodic routes to
chaos [24,25] depending on the value of �. The evolution
equation for the globally coupled CML model with two distinct
groups of maps is given by [3]

θσ
n+1(i) = θσ

n (i) + � − K

2π
sin
[
2πθσ

n (i)
]+ 2∑

σ ′=1

εσσ ′

Nσ ′

×
⎛
⎝Nσ ′∑

j=1

{
θσ ′
n (i)+�− K

2π
sin
[
2πθσ ′

n (i)
]}⎞⎠ mod 1.

(2)

FIG. 1. The diagram above illustrates the connection scheme of
the globally connected network. The black dots represent the maps in
each group with three maps in each group. Each map in the system is
coupled to the maps in its own group via a coupling ε1 (represented
by dotted edges) and to the maps in the other group via a coupling ε2

(represented by solid edges).

This equation defines the evolution of the ith map in the
group σ , where σ takes values 1, 2, and Nσ is the number of
maps in the group σ . We also define the coupling parameters
to be ε11 = ε22 = ε1 and ε12 = ε21 = ε2 where ε1 + ε2 = 1.
Thus, our model consists of two groups of identical sine circle
maps with Nσ being the number of maps in the group σ . Each
map in a group is coupled to all the maps in the its own group
by the parameter ε1, whereas it is coupled to the maps in the
other group by the parameter ε2 (Fig. 1). Thus the system of
Eq. (2) is controlled by three independent parameters, K,�,ε1.

Chimera states, where the phases of maps in one group
are all synchronized, and the phases in the other group are all
desynchronized, have been observed as solutions of Eq. (2) [3]
on evolution from an initial condition where one of the groups
were assigned constant phases and the phases of the maps
in the other group were assigned randomly values between
0 and 1. For the same initial condition it was found that
clustered chimera states exist in the system. We note that
high-dimensional dynamical systems, such as the one under
study, are multiattractor systems and are strongly sensitive to
different classes of initial conditions [23]. We hence examine
the evolution of Eq. (2) with a class of initial conditions which
is completely distinct from those of Ref. [3] and hence results
in a distinct class of spatiotemporal behavior.

In this paper, we use an initial condition where the entire
system of 2N lattice sites supports a single spatial splay state
where the phase difference between any two consecutive maps
is given by 1

2N
. If we iterate Eq. (2), using this initial condition;

the single spatial splay state is destabilized and breaks into
two identical spatial splay states for low values of K , i.e., low
nonlinearity. The phases of the maps in each of the group are
such that they separately constitute splay states which are exact
copies of each other. Thus the initial splay state settles down
to a period 2 splay state. The two states are shown in Fig. 2(a)
and Fig. 2(b).

We note that the spatial splay states can have a variety
of temporal behaviors. Hence, when we use the term splay
states in the subsequent discussion, we mean that their
spatial structure is splay, i.e., the phase angles are uniformly
distributed over a circle. Their temporal behavior is discussed
separately in each context.
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FIG. 2. (a) We plot an initial condition, a spatial splay state throughout the system where the difference between the phases of two consecutive
maps is 1

20 , where the system has 20 maps, with 10 maps in each subgroup. This initial condition for (b) for K = 10−10, � = 2
7 ,ε1 = 0.01

evolves to a spatial splay state with two copies. The phase difference between any two consecutive maps of each copy is given by 1
20 . The phase

difference between the last map of group 1 and the first map of group 2 is 0.55. (c) A space time plot of the above state.

III. STABILITY ANALYSIS OF SPATIAL SPLAY STATES

Consider the evolution equation (2). We examine the
condition for a frozen spatial splay state for this equation.

A. Fixed points

Let the phases of the maps for a single splay state spanning
the 2N lattice sites be θ1

s (0) = 0, θ1
s (1) = 1

2N
, θ1

s (2) =
2

2N
, . . . , θ1

s (N − 1) = N−1
2N

, θ2
s (0) = N

2N
, . . . , θ2

s (N − 1) =
2N−1

2N
. For these phases to be frozen in time we must have

θσ
s (i) = θσ

s (i) + � − K

2π
sin
[
2πθσ

s (i)
]+ 2∑

σ ′=1

εσσ ′

Nσ ′

×
⎛
⎝Nσ ′∑

j=1

{
θσ ′
s (i) + �− K

2π
sin
[
2πθσ ′

s (i)
]}⎞⎠ mod 1

(3)

or

K

2π
sin
[
2πθσ

s (i)
]

= �+
2∑

σ ′=1

εσσ ′

Nσ ′

⎛
⎝Nσ ′∑

j=1

{
θσ ′
s + �− K

2π
sin
[
2πθσ ′

s (i)
]}⎞⎠− qσ

i .

(4)

Here qσ
i is an integer, which can differ for different values

of i and σ . For any two maps in a given group σ we

can write

K

2π

[
sin 2πθσ

s (i) − sin 2πθσ
s (j )
] = qσ

j − qσ
i . (5)

The right-hand side of Eq. (5), i.e., qσ
j − qσ

i , can take values
0,±1,±2, . . . . The quantity [sin 2πθσ

s (i) − sin 2πθσ
s (j )] on

the left-hand side of the same equation can have values within
the bounded set, [−2,2], and the maximum value of K is 1.
So the left-hand side of Eq. (5) can take values only from the
bounded set, [− 1

π
, 1
π

]. Thus, the only possible value of qσ
j −

qσ
i is 0, which implies q1

0 = q1
1 = · · · = q1

N−1 = q1 and q2
0 =

q2
1 = · · · = q2

N−1 = q2. This implies that for nonzero values
of K the only possible solution that can be frozen in time is
when all the maps in a group are synchronized, i.e., all the
maps in the group have equal phases. Hence, a single spatial
splay state which spans all the sites and is frozen in time can
exist only when K = 0, i.e., for shift maps. For K = 0, Eq. (4)
takes the form

� +
2∑

σ ′=1

εσσ ′

Nσ ′

⎡
⎣ Nσ ′∑

j=1

(
θσ ′
s + �

)⎤⎦ = qσ
i . (6)

If we substitute the phases for the single spatial splay state in
the above equation, then we have for group 1,

2� + 3N − 1

4N
− ε1

2
= q1. (7)

For group 2,

2� + N − 1

4N
+ ε1

2
= q2. (8)
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Solving Eqs. (7) and (8) and for �,ε1 we have

� = q1 + q2

4
− 2N − 1

8N
, (9)

ε1 = q2 − q1 + 1

2
. (10)

As we have restricted the values of ε1,� to [0,1], from equation
Eq. (10) we find that q2 − q1 = 0, so that ε1 = 1

2 . If we choose
q1 = q2 = 1,2, then the values of � remain within [0,1]. So
the single, system wide, spatial splay state can be frozen

in time for two sets of parameter values for a given N . These
are K = 0, ε1 = 0.5, � = 0.5 − 2N−1

8N
, 1 − 2N−1

8N
.

B. Stability matrix

We now examine the stability of the solutions of Eq. (2).
Here we set up the stability matrix of the system. The general
form of the Jacobian for the evolution equation (2) at any time
step is a 2N × 2N matrix and is given by

J =
[
A B

C D

]
. (11)

Here A, B, C, D are matrices of order N × N :

A =

⎡
⎢⎢⎢⎣
(
2 − N−1

N
ε1 − ε2

)
f ′[θ1

n (1)
]

ε1
N

f ′[θ1
n (2)
] · · · ε1

N
f ′[θ1

n (N )
]

ε1
N

f ′[θ1
n (1)
] (

2 − N−1
N

ε1 − ε2
)
f ′[θ1

n (2)
] · · · ε1

N
f ′[θ1

n (N )
]

· · · · · · · · · · · ·
ε1
N

f ′[θ1
N (1)
]

ε1
N

f ′[θ1
N (2)
] · · · (

2 − N−1
N

ε1 − ε2
)
f ′[θ1

N (N )
]

⎤
⎥⎥⎥⎦, (12)

D =

⎡
⎢⎢⎢⎣
(
2 − N−1

N
ε1 − ε2

)
g′[θ2

n (1)
]

ε1
N

g′[θ2
n (2)
] · · · ε1

N
g′[θ2

n (N )
]

ε1
N

g′[θ2
n (1)
] (

2 − N−1
N

ε1 − ε2
)
g′[θ2

n (2)
] · · · ε1

N
g′[θ2

n (N )
]

· · · · · · · · · · · ·
ε1
N

g′[θ2
N (1)
]

ε1
N

g′[θ2
N (2)
] · · · (

2 − N−1
N

ε1 − ε2
)
g′[θ2

N (N )
]

⎤
⎥⎥⎥⎦, (13)

B =

⎡
⎢⎢⎢⎣

ε2
N

g′[θ2
n (1)
]

ε2
N

g′[θ2
n (2)
] · · · ε2

N
g′[θ2

n (N )
]

ε2
N

g′[θ2
n (1)
]

ε2
N

g′[θ2
n (2)
] · · · ε2

N
g′[θ2

n (N )
]

· · · · · · · · · · · ·
ε2
N

g′[θ2
n (1)
]

ε2
N

g′[θ2
n (2)
] · · · ε2

N
g′[θ2

n (N )
]

⎤
⎥⎥⎥⎦, (14)

C =

⎡
⎢⎢⎢⎣

ε2
N

f ′[θ2
n (1)
]

ε2
N

f ′[θ2
n (2)
] · · · ε2

N
f ′[θ2

n (N )
]

ε2
N

f ′[θ2
n (1)
]

ε2
N

f ′[θ2
n (2)
] · · · ε2

N
f ′[θ2

n (N )
]

· · · · · · · · · · · ·
ε2
N

f ′[θ2
n (1)
]

ε2
N

f ′[θ2
n (2)
] · · · ε2

N
f ′[θ2

n (N )
]

⎤
⎥⎥⎥⎦, (15)

where f ′[θ1
n (j )] = 1 − K cos[2πθ1

N (j )] and g′[θ2
n (j )] =

1 − K cos[2πθ2
N (j )]. If we substitute the value K = 0 in the

Jacobian of Eq. (11), then it has the form

JS =
[
A B

B A

]
, (16)

where

A =

⎡
⎢⎢⎢⎣
(
1 + ε1

N

)
ε1
N

· · · ε1
N

ε1
N

(
1 + ε1

N

) · · · ε1
N

· · · · · · · · · · · ·
ε1
N

ε1
N

· · · (
1 + ε1

N

)

⎤
⎥⎥⎥⎦, (17)

B =

⎡
⎢⎢⎢⎣

ε2
N

ε2
N

· · · ε2
N

ε2
N

ε2
N

· · · ε2
N

· · · · · · · · · · · ·
ε2
N

ε2
N

· · · ε2
N

⎤
⎥⎥⎥⎦. (18)

The matrix JS [Eq. (16)] is a block circulant matrix [28]. We
can block diagonalize it using a matrix P whose form [28,29]

is given by

P = F2 ⊗ IN , (19)

where IN is a N × N identity matrix and F2 is a 2 × 2 Fourier
matrix [28] which is of the form

F2 = 1√
2

[
1 1

1 ω

]
(20)

with ω = exp( 2πi
2 ) = cos π + i sin π = −1. So we have

P−1JSP = J ∗
S =
[
A + B 0

0 A − B

]
, (21)

where

A + B =

⎡
⎢⎢⎢⎣
(
1 + ε1+ε2

N

)
ε1+ε2

N
· · · ε1+ε2

N
ε1+ε2

N

(
1 + ε1+ε2

N

) · · · ε1+ε2
N

· · · · · · · · · · · ·
ε1+ε2

N
ε1+ε2

N
· · · (

1 + ε1+ε2
N

)

⎤
⎥⎥⎥⎦,

(22)
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A − B =

⎡
⎢⎢⎢⎢⎣

(
1 + ε1−ε2

N

)
ε1−ε2

N
· · · ε1−ε2

N

ε1−ε2
N

(
1 + ε1−ε2

N

) · · · ε1−ε2
N

· · · · · · · · · · · ·
ε1−ε2

N
ε1−ε2

N
· · · (

1 + ε1−ε2
N

)

⎤
⎥⎥⎥⎥⎦,

(23)

A + B and A − B are block circulant matrices [28]. The
j th eigenvalue λj of the matrix A + B and A − B is
given by

λA±B
j = 1 + ε1 ± ε2

N
+ ωj (ε1 ± ε2)

N
+ ω2j (ε1 ± ε2)

N

+ · · · + ω(N−1)j (ε1 ± ε2)

N
, (24)

where ω is the N th root of unity, i.e., ω = exp( 2πi
N

)
Setting j = 0 we obtain the zeroth eigenvalues of the

matrices A + B, A − B. So,

λA+B
0 = 1 + ε1 + ε2

N
× N

= 1 + ε1 + ε2

= 2,

λA−B
0 = 1 + ε1 − ε2

N
× N

= 1 + ε1 − ε2

= 2ε1.

For any j > 0 we have

λA±B
j = 1 + ε1 ± ε2

N
(1 + ωj + ω2j + · · · + ω(N−1)j )

= 1,

where we use ε1 + ε2 = 1 and a property of the N th root of
unity. So the eigenvalues of the matrix J ∗

S for K = 0, are 2,
2ε1, and 2N − 2 fold degenerate eigenvalues 1. For ε1 = 0.5
the eigenvalues are 2, and the 2N − 1-fold degenerate
eigenvalues 1. As the Jacobian [Eq. (11)] does not depend on
�, the eigenvalues are same for both sets of parameter values at
which the single system wide spatial splay states are frozen in
time. Hence, for our system the frozen single spatial splay state

is unstable in one direction, and neutrally stable in all the other
directions in the phase space. We note that an initial condition,
which is a single splay state over the 2N sites, did not evolve to
a frozen spatial splay state in any of our simulations. However,
we do find that this initial condition evolves to two copies of a
spatial splay state for several parameter values. Figure 2 shows
the phase diagram of the system in the space of parameters
�, ε1 evolved with an initial condition which is a single splay
state. The parameter space is divided into a 100 × 100 grid
and each initial condition is evolved for 1.5 × 106 iterates
at every grid point, and the phase configuration of system 2
is checked with an accuracy of 10−4. In Fig. 3(a) we show
the phase diagram in �,ε1 space for K = 0. Here 32.91%
of the total area of Fig. 3(a) (with an accuracy 10−4) is
occupied by the two-copy splay states [Fig. 2(b). If we set
the value of K to 10−8, with the same accuracy, 32.11% of
the total area of the phase diagram in Fig. 3(b) corresponds
to the two-copy splay states. Figures 3(a) and 3(b) clearly
show that a large portion of the �,ε1 space contains the
two-copy splay states which evolve from an initial condition
where the phase difference between any two consecutive map
was 1/2N [Fig. 2(a)] using Eq. (2). At the boundary of this
region the two-copy splay states bifurcate to the phase slipped
states due to the change in parameters �, ε1. See Fig. 3(c)
where two-copy splay states with a phase slip between group
1 and group 2 are shown. We discuss the stability of the
two-copy splay state in the next section.

C. Two-copy spatial splay states

Here we analyze the stability of the two-copy spatial
splay state. Let the phases of the maps in the system for
a two-copy splay state be θ1

n (0), θ1
n (1), θ1

n (2), . . . , θ1
n (N −

1), θ2
n (0), θ2

n (1), θ2
n (2), . . . ,θ2

n (N − 1) with θ1
n (i) − θ1

n (i +
1) = 1

2N
, θ2

n (i) − θ2
n (i + 1) = 1

2N
, and θ1

n (0) = θ2
n (0). The

Jacobian matrix of the system can be reduced to a simpler form
as in the previous subsection and the bounds on the eigenvalues
can be obtained. Since we have two identical splay states,
constituted by the maps in each group, let us rewrite phases of
the maps in any one of them as θ (0), θ (1), θ (2), . . . ,θ (N − 1)
where θ (i) − θ (i + 1) = 1

2N
. Then the Jacobian [Eq. (11)]

takes the form

J2S =
[
C D

D C

]
, (25)

where

C =

⎡
⎢⎢⎢⎣
(
1 + ε1

N

)
[1 − K cos 2πθn(0)] ε1

N
[1 − K cos 2πθn(1)] · · · ε1

N
[1 − K cos 2πθn(N − 1)]

ε1
N

[1 − K cos 2πθn(0)]
(
1 + ε1

N

)
[1 − K cos 2πθn(1)] · · · ε1

N
[1 − K cos 2πθn(N − 1)]

· · · · · · · · · · · ·
ε1
N

[1 − K cos 2πθn(0)] ε1
N

[1 − K cos 2πθn(1)] · · · (
1 + ε1

N

)
[1 + K cos 2πθn(N − 1)]

⎤
⎥⎥⎥⎦, (26)

D =

⎡
⎢⎢⎣

ε2
N

[1 − K cos 2πθn(0)] ε2
N

[1 − K cos 2πθn(1)] · · · ε2
N

[1 − K cos 2πθn(N − 1)]
ε2
N

[1 − K cos 2πθn(0)] ε2
N

[1 − K cos 2πθn(1)] · · · ε2
N

[1 − K cos 2πθn(N − 1)]
· · · · · · · · · · · ·

ε2
N

[1 − K cos 2πθn(0)] ε2
N

[1 − K cos 2πθn(1)] · · · ε2
N

[1 − K cos 2πθn(N − 1)]

⎤
⎥⎥⎦. (27)

The matrix J2S [Eq. (25)] is also a block circulant matrix [28]. We can again block diagonalize it using P,

P−1J2SP = J ∗
2S =

[
C + D 0

0 C − D

]
, (28)
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where

C + D =

⎡
⎢⎢⎣
(
1 + ε1+ε2

N

)
[1 − K cos 2πθ (0)] ε1+ε2

N
[1 − K cos 2πθ (1)] · · · ε1+ε2

N
[1 − K cos 2πθ (N − 1)]

ε1+ε2
N

[1 − K cos 2πθ (0)]
(
1 + ε1+ε2

N

)
[1 − K cos 2πθ (1)] · · · ε1+ε2

N
[1 − K cos 2πθ (N − 1)]

· · · · · · · · · · · ·
ε1+ε2

N
[1 − K cos 2πθ (0)] ε1+ε2

N
[1 − K cos 2πθ (1)] · · · (

1 + ε1+ε2
N

)
[1 − K cos 2πθ (N − 1)]

⎤
⎥⎥⎦,

(29)

C − D =

⎡
⎢⎢⎣
(
1 + ε1−ε2

N

)
[1 − K cos 2πθ (0)] ε1−ε2

N
[1 − K cos 2πθ (1)] · · · ε1−ε2

N
[1 − K cos 2πθ (N − 1)]

ε1−ε2
N

[1 − K cos 2πθ (0)]
(
1 + ε1−ε2

N

)
[1 − K cos 2πθ (1)] · · · ε1−ε2

N
[1 − K cos 2πθ (N − 1)]

· · · · · · · · · · · ·
ε1−ε2

N
[1 − K cos 2πθ (0)] ε1−ε2

N
[1 − K cos 2πθ (1)] · · · (

1 + ε1−ε2
N

)
[1 − K cos 2πθ (N − 1)]

⎤
⎥⎥⎦.

(30)

We have chosen the nonlinearity parameter, K , to lie in the
interval [0,1]. Therefore each element of C + D is guaranteed
to be non-negative. This implies that C + D is a non-negative
irreducible matrix. According to the Frobenius-Perron theorem
[Appendix A 1], the matrix C + D has one eigenvalue λ which
is greater than or equal to all other eigenvalues. Let (C − D)+
be the matrix constructed by taking the modulus of each of

the element in C − D. Its easy to see that each element of
(C + D) is greater than equal to the corresponding element of
the matrix (C − D)+. So the relation (C + D) � (C − D)+
is valid. Then according to Wielandt’s lemma [Appendix
A 2], the modulus of any eigenvalue of C − D is less than
equal to the largest eigenvalue λ of C + D. So the largest
eigenvalue of the Jacobian for the two-copy splay state is the
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bound. (b) The Gershgorin disks for the one-step matrix J ∗

2S are shown. The parameters are K = 10−10, � = 2
7 , ε1 = 0.01, where we obtain a

two-copy state as seen in Fig. 1(a). (c) The location of the upper bound and the largest eigenvalue. For these values of the parameters, the upper
bound and the largest eigenvalue coincide to graphical accuracy. (d) The numerically calculated eigenvalues for a system with 150 lattice sites
in each group.

largest eigenvalue in C + D. We calculate the upper bound
of this largest eigenvalue and check whether the numerically
calculated eigenvalues are within this limit. We use the
Gershgorin’s theorem (Appendix A 3) for this purpose.

Upper bound on the eigenvalues of the Jacobian

The bounds on the eigenvalues are obtained by constructing
the Gershgorin disks, whose centers have values given by the
diagonal elements of the matrix of interest and whose radii
are given by the sum of the off-diagonal elements in the row
or column. The diagonal elements of the matrix C + D are
real and nonnegative, which implies that the Gershgorin row
region and the column region will consist of disks whose
centers lie on the real axis. For the state with two copies
of splay states the center (cj ) of the j th Gershgorin disk
is (1 + ε1+ε2

N
)[1 − K cos (2πθ0 + 2πj

2N
)]. The radius of the j th

disk in the Gershgorin row region rj is

rj = ε1 + ε2

N

{
N−1∑
i=0

∣∣∣∣1 − K cos

[
2πθ (0) + πi

N

]∣∣∣∣
−
∣∣∣∣1 − K cos

[
2πθ (0) + πj

N

]∣∣∣∣
}

(31)

or

rj = N − 1

N
− K

N

×
{

cos[2πθ (0)]
(
1 − cos π

N

)− sin[2πθ (0)] sin
(

π
N

)
1 − cos

(
π
N

) }

+ K

N
cos

[
2πθ (0) + πj

N

]
. (32)
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The radius of the ith disk in the column region is

si = N − 1

N

{
1 − K cos

[
2πθ (0) + πi

N

]}
. (33)

Since the centers of every disk in the Gershgorin row and
column region lie on the real axis, the two bounds set by
the Gershgorin row and column regions are given by the two
largest numbers at which the discs from each of these sets
intersect the real axis, i.e., max(cj + rj ) and max(ci + si). The
required bound on the eigenvalues is the minimum of these two
values. So the upper bound on the eigenvalues of Jacobian for
the two-splay copies is

min(max(cj + rj ),max(ci + si))

with 1 � j � N and 1 � i � N . The Gershgorin disk and
the bound on the eigenvalues obtained from them is plotted
in Figs. 4(a) and 4(b). The largest eigenvalue obtained
numerically by diagonalizing the matrix J2S , is also shown, for
the parameter values in Fig. 4(d). It is clear that the eigenvalue
saturates the bound here.

If we have a state with exactly k copies of splay states
throughout the system and each of them consists of 2N/k

number of maps, then we can also calculate the upper bound
on the eigenvalues of the Jacobian due that state (Appendix

B 1). In that case the upper bound is given by

min

⎛
⎝max

⎧⎨
⎩2 − kK

2N

2N
k

−1∑
j=0

cos

[
2πθ (0) + πj

N

]

−K cos

[
2πθ (0) + πj

N

]⎫⎬
⎭,

×max

{
2 − 2K cos

[
2πθ (0) + πi

N

]}⎞⎠
for 1 � i, j � 2N

k
− 1. We can also calculate the upper bound

on the eigenvalues if this k copy splay state has a temporal
period Q (Appendix B 2). The form of the upper bound in this
case is given by

max

[
max

((
1 + 1

N

)
{1 − K cos[2πθj (i)]

+R(Aj + Bj ,i)}
)]

, (34)

where Aj , Bj are block matrices which constitute the Jacobian
for the step j and R(Aj + Bj ,i) is the sum of the elements of
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FIG. 6. (a) Given an initial condition where the all the maps constitute a spatial splay state [Fig. 2(a)] we obtain two copies of the splay
state after evolution. The system, with 150 circle maps in each group, was iterated for 3 000 000 steps. Splay states were obtained at parameter
values K = 10−11, � = 2

7 , ε1 = 0.01. (b) For the parameter values K = 10−6, � = 2
7 , ε1 = 0.01 the two groups still synchronize, but the size

of the splay states decrease. (c) For the same values of � and ε1 if we increase K to 10−4, then the maps in group 2 synchronize completely
[i.e., sites (150–300)], and in group 1, the phases of some maps are part of a splay-like state (roughly between sites 1 to 100 and 130 to
150) whereas the remaining maps show a jump (roughly between site 100 and 130) in their phases. (d) For K = 10−2, � = 2

7 , ε1 = 0.01 the
behavior between group 2 maps and group 1 maps is interchanged. (e) Increasing K to 1 gives a global synchronized state.

the ith row of the matrix Aj + Bj except only the diagonal
element and 1 � j � Q, 0 � i � N − 1.

Except for the case with a temporal period Q, we note
that the analysis here is for a single-step stability matrix. To
consider the temporal behavior of the two-copy spatial splay
state, we examine the Lyapunov exponent of the system. This
is discussed in the next section.

IV. TEMPORAL BEHAVIOR AND BIFURCATIONS

A. Lyapunov exponents and order parameter for the two-copy
spatial splay states

The numerically calculated largest eigenvalue of the one-
step Jacobian [Fig. 4(d)] for the two-copy splay state turns

out to exceed one. However, we also see that the splay states
maintain their spatial structure upon further iterations. These
suggest that this two-copy splay state may be temporally
chaotic. To confirm this, we numerically calculated the largest
Lyapunov exponent for 106 points on the trajectory, after
discarding the initial 3 × 106 iterations and for the next 106

points on the trajectory using the Gram-Schmidt procedure
at each step. Following this process, the largest Lyapunov
exponent turns out to be 0.693, which indicates that the
trajectory of the two-copy splay state is temporally chaotic.
The sum of the Lyapunov exponents is negative, which implies
that the system is dissipative. Figure 5(a) shows that almost
all the Lyapunov exponents lie near zero. The probability
distribution for the Lyapunov spectrum shows a peak around

052204-9



JOYDEEP SINGHA AND NEELIMA GUPTE PHYSICAL REVIEW E 94, 052204 (2016)

zero [Fig. 5(b)]. To show that the phase distribution of the maps
in this two-copy chaotic splay states is stable, we calculate, at
each time step, the order parameter r = |〈exp(i2πθ )〉| [31]
where the average is taken over all the maps with same
dynamics. We calculate this quantity by taking the average
over the whole system since we have two splay copies and
they also synchronize. We calculate this quantity for 106 time
steps after neglecting the initial transient steps. Figure 5(d)
clearly shows that phase distribution of maps for the two-copy
splay states is stable.

We note that the two-copy spatial splay state undergoes
bifurcations to other kinds of states with increase in the non-
linearity parameter. We discuss these in the next subsection.

B. Bifurcation

We note that the two-copy spatial splay state resulting from
a single-splay initial condition bifurcates to other kinds of
states if the nonlinearity parameter is increased. The splay
state bifurcates to other synchronized states and mixed states.
We list the states that can be observed if we increase K . For
each case the initial condition was the single spatial splay
state as in Fig. 2(a). Four possible states were seen after the
bifurcation.

(1) The two-copy pure spatial splay states are observed
[Fig. 6(a)] when the nonlinearity parameter K is below
10−7. They appear in the range 0 < K < 10−7. (2) In this
snapshot, the phase of the ith map and (i + 150)th map are
equal, and they maintain this equality as they evolve in time.
The difference between the consecutive maps in each group
increases very slowly with i resulting in a two-copy splay-like
structure. This configuration appears approximately in the
range 10−6 < K < 10−5. (3) When K is around 10−4 we
obtain another kind of mixed state. Here we see that phases of
the maps in one group remain spatially synchronized (sites
151–300) and in the other group, the phases of some of
the maps show a splay-like diagonal structure (sites 1–100,
130–150) while the remaining maps show phase jumps (100–
130) [Fig. 6(c)]. (4) If we increase K even higher, then near
K ≈ 10−2 the mixed state remains the same, but the behavior
of the two groups is interchanged [Fig. 6(d)]. Now all the
maps in group 1 are spatially synchronized, and in group 2,
maps at sites roughly between 200 and 250 show a phase
jump and sites 151 to 200 and 250 to 300 show a splay-like
diagonal structure. These splay-chimera configurations appear
approximately in the range 10−4 < K < 0.05. (5) For K above
0.05, all the maps are spatially phase synchronized [Fig. 6(e)].
We calculate the global order parameter R′ =∑2N

i=1 ei2π/2N

for the entire lattice for the entire range of range of K value
for which the dynamical states in Fig. 6 appear and plot this in
Fig. 7(a). We observe that in the regime of the two-copy spatial
splay states 0 < K < 10−7 and two-copy splay-like states
10−6 < K < 10−5, the time variation of the order parameter
R′ indicates that both the structures are stable with respect to
the variation of K . Between these two regimes the spatial splay
states start to bifurcate to splay-like states as in Fig. 6(b) with
slopes decreasing with the variation of K . We thus see that
R′ increases between K = 10−7 and K = 10−6. We further
observe that the global order parameter R′ fluctuates in the
range 10−4 < K < 0.05, which indicates a variation within
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FIG. 7. (a) The order parameter is calculated for K taking values
between zero to one. For each value of K , Eq. (2) is iterated for
3 × 106 times using the single splay initial condition after which the
order parameter for the whole system is calculated. (b) The bifurcation
route which was realized using ε1 = 0.01 and � = 2

7 and varying K

from 0 to 1.

the splay-chimera structures. We can also observe the onset
of global synchronization in Fig. 7(a) when R′ goes to one
near K ≈ 0.05. A schematic of this entire bifurcation route is
shown in Fig. 7(b).

For constant � and ε1 we plot the bifurcation diagram
for a typical site of the system by varying K from 0 to 1
[Figs. 8(a)–8(e)]. We see that the phases of each site for the
splay states, live inside a thin chaotic band [Fig. 8(a)]. The
phase space available to a single site increases in size when
the system shows two synchronizing mixed states [Figs. 8(b)
and 8(c)]. In the cases of single mixed states we observe that
the available phase space spans from 0 to 1 for a single site
[Fig. 8(d)]. This scenario remains the same for the globally
synchronized case also [Fig. 8(e)]. Figure 8(f) shows that the
largest Lyapunov exponent is positive up to K = 1 implying
that all the trajectories for the states in Figs. 5(a)–5(e) are
temporally chaotic.

C. Chimera splay state

As mentioned above, the spatial splay states bifurcate to
mixed splay states or chimera splay states with increase in
the value of the nonlinearlity parameter K . We obtain the
mixed splay states when the value of K is roughly between
10−5 and 10−2. For values of K near 10−4 we observe that
the mixed state consists of an entire group where all the
maps are phase synchronized, and in the other group, some
maps are organized in a splay-like diagonal structure and the
rest of the maps have phase jumps [Figs. 6(c) and 6(d)]. We
calculate the complex order parameter r(t) = |〈exp(i2πθ )〉|
for the desynchronized group, which contains the mixed states
of splay-like diagonal structure and the state with phase jumps.
Figure 9(a) shows that this order parameter is stable, implying
that the structure remains stable with time. For values of K

around 10−2 we see that the behavior of the maps in the
two groups are interchanged. The order parameter calculated
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for the desynchronized subgroup in that case indicates its
aperiodic nature [Fig. 9(b)]. On the other hand, the calculation
of the order parameter for the synchronized groups (group 2
for K = 10−4, and group 1 for K = 10−2) shows that they
remain synchronized with time.

We also calculate the largest Lyapunov exponent for
the above two cases. For both of these we get a positive
largest Lyapunov exponent. For both the parameter values
K = 10−4, 10−2 the largest Lyapunov exponent is positive
and takes the value λlargest = 0.693 and the smallest Lyapunov
exponent is λsmallest = −3.91 (See Fig. 10).

D. Response to perturbation

In this section we study the response of two copy
splay states to perturbations of very low strength. Let
	n{θ1

n (1), θ1
n (2), . . . , θ1

n (N ), θ2
n (1), θ2

n (2), . . . , θ2
n (N )} be

the original phases at time step n. We choose the perturbation
of the form κζκ , where κ is strength of perturbation and ζκ

is a random number between 0 and 1. First we iterate Eq. (2)

using the system-wide single splay state as the initial condition
[Fig. 2(a)], in the parameter region where two copy splay states
are observed as the final state. At a given time step (n = 106)
we introduce the perturbation so that the evolution equation
has the form

θσ
n+1(i) = θσ

n (i) + � − K

2π
sin
[
2πθσ

n (i)
]

+
2∑

σ ′=1

εσσ ′

Nσ ′

⎧⎨
⎩

Nσ ′∑
j=1

(
θσ ′
n + � − K

2π
sin
[
2πθσ ′

n

])⎫⎬⎭
+ κζκ mod 1. (35)

From the next step we turn off the per-
turbation and follow the two trajectories,
(1)	n{θ1

n (1),θ1
n (2), . . . ,θ1

n (N ), θ2
n (1), θ2

n (2), . . . ,θ2
n (N )}

corresponding to the unperturbed splay state and
(2) 	′

n{θ
′1
n (1), θ

′1
n (2), . . . ,θ

′1
n (N ), θ

′2
n (1), θ

′2
n (2), . . . ,θ

′2
n (N )}

corresponding to the perturbed trajectory. We calculate
the Euclidean distance between these two trajectories, i.e.,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2000  4000  6000

or
de

r 
pa

ra
m

et
er

 (
R

)

time
(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2000  4000  6000

or
de

r 
pa

ra
m

et
er

 (
R

)

time

FIG. 9. (a) Order parameter for group 1 (blue) and group 2 (red) at (a) K = 10−4 and group 2 at (b) K = 10−2 with ε1 = 0.01 and � = 2/7.
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FIG. 10. Lyapunov spectrum of system 2 at parameters (a) K = 10−4, (b) K = 10−2 with ε1 = 0.01 and � = 2/7.

√∑i=2N
i=1 [θn(i) − θ ′

n(i)]2/2N , at each time step. Using a

small value of κ (κ = 10−7) we calculate the Euclidean
distance for the next two million steps. Figure 11(a) shows
that the perturbed trajectory evolves in the neighborhood
of the original trajectory in an aperiodic fashion. We also
observe that the variation of the Euclidean distance with time

shows (1) laminar regions where the variation in the distance
between the trajectories at successive time steps is less that
10−5 and (2) burst regions where the variation in the distance
between successive time steps exceeds this threshold. Let l

and l′ denote the lengths of these laminar and burst regions.
The distribution of the probabilities for the occurrence of
laminar regions of length l follows stretched exponential
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FIG. 11. (a) The plot of the Euclidean distance vs the number of iterations for κ = 10−5, K = 10−10, � = 2/7, ε1 = 0.01. The initial
condition was a single-splay state through out the system. The time steps on the x axis are from the time step at which the perturbation was given.
(b) The distribution of the probability of occurrence of laminar regions of length l vs the length of the laminar regions. The function exp (−αlβ )
was fitted to this distribution with α = 0.934 ± 0.007, β = 0.966 ± 0.005. (c) The plot of the probability of occurrence of bursts region of
length l′ vs the length l′ of the burst regions. The function exp [(−ζ l′)δ] is fitted to this. This gives ζ = 0.154 ± 0.007, δ = 1.944 ± 0.255. (d)
The FTLEs are calculated using time intervals of 21 steps for a total of 3 × 106 time steps. The histogram is plotted using 50 bins between
[−0.72,0.72]. The largest FTLE is 0.691. The red dots denote the FTLEs whose probability of occurrence is near 10−6. The values κ = 10−7,
τ = 10−5, K = 10−10, � = 2/7, ε1 = 0.01 were used for the above plots.
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behavior given by

P (l) = exp[−(αl)β], (36)

whereas the distribution of probabilities for the existence of
burst regions of length l′ follows the behavior

P ′(l′) = exp[−(ζ l′)δ]. (37)

The numerical values of the constants α,β,ζ,δ can be found
in the captions of Figs. 11(b) and 11(c). These numerical
values depends on the strength of perturbation, i.e., κ to the
original trajectory, i.e., these constants depend on how far the
perturbed trajectory is from the original trajectory. However,
the functional forms of P (l),P (l′), i.e., Eqs. (36) and (37) are
seen to be the independent of κ and are similar to the behavior
seen in random walks in the presence of traps.

The probability distribution of the finite time Lyapunov
exponents [Fig. 11(d)], calculated from the data of the time
series in Fig. 11, shows that most of the FTLEs lie near
zero, while the largest FTLE is 0.69, which is close to the
value of the largest LE calculated by taking a long time
average in Sec. IV A. The perturbed and the original trajectory,
while moving through the different parts of the phase space,
come closer when there are locally dominant contracting
directions and move apart from each other when there are
locally dominant expanding directions. The laminar regions
are obtained when the trajectories maintain a constant distance,
corresponding to regimes where the neutral directions are
dominant. The perturbation strength is sufficiently low [13]
so that no hopping between multiple attractors occurs. The
regions where the dominant local behavior is contracting
function as traps, leading to the stretched exponential behavior
seen in Figs. 11(b) and 11(c).

V. CONCLUSION

In this paper we consider a globally coupled system of two
groups of sine circle maps, with different values of intragroup
and intergroup coupling. This system shows the existence of
a variety of solutions. Here we concentrate on the analysis
of spatial splay states, viz., states where the phase difference
between maps at successive sites is a constant. Such states
and their multiple copies are obtained when the system is
evolved with an initial condition which is a spatial splay
state, and for a regime where the nonlinearity constant K

takes very small values, i.e., the system is very close to
a system of coupled shift maps. We carry out the stability
analysis of the system and use the Gershgorin theorem to
obtain analytic bounds on the eigenvalues. The numerical
analysis of the system at certain parameter values shows that
the largest eigenvalue nearly saturates the analytic bound. Such
states are found to be temporally chaotic. Bifurcations from
the spatial splay states are also studied and show that the
resulting states can be chimera splay states, splay states with
kinks, and globally synchronized states. Finally, we examine
the stability of the spatial splay states to perturbation and
observe the existence of stretched exponential behavior in
the distributions of laminar lengths in the time series of the
Euclidean distance between states. We note that the possibility
of hysteresis and multiattractor solutions exists in this system.
We hope to explore this in future work.

We note that splay states as defined in Refs. [6–10] have
been earlier observed in Josephson junction arrays, coupled
oscillator systems, and chemical reactions. We hope to
examine whether the spatial splay states and some of the
features observed here can be seen in these systems. Finally,
the system studied represents a discrete realization of a
coupled oscillator system. We therefore hope that some of
the features observed over here can be seen in experimentally
realizable systems as well.
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APPENDIX A: THEOREMS

1. Frobenius-Perron theorem

Any non-negative irreducible matrix A always has a posi-
tive eigenvalue λ, which is a simple root of its characteristic
polynomial and the moduli of all the other eigenvalues are less
than or equal to λ.

2. Wielandt’s lemma

Let A be a irreducible square matrix and B is a square matrix
of order n. Let B+ be the matrix constructed by taking the
modulus of elements of B, then if A � B+, then the modulus
of any eigenvalue of B+ is less than the largest eigenvalue of A.

3. Gershgorin’s theorem

Each eigenvalue of a complex matrix A {aij } of order N lies
in at least in one of the disks

Di(A) = {z : |z − aii | � Ri} (A1)

for 1 � i � N on the complex plane and Ri =∑n
j=1
j �=i

aij . In

other words the N eigenvalues of the complex plane are
contained in a region in the complex plane determined by

D(A) =
n⋃

i=1

Di(A). (A2)

Similarly from AT {aji} the Gershgorin column region can be
found, which is

D ′(A) =
n⋃

j=1

D ′
j (A) (A3)

with D ′
j (A) = {z : |z − ajj | � Sj } and Sj =∑n

i=1
i �=j

aji . So all

the eigenvalues lie in the region D(A) ∩ D ′(A).

APPENDIX B: SPATIALLY AND TEMPORALLY PERIODIC
SPLAY STATES

1. Splay states with spatial period k

The upper bound on the eigenvalues of the Jacobian for
k copies of splay state can also be found out. We assume
that there are exactly k

2 copies of splay state in each group
so that there will be exactly 2N

k
− 1 number. So we can
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still reduce the Jacobian in to a block circulant matrix. The
inequality (A + B) � |A − B|+ is still valid in this case,
and the matrix A + B is non-negative and irreducible. So
again according to Frobenious-Perron theorem and Wielandt’s
lemma, the largest eigenvalue of A + B greater than equal to
any eigenvalue of the matrix A − B. In the Gershgorin region

due to the matrix A + B, there will be k
2 discs, both in the

Gershgorin column region and row region. The distance of
the center (Ck

j ) of the j th Gershgorin disk from the origin
either in the column or the row region for the matrix A + B

is (1 + ε1+ε2
N

)(1 − K cos [2πθ (0) + πj

N
]). The radius rk

j of the
j th disk in the row region is

rk
j = k(ε1 + ε2)

2N

⎧⎨
⎩

2N
k

−1∑
j=0

∣∣∣∣1 − K cos

[
2πθ (0) + πj

N

]∣∣∣∣−
∣∣∣∣1 − K cos

[
2πθ (0) + πj

N

]∣∣∣∣
⎫⎬
⎭. (B1)

The radius sk
i of the ith disk in the Gershgorin column region i is given by

sk
i = (N − 1)(ε1 + ε2)

N

{
1 − K cos

[
2πθ (0) + πi

N

]}
. (B2)

The diagonal elements of the matrix A + B are real so as it was for the two copies of splay states the bounds on the eigenvalues
of the Jacobian set by the Gershgorin row and column regions of A + B for k-splay copies are max(ck

j + rk
j ) and max(ck

i + sk
i ).

So the upper bound is

min

⎛
⎝max

⎧⎨
⎩2 − kK

2N

2N
k

−1∑
j=0

cos

[
2πθ (0) + πj

N

]
− K cos

[
2πθ (0) + πj

N

]⎫⎬
⎭, max

{
2 − 2K cos

[
2πθ (0) + πi

N

]}⎞⎠
for 1 � i, j � 2N

k
− 1.

2. Splay states with spatial period k and temporal period Q

The upper bound on the eigenvalues of the Jacobian for k-splay copies with temporal period Q

can be calculated via an extension version of the Gershgorin theorem [20] provided that group 1 and
group 2 are always exact copies of each other. In terms of the phases of the maps such solution
would be of the form {θ1(0),θ1(1), . . . ,θ1( 2N

k
− 1),θ1(0), θ1(1), . . . ,θ1( 2N

k
− 1), . . . ,θ1(0), θ1(1), . . . ,θ1( 2N

k
− 1)},

{θ2(0), θ2(1), . . . ,θ2( 2N
k

− 1),θ2(0), θ2(1), . . . ,θ2( 2N
k

− 1), . . . ,θ2(0), θ2(1), . . . ,θ2( 2N
k

− 1)}, . . . ,{θQ(0), θQ(1), . . . ,θQ( 2N
k

−
1),θQ(0), θQ(1), . . . ,θQ( 2N

k
− 1), . . . ,θQ(0), θQ(1), . . . ,θQ( 2N

k
− 1)}. The Jacobian corresponding to this state is

J =
(

A1 B1

B1 A1

)(
A2 B2

B2 A2

)
· · ·
(

AQ BQ

BQ AQ

)
(B3)

with

Ai =

⎡
⎢⎣
(
1 + ε1

N

){1 − K cos[2πθi (0)]} · · · ε1
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε1

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

ε1
N

{1 − K cos[2πθi (0)]} · · · ε1
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε1

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

· · · · · · · · · · · · · · ·
ε1
N

{1 − K cos[2πθi (0)]} · · · ε1
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · (

1 + ε1
N

){
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

⎤
⎥⎦ (B4)

and

Bi =

⎡
⎢⎣

ε2
N

{1 − K cos[2πθi (0)]} · · · ε2
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

ε2
N

{1 − K cos[2πθi (0)]} · · · ε2
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

· · · · · · · · · · · · · · ·
ε2
N

{1 − K cos[2πθi (0)]} · · · ε2
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

⎤
⎥⎦. (B5)

Each of the matrices in the Jacobian can be block diagonalized by P [Eq. (19)] so that the Jacobian itself turns into a block
diagonalized form,

P−1JP =
(

A1 + B1 0

0 A1 − B1

)(
A2 + B2 0

0 A2 − B2

)
· · ·
(

AQ + BQ 0

0 AQ − BQ

)
(B6a)

=
(

(A1 + B1)(A2 + B2) · · · (AQ + BQ) 0

0 (A1 − B1)(A2 − B2) · · · (AQ − BQ)

)
, (B6b)
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where

Ai + Bi

=

⎡
⎢⎢⎢⎣
(
1 + ε1+ε2

N

){1 − K cos[2πθi(0)]} · · · ε1+ε2
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε1+ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

ε1+ε2
N

{1 − K cos[2πθi(0)]} · · · ε1+ε2
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε1+ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

· · · · · · · · · · · · · · ·
ε1+ε2

N
{1 − K cos[2πθi(0)]} · · · ε1+ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · (1 + ε1+ε2

N

){
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

⎤
⎥⎥⎥⎦

(B7)

and

Ai − Bi

=

⎡
⎢⎢⎢⎣
(
1 + ε1−ε2

N

){1 − K cos[2πθi(0)]} · · · ε1−ε2
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε1−ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

ε1−ε2
N

{1 − K cos[2πθi(0)]} · · · ε1−ε2
N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · ε1−ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

· · · · · · · · · · · · · · ·
ε1−ε2

N
{1 − K cos[2πθi(0)]} · · · ε1−ε2

N

{
1 − K cos

[
2πθi
(

2N
k

− 1
)]} · · · (1 + ε1−ε2

N

){
1 − K cos

[
2πθi
(

2N
k

− 1
)]}

⎤
⎥⎥⎥⎦.

(B8)

Since each of the matrices A1 + B1,A2 + B2, . . . ,AQ + BQ are nonnegative and irreducible so (A1 + B1)(A2 + B2) · · · (AQ +
BQ) will also be nonnegative and irreducible. Let [(A1 − B1)(A2 − B2) · · · (AQ − BQ)]+ be the matrix obtained by taking the
modulus of each element in (A1 − B1)(A2 − B2) · · · (AQ − BQ) then clearly

(A1 + B1)(A2 + B2) · · · (AQ + BQ) � [(A1 − B1)(A2 − B2) · · · (AQ − BQ)]+. (B9)

So according to Frobenious-Perron theorem and Wielandt’s lemma, the largest eigenvalue of (A1 + B1)(A2 + B2) · · · (AQ + BQ)
is always greater than equal to the eigenvalues of (A1 − B1)(A2 − B2) · · · (AQ − BQ). So the upper bound on the matrix
(A1 + B1)(A2 + B2) · · · (AQ + BQ) is the upper bound on the eigenvalues of Jacobian of the system. Using the Gershgorin
theorem for the product of nonsingular matrices [30] we find that it is

max

[
max

((
1 + 1

N

)
{1 − K cos[2πθj (i)] + R(Aj + Bj ,i)}

)]
, (B10)

where R(Aj + Bj ,i) is the sum of the elements of the ith row of the matrix Aj + Bj except only the diagonal element and
1 � j � Q, 0 � i � N − 1.
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Omelchenko, and E. Scholl, Nature Phys. 8, 658 (2012).
[6] K. Y. Tsang, R. E. Mirollo, S. H. Strogatz, and K. Wiesenfeld,

Physica D 48, 102 (1991).
[7] K. Wiesenfeld and J. W. Swift, Phys. Rev. E 51, 1020 (1995).
[8] S. Nichols and K. Wiesenfeld, Phys. Rev. A 45, 8430 (1992).
[9] S. Nichols and K. Wiesenfeld, Phys. Rev. E 50, 205 (1994).

[10] S. H. Strogatz and R. E. Mirollo, Phys. Rev. E 47, 220 (1993).
[11] M. Calamai, A. Politi, and A. Torcini, Phys. Rev. E 80, 036209

(2009).
[12] A. A. Selivanov, J. Lehnert, T. Dahms, P. Hövel, A. L. Fradkov,
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