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Testing for causality in reconstructed state spaces by an optimized mixed prediction method
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In this study, a method of causality detection was designed to reveal coupling between dynamical systems
represented by time series. The method is based on the predictions in reconstructed state spaces. The results of the
proposed method were compared with outcomes of two other methods, the Granger VAR test of causality and the
convergent cross-mapping. We used two types of test data. The first test example is a unidirectional connection of
chaotic systems of Rössler and Lorenz type. The second one, the fishery model, is an example of two correlated
observables without a causal relationship. The results showed that the proposed method of optimized mixed
prediction was able to reveal the presence and the direction of coupling and distinguish causality from mere
correlation as well.
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I. INTRODUCTION

In recent years, the study of drive-response relationships
between systems has attracted considerable attention. Rele-
vant applications mainly concern areas such as economics,
climatology, ecosystems, electrical activity of the brain, or
cardiorespiratory relations.

The data subjected to causal analysis are very often in the
form of time series. In such cases, the well-known Granger
causality test, proposed in 1969, remains a popular method
for analysis [1]. The Granger test focuses on determining
whether one time series is useful in forecasting another.
If yes, then the first system causally influences the second
one. The conventional test of Granger’s causality, based on
autoregressive models, is particularly successful in the case of
stochastic linearly interconnected systems.

However, in this study, we focus on another approach
to causality analysis, namely, techniques operating in state
spaces. With these methods in mind, the following type of
coupling is usually considered:

Ẋ(t) = F (X(t)),

Ẏ (t) = G(Y (t),X(t))

where X denotes the state vectors of the driving system and Y

denotes the driven response. If there is an invertible functional
relationship between X and Y , then there is said to be a
generalized synchronization. The direction of coupling can
only be uncovered when the coupling is weaker than the
threshold for the emergence of synchronization [2]. Once the
systems are synchronized, the future states of the driver X can
be predicted from the response Y equally well and vice versa.

Let the systems X and Y be represented by a time series x

and y, respectively. Then, the first step prior to the following
types of causality analyses is to reconstruct a d-dimensional
manifold MX from lags of observable x so that the state of the
system in time t is Xt = (xt ,xt−τ , . . . ,xt−(d−1)τ ). The manifold
MY is reconstructed analogously. From Taken’s theorem [3],
we know that given certain conditions, the reconstructed
manifold is diffeomorphic to the original one. Suppose that
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X causally influences Y . Then it is highly likely that the
neighboring states in MY are mapped to the neighboring
states in MX rather than in the case of uncoupled systems.
On the other hand, the fact that X drives Y also results
in the opposite effect, in that it is highly likely that the
neighboring states in MX are mapped to neighboring states
in MY ; however, the probability is higher in the opposite
direction. Therefore, it is essential to examine both directions.
Several methods have been proposed to infer causality from
the asymmetry of cross-mappings between close neighbors in
MX and MY [4–10]. However, as Faes et al. [11] point out, it is
often very difficult to obtain nontrivial directional information
through these methods, as the asymmetry measures do not
respond in a simple and stable manner with regard to varying
the dynamical properties of the systems, the coupling degree,
or the noise amount.

In this study, we are interested in methods working in state
spaces, but with more direct reference to Granger’s original
evaluation of causality. In Ref. [12], for example, the authors
sought a nonlinear extension of Granger’s idea. They started
with a standard delay embedding reconstruction. Then, locally,
the dynamics were approximated using an autoregressive
model. Granger’s causality was assessed on all short pieces
of the trajectory and the results were then averaged over the
entire state portrait.

More global consideration of past dynamics on the attractor
has resulted in a further class of methods [13,14], which
attempt to determine whether a prediction made in a recon-
structed state space of a time series from one system improves
when data from another system are included in the state
space reconstruction. The potential of such an approach, called
mixed state analysis, has been identified in Refs. [11,13,15].

Monitoring the predictability improvement can be seen as
an analogy to methods based on transfer entropy or conditional
mutual information [2,16]. The information-theoretic mea-
sures and predictability improvement both measure the change
of uncertainty of the future of a signal when estimates with and
without additional knowledge of another system are compared.
However, authors in Ref. [14] argue that, for short time series,
assessment of the predictability is more appropriate.

In this study, we propose an optimized mixed prediction
method of causality detection.
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The remainder of this paper is organized as follows. We first
introduce the new mixed prediction method and the methods
used for comparison, which are Granger’s test of causality [1]
and the convergent cross-mapping (CCM) method of Sugihara
et al. [10]. The third section presents the results obtained by
testing coupled Rössler and Lorenz systems. This is followed
by the results for a fishery model. Finally, the findings are
summarized and discussed.

II. METHODS

A. Granger’s VAR test

We say that variable x causes another variable y in
Granger meaning [1], if better prediction of y is produced
using information from both x and y rather than using
only information from y. In recent decades, a number of
modifications and extensions of the Granger causality test
have been proposed. However, the original analysis has been
performed by fitting an autoregressive model to the variable
as follows:

y(t) =
py∑

j=1

cy,j y(t − j ) +
px∑

j=1

cx,j x(t − j ) + ε(t),

where px, py are numbers of lagged observations from
variables x, y; cy,j , cx,j are coefficients of the model,
and ε is the vector of residuals. The Granger causality is
tested by performing the F test of the null hypothesis that
all coefficients cx,j are zeros. Rejection of the hypothesis
means that the coefficients corresponding to the data from
variable x are statistically significantly different from zero.
Then we conclude that the information from x increases the
predictability of y, i.e., the process x Granger causes y.

For the Granger causality analysis, we used the Matlab
code of Chandler Lutz [17]. The numbers px, py of samples for
linear regressions were estimated with the help of the Bayesian
information criterion. Then the test statistics S was calculated:

S = (R − RU )/py

RU/[T − (px + py + 1)]
∼ Fpy,T −(px+py+1),

where R and RU are residual sums of squares when x is
not considered in the model and when x is considered in the
model, respectively. T is the size of the data, and F denotes
the cumulative distribution function of the F distribution with
py and T − (px + py + 1) degrees of freedom.

The null hypothesis H0 : ∀j : cx,j = 0 of noncausality was
tested by the F test.

B. Convergent cross-mapping

As a second testing method, we used one of the approaches
that rely on evaluating distances of conditioned neighbors in
reconstructed state spaces. Essentially, the methods determine
whether the time indices of nearby points in the historical
data of MY can be used to identify nearby points in MX. This
idea can be successfully applied through measures like M or L

introduced in Refs. [8] and [9] or by a method called convergent
cross-mapping (CCM) proposed by Sugihara et al. [10]. In the
latter article, the value of similarity between points Xn and
estimates X̂n is evaluated by the correlation between them. A
high value of the correlation exponent indicates that system

X drives system Y . For the same reasons as mentioned above,
the opposite direction needs to also be checked.

Sugihara et al. [10] emphasized that an important part
of their method involves convergence, a key property that
might distinguish causation from mere correlation, which
is important, among other places, in a situation wherein
correlation between two systems is produced by a shared
third driving variable. Such a correlation can be falsely
declared as causality. In these cases, we may ask whether
cross-mapped estimates converge to correct values for an
increasing number of used data. For causally coupled systems,
the estimates improve with the length of the time series. Lack
of convergence, on the other hand, indicates the absence of
actual causality.

C. Optimized mixed prediction

In this section, we introduce a new method of causality
detection. The method builds on the so-called mixed state
analysis presented in Refs. [13] and [14]. Similarly, as in the
case of Granger testing, a comparison of forecasts is used to
search for causal links. However, the method proposed here,
let us call it optimized mixed prediction (OMP), works in
reconstructed multidimensional state spaces. The main idea
of the method is as follows. The predictions in the spaces MX

and MY , reconstructed as described above, can be compared to
predictions computed in MX+Y , i.e., in a mixed state space built
from delayed observables of both systems. If, for example, the
predictability of Y in MX+Y is better than its predictability
in MY , we expect that X causally affects Y . The proposed
method builds on this idea, with special attention attributed
to the optimization of the reconstructed space based on the
weighting of each of its coordinates. This is explained in the
following.

With regard to the actual method of prediction, we find
historical data similar to the current situation and assume that
the system will continue in the same way as it has in the past.
This forecasting technique is generally known as the method
of analogues [18]. There are many ways to predict a follower
of point Yn, the simplest version being finding its nearest
neighbor Yi from past states on the reconstructed trajectory and
declaring Yn+1 = Yi+1. A modification, which was used in this
study, improves the simplest version by considering several
neighbors and utilizing the direction in which the images of
the discovered neighbors moved in the past.

More precisely, the predictive method described above
functions as follows. At first, k nearest neighbors of point
Yn are determined with K being a set of their time indices.
In methods using nearest neighbors, it is fairly common to
consider exponential weighting for the neighbors Yi, i ∈ K

based on distances from Yn:

wi = e
− ‖Yn−Yi ‖

min
j∈K

‖Yn−Yj ‖
.

Then the prediction Ŷn+1 is given by

Ŷn+1 =
∑

i∈K wi(Yn + Yi+1 − Yi)∑
i∈K wi

.

The smaller the variance of the errors e = Y − Ŷ , the better
the prediction.
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After selecting a predictive method, we build the mixed
prediction method by comparing the residuals obtained from
the prediction of Y using only the information from system Y

and residuals from the prediction of Y using information from
both X and Y .

The specific steps of the OMP method to detect causality
from X to Y are as follows:

(1) State space reconstruction MY of Y without in-
formation from X, with states in time t represented as
[yt ,yt−τY

, . . . ,yt−(dY −1)τY
] is performed. In order to obtain

the best possible predictions, some coordinates of MY are
suppressed in a manner that is explained later. Then predictions
Ŷn of large enough statistical sample of N points spread over
the entire state portrait are computed. To each predicted point,
a sufficiently long piece of the previous trajectory has to be
available, in order to find near neighbors from the past. The
error vector is en = Yn − Ŷn.

(2) State space reconstruction MX+Y with the ad-
dition of information from X (mixed state space) is
performed. Here the state corresponding to time t is
[yt ,yt−τY

, . . . ,yt−(dY −1)τY
,xt ,xt−τX

, . . . ,xt−(dX−1)τX
]. Again, to

avoid problems pertaining to high dimensionality of the re-
constructed spaces and to obtain the best possible predictions,
impacts of the coordinates of MX+Y are adjusted. Analogously
as in step 1, one-point predictions of system Y are computed.
The predictions are denoted as Ŷ X

n , whereas the corresponding
error vector is denoted as eX

n = Yn − Ŷ X
n .

(3) To decide whether the addition of information from X

improves the prediction of Y (X drives Y ), the null hypothesis
H0: Var(eX)� Var(e) is tested. If the Kolmogorov-Smirnov test
does not reject that e or eX are normally distributed, then the F

test is used. Otherwise, a nonparametric bootstrap method can
be used [19]. If H0 is rejected on a 5% significance level, than
we accept that Var(eX)< Var(e), or equivalently, that inclusion
of knowledge of X significantly improves the prediction of Y .

Causality in the opposite direction, i.e., from Y to X, is
investigated analogously, after exchanging the roles of X and
Y in the above instructions.

Now, let us identify some pitfalls of the OMP method.
First, making predictions in reconstructed state space

requires a trajectory long enough to cover the state portrait suf-
ficiently densely. This is important because to each predicted
point we need its close neighbors from the past to capture and
predict the underlying dynamics. Furthermore, the accuracy of
the prediction also depends on the embedding dimension d and
on the time delay τ used for reconstruction: values required for
the first step of the OMP algorithm. Therefore, it is worthwhile
to pay close attention to the selection of these parameters.
The best combinations of dimension and time delay are
given by some optimum time window T W = (d − 1)τ . As
demonstrated in Ref. [20] for the same one-point prediction
algorithm as used in the present study, the appropriate time
window seems to be close to half of the mean orbital period, if
it can be approximated by examining the oscillatory patterns in
the data. Alternatively, we can calculate the prediction errors
for several combinations of embedding parameters and choose
one that leads to the lowest error.

Another aspect that requires caution relates to the size of the
reconstructed spaces, especially the mixed state space. With a

limited amount of samples, increasing the embedding dimen-
sion leads to a less dense occupancy of the space. Therefore,
worsening of the prediction simply owing to a higher than
necessary dimension of mixed state space MX+Y compared to
self-predictability in MX or MY can be expected. To alleviate
this problem, we optimized the reconstructed state portraits
MX, MY , and MX+Y . More specifically, we suppressed those
directions that proved unnecessary for successful prediction.
Let d be the embedding dimension, i.e., the number of shifted
copies of time series forming the reconstructed space. To each
of the components, we intended to assign a weight, so that the
result stretched the spaces in the directions of the elementary
basis vectors. W needs to be a non-negative vector with the sum
of all elements equal to 1. The initial weights of Wj = 1

d
for

j = 1, . . . ,d were adjusted using a pattern search algorithm
for constrained optimization (with implementation in Matlab).
The final setting of W needs to reveal the basis vectors that
allow for the lowest variance of residuals when using our
predictor. Adjusting the weights improves predictions in MX,
MY , and MX+Y and minimizes the dimensionality of the
spaces.

The biggest advantage of the OMP method is that it
allows very efficient decisions regarding causality even in
complicated cases such as the relation between complex
nonlinear systems, or apparent causality due to external
forcing. This is demonstrated in the following examples.

III. RESULTS

A. Rössler → Lorenz

To test the methods described above, we chose two
nontrivial examples. The first one was a coupling of two
chaotic systems. Causality and synchronization in chaotic
systems was discussed already in 1990 [21]. It has been shown
that it is possible to “lock” one chaotic system to the other to
get them to synchronize.

In this example, the Rössler system (x1, x2, x3) drives the
Lorenz system (y1, y2, y3):

ẋ1 = −6(x2 + x3), ẋ2 = 6(x1 + 0.2x2),

ẋ3 = 6[0.2 + x3(x1 − 5.7)], ẏ1 = 10(−y1 + y2),

ẏ2 = 28y1 − y2 − y1y3 + Cx2
2 , ẏ3 = y1y2 − 8

3y3. (1)

C represents the coupling strength. For C = 0, systems X

and Y are not coupled. For higher coupling strengths, there
is a considerable causal link from X to Y until generalized
synchronization seems to occur just before C = 3. Two-
dimensional plots of Fig. 1 illustrate how the originally
independent Lorenz system (C = 0) is enslaved by the Rössler
system for higher couplings.

A total of 100 000 data points of solutions of the ordinary
differential equations (1) were obtained numerically by the
fourth-order Runge-Kutta method. The solutions were com-
puted for coupling strengths chosen from 0 to 4 with a step
of 0.1. The starting point was [0,0,0.4,0.3,0.3,0.3]. The first
1000 data points were discarded. As regards the sampling of
the resulting trajectory, one typical run around the attractor
took about 10 points.

The same example of the Rössler → Lorenz system has
been studied, among others, in Refs. [2,8,20,22–25].
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FIG. 1. Rössler system driving Lorenz system (1). 20 000 data
points of x1 and x2 variables of the driving Rössler system (left, top);
y1 and y2 variables of the Lorenz system itself (right, top); y1 and y2

variables of the driven Lorenz system with coupling strength C = 2
(left, bottom) and C = 4 (right, bottom).

The so-called interaction graph, easy to interpret from
Eqs. (1) if defined as in Ref. [26], shows that the systems
are coupled through one-way driving relationship between
variables x2 and y2 (see Fig. 2). Since the Lorenz system Y

does not drive the Rössler system X, we do not want to find the
causal link in the direction from Y to X. On the other hand, we
want to recover the outlined causal relations between variables
of systems X and Y . As authors in Ref. [26] emphasized, both
direct and indirect interactions can be recovered, although they
cannot be reliably distinguished using comparisons of state
space reconstructions.

In the following, we suppose that we know one variable of
the driving Rössler system and one variable of the responsive
Lorenz system, and we would like to find out whether there is
a causal relationship between the two systems.

x2 x1 x3

y2 y1

y3

FIG. 2. Interaction graph for Rössler system driving Lorenz
system (1).
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FIG. 3. Granger VAR test statistics S estimated in both directions
using variables x2, y2 of the coupled Rössler and Lorenz systems.

1. Granger causality test

First, we searched for causality by the Granger test. For each
of the 21 couplings, we used the entire datasets of 100 000 data
points. A maximum lag of 15 was considered.

Figure 3 shows the results of the Granger test for causality
between x2 and y2. However, other combinations of one
variable from X and one from Y led to the same results.
For C = 0, a causal link was not detected (p = 0.11 for
direction X → Y and p = 0.52 for Y → X). Except for zero
coupling, causality was detected in both directions, although
only detections in the direction X → Y are correct. Causality,
whether correct or false, was determined at a high level of
significance (in each case p value < 10−15). The S statistics
is even mostly much higher for the incorrect Y → X direction
than for X → Y . It means that, as expected, the Granger VAR
method failed on the Rössler→Lorenz data. We used this
example to describe how easily false results can be obtained if
the Granger test of causality is inappropriately applied.

2. Convergent cross-mapping

As a second testing method, convergent cross-mapping was
used. Since CCM is a state-space based method, we had to
make reconstructions of state portraits first. We reconstructed
MX and MY from 10 000 points of observables x2 and y2,
respectively, using delay τ = 1 and embedding dimension
d = 7. The number of nearest neighbors was set to eight.
Testing by CCM led to the conclusion that X drives Y until
the onset of synchronization between the couplings 2 and
3. Figure 4 shows that there is a small difference between
the cross-mapping (CM) measures in direction X → Y and
Y → X both for very weak couplings and for couplings higher
than the threshold for the anticipated general synchronization.
For the remaining couplings, CM(X → Y ) is higher than
CM(Y → X), which means that the direction of the causal
influence was correctly detected, even though the differences
in cases of strong couplings (above 1.5) did not seem to be
significant.
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FIG. 4. Estimates of the CM measure in both directions using
variables x2, y2 of the coupled Rössler and Lorenz systems.

We also considered the convergence of the results for an
increasing number of data. Figure 5 shows the finding for the
observables x2 and y2 under coupling C = 1. For segments of
increasing length, the correlation between the two observables
was computed. For each length, the average from correlations
for 500 randomly chosen segments was considered. Besides
that, for each length the cross-mappings were evaluated.
Although, as we know, X drives Y , the CCM results indicate
bidirectional influence: with increasing number of samples, the
cross-mappings in both directions improved to a certain level.
Although the values seem to be more convincing for X → Y

than in the reverse, the link Y → X is difficult to exclude only
based on this figure. Hence, the results are not very convincing,
despite the fact that we worked with clean and quite long data,
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N

|ρX,Y |
CMY →X
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FIG. 5. Test for convergence of cross-mappings for Rössler →
Lorenz system, with coupling C = 1, using variables x2, y2. For
segments of increasing length, the correlation ρX,Y between the two
observables is compared to CM measures. Based on this figure, the
correct link of X → Y cannot be unambiguously identified.

and we looked at a relatively clear example of C = 1 where
the CM measures were well separated.

3. Optimized mixed prediction

In the newly proposed optimized mixed prediction method,
the embedding parameters were individually selected for each
investigated coupling strength. For this, we calculated the
prediction errors for several combinations of parameters and
selected one that leads to the lowest error. As a result, the
space MX was reconstructed with delay τ = 1 and embedding
dimension d = 5, while for MY delay τ = 1 and embedding
dimensions d = 4, 5, 6, or 7 (the stronger the coupling, the
higher the value of d) were optimal. Then the corresponding
mixed state spaces MX+Y had dimensions from 9 to 12.

As explained earlier, we used weighting to minimize
problems with high dimensions. In order to compute the
optimal weights, we made predictions on 1000 randomly
chosen data points. For each point, the nearest neighbors were
found in a set of the preceding 50 000 points on the trajectory.

Let us recall at this point that we have to be careful when
searching for the nearest neighbors. In order to capture the
global dynamics, we are interested in previous visits of the
trajectory to places near the current position of the predicted
point. We have to ignore those points which are close to the
predicted point just because they are close in time. Avoiding
the adjacent data points is known as the Theiler correction [27].
For our sparsely sampled data, the correction was not required,
but in the case of dense sampling, the Theiler correction must
be taken into account.

Tables I and II show optimal weights found in case of six
coupling values. Table I relates to reconstruction of the Lorenz
system (Y ) without the information from the Rössler system
(X), while Table II shows optimal weights in the reconstruction
of Y using the information from X. Obviously, for zero
coupling, information from X does not help in the prediction of
Y , and the corresponding coordinates were given zero weight.
It is similar for the couplings above a synchronization level.
Otherwise, the observable from X contributes significantly to
the reconstruction created to predict Y .

After the weights had been adjusted, we made predictions
of 5000 data points, each based on eight nearest neighbors
from 50 000 past data points.

Figure 6 shows that predictions of y2 without considering
x2 are clearly poorer than predictions made with the help of
x2. For couplings below the synchronization level, the link was

TABLE I. The optimal weights, rounded to two decimal places,
for the reconstruction of Y (Lorenz system represented by y2) for
predicting Y without using the information from X (Rössler system
represented by x2). Results for six different couplings.

C yt yt−1 yt−2 yt−3 yt−4 yt−5 yt−6

0 0.32 0.45 0.14 0.09 – – –
0.8 0.16 0.35 0.17 0.19 0.14 – –
1.6 0.22 0.27 0.11 0.11 0.08 0.1 0.1
2.4 0.28 0.26 0.09 0.07 0 0.19 0.11
3.2 0.36 0.26 0.1 0.09 0 0.09 0.09
4 0.24 0.3 0.08 0.05 0.06 0.16 0.1
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TABLE II. The optimal weights, rounded to two decimal places, for the reconstruction of Y (Lorenz system represented by y2) for predicting
Y using the information from X (Rössler system represented by x2). Results for six different couplings.

C yt yt−1 yt−2 yt−3 yt−4 yt−5 yt−6 xt xt−1 xt−2 xt−3 xt−4

0 0.31 0.45 0.14 0.09 – – – 0 0 0 0 0
0.8 0.19 0.27 0.01 0.04 0.07 – – 0.11 0.09 0.05 0.03 0.14
1.6 0.14 0.24 0.07 0.03 0.02 0.05 0.01 0.16 0.01 0.01 0.06 0.2
2.4 0.14 0.17 0.04 0.02 0 0.04 0.01 0.29 0.02 0.07 0.1 0.1
3.2 0.28 0.31 0.13 0.03 0.02 0.17 0.04 0 0 0 0.02 0
4 0.32 0.24 0.04 0.01 0.06 0.09 0.1 0.01 0.03 0 0.1 0

detected with high statistical significance (p value < 10−15),
indicating that system X drives Y . As we can see when
compared to CCM (Fig. 4), in the case of the OMP method
the differences between the evaluated measures are distinctive
even for strong couplings approaching the synchronization
level.

When we focus on the opposite direction (shown in Fig. 7),
we see that the self-predictability of x2 is very good: the
variances of residuals are small. Adding information from
system Y did not improve the prediction, confirming that
system Y does not drive X. The null hypothesis, that the
prediction using only information from X is better, was never
rejected.

B. Fishery model

In the case of a real-world time series, it may happen that
there is a correlation between systems that are falsely declared
as causality. The fishery model, selected as our second test
data and used also in Ref. [10], illustrates such a situation very
well. Mutually independent fish populations can have common
peak recruitment seasons owing to favorable environmental
conditions and be correlated.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

C

Var(e)
Var(eX )

FIG. 6. Testing whether X (Rössler system) drives Y (Lorenz
system) by the OMP method. Variances of residuals of predictions of
y2 with or without knowledge of x2 are depicted. Adding information
from X improved predictions, indicating that X → Y .

We analyzed a standard logistic model of two noninter-
acting fish populations that share common environmental
(weather) forcing:

RX(n + 1) = X(n){3.1 [1 − X(n)]} exp(0.5 T ),

RY (n + 1) = Y (n){2.9 [1 − Y (n)]} exp(0.6 T ),

X(n + 1) = 0.4 X(n) + max(RX(n − 3),0),

Y (n + 1) = 0.35 X(n) + max(RY (n − 3),0). (2)

The variables X and Y (see Fig. 9) denote sizes of two
different fish populations, RX and RY are recruitments of
populations, and T is an environmental influence represented
here by a red noise. The corresponding interaction graph can
be seen in Fig. 8.

We generated 100 000 data with starting points RX(i) =
RY (i) = X(i) = Y (i) = 0.5 for i ∈ {1,2,3,4}.

The variable T was defined as follows:

T (i) = p

i∑

j=i−14

T ′(j ),

T ′ ∼ N (0,1).
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FIG. 7. Testing whether Y (Lorenz system) drives X (Rössler
system) by the OMP method. Variances of residuals of predictions of
x2 with or without knowledge of y2 are depicted. Adding information
from Y did not improve predictions, indicating that Y does not
drive X.
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X Y

T

FIG. 8. Interaction graph for fishery model (2) of two populations
driven by an environmental variable.

The variable p was chosen so that Var(T ) is equal to 1.

1. Granger causality test

As in the previous case, again, we started with the Granger
VAR test. We considered lags up to the value of 15. A
bidirectional causal link was (incorrectly) detected between
X and Y . In both directions p value < 10−15. The fishery
model is actually another improper example for application of
the Granger test. The reason is that the test does not account
for latent confounding effects represented here by the shared
environmental forcing.

2. Convergent cross-mapping

The fishery model was used in Ref. [10] to illustrate the role
of the convergence of cross-mapping results for an increasing
number of data. As Fig. 10 shows, significant cross-correlation
between species suggests that they might be coupled. However,
cross-mappings do not converge for an increasing number of
data in any of the two directions, indicating that X and Y

are not coupled. We can conclude that the CCM method was
able to visually distinguish true causal relation from a mere
correlation produced by shared driving variable.
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FIG. 9. Sample of 100 data points from the behavior of popula-
tions X and Y of the fishery model.
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FIG. 10. Convergence of CM investigated in fishery model. The
figure indicates that the X and Y are correlated but not causally
related.

3. Optimized mixed prediction

Finally, the fishery model was tested by the proposed OMP
method.

To estimate the proper embedding parameters, we evaluated
the prediction errors for different combinations of parameters
and looked for a combination leading to the lowest error. We
found that for reconstruction of spaces MX and MY delay
τ = 1 and embedding dimension d = 6 were optimal. Then
the corresponding mixed state space MX+Y had dimension 12.

Next, we looked for optimal weights to reduce the dimen-
sionality of the reconstructed spaces. The optimal weights
were estimated based on 1000 predictions, using 50 000 past
data points to search for nearest neighbors. For an optimal
prediction of y the next weights were found in MY :

yt yt−1 yt−2 yt−3 yt−4 yt−5

0.128 0.172 0.178 0.183 0.177 0.162

Then, we added the delay coordinates of variable x to form
a 12-dimensional MX+Y and looked for the optimal weights
for predicting y. However, the weights for the six added x

coordinates were found to be negligibly small. Obviously,
knowing X did not help improve the prediction of y. This,
in the next step, was also confirmed statistically. In spaces MY

and MX+Y with adjusted weights, we made 5000 one-point
predictions based on 50 000 historical data points. The variance
of the residuals for prediction in MY was not significantly
higher than the variance obtained in MX+Y (p value > 0.64).
This rules out causality in direction X → Y .

In an analogous way, the causality in direction Y → X was
excluded (p value > 0.39).

It was confirmed that the OMP method was not misled by
external force influencing two independent time series. Causal
link was correctly rejected in both directions.
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IV. CONCLUSION

In this study, three methods were tested to detect causality
between two systems represented by time series. The first
method is the Granger VAR test of causality. The other
two methods, the convergent cross-mapping [10] method and
optimized mixed prediction method introduced in this paper,
work in reconstructed state spaces.

The methods were compared on test examples of fishery
model and unidirectional connection of chaotic systems of
Rössler and Lorenz type. The goal was to compare the
approaches in relation to their ability to detect unidirectional
coupling and to distinguish causality from the correlation.

The results show that blind application of the Granger VAR
test easily leads to incorrect conclusions.

The CCM method results in graphs from which the causal
relations can mostly be correctly inferred.

The OMP method, introduced in this paper, is similar to the
original Granger approach in that it evaluates the predictability.
To decide whether X drives Y the state space of Y was
reconstructed in two ways: with information from X and
without it. After optimization described in the text above,
predictabilities of Y made in the two reconstructions were
compared. The opposite direction of Y driving X was exam-
ined analogously. Then the direction of coupling was inferred
based on asymmetries emerging from the calculations along
the two possible causal directions. In the test examples, the
predictability improvements behaved according to theoretical
expectations.

Causality was significantly detectable even for limited
number of data. In our test cases, a few hundred data points
were sufficient to satisfy the key requirement for several
orbits around the reconstructed state portrait. Increasing the
number of data by increasing the sampling frequency is not
substantially helpful. However, demand for data would grow
with increased degrees of freedom of systems or in the presence
of noise.

Investigating the effects of noise was left for future research.
However, there were indications that the asymmetry associated

with predictability improvement can even be enhanced in the
presence of noise [11].

In OMP, like in all state space-based techniques, the em-
bedding dimension and time delay selected for reconstruction
play an important role in the successful application of the
method. The choice of the parameters lacks general rules.
According to our experience, a safe way to find the optimum
embedding parameters is to calculate the prediction errors for
several combinations of dimension and delay and choose the
one that leads to the lowest error.

Less useful coordinates of the reconstructed spaces can
be further suppressed by assigning a lower weight. The
optimization problem related to the adjustments of weights
is a complex and computationally expensive task. Therefore,
it might be worthwhile to consider other techniques as an
alternative to the Matlab implementation of the pattern search
algorithm used here. In this context, the search for neighbors
may also deserve attention. Replacement of the Matlab version
of exhaustive nearest neighbors searcher by an algorithm
presented in [28], which has been declared to be useful
when the fractal dimension of the data set is considerably
smaller than the dimension of the embedding space, could be
considered.

An important part of the OMP method is the statistical
testing of the variances of residuals, thanks to which we obtain
conclusion on causation at a certain level of significance.

Finally, we conclude that the OMP method introduced in
this paper managed to reveal the presence and the direction of
coupling and also to differentiate correlation and causality. In
addition to detecting causality, the method can be useful also
to those who are interested in the topic of predicting causally
influenced time series.
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