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Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory
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Gibbs’ macroscopic chemical thermodynamics is one of the most important theories in chemistry.
Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic
thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF (meso)/dt = Ein − ep

in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein � ep . We prove that
in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic
free energy F (meso) converges to ϕss, the large deviation rate function for the stationary distributions. This
generalized macroscopic free energy ϕss now satisfies a balance equation dϕss(x)/dt = cmf(x) − σ (x), in which
x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ (x) are
both non-negative, and cmf(x) � σ (x). The balance equation is valid generally in isothermal driven systems and
is different from mechanical energy conservation and the first law; it is actually an unknown form of the second
law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent
“law” is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic
law emerges from a level below.
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I. INTRODUCTION

Ever since the work of Gibbs and the influential treatise
of Lewis and Randall [1], chemical thermodynamics has been
one of the most important theoretical cornerstones of chemical
science. The Gibbs free energy and related chemical potential
govern complex chemical kinetics towards equilibrium state.
While temperature is one of the key concepts in the theory,
its origin resides in the mechanical movement of atoms and
molecules, as already clearly articulated by Boltzmann in
his mechanical theory of heat [2]. The notion of chemical
potential, however, cannot be understood from Newtonian
mechanics. This is best illustrated through its definition in
Gibbs’ equation:

dU = T dS − pdV +
n∑

i=1

μidNi, (1)

in which

T =
(

∂U

∂S

)
V,{Ni }

, p = −
(

∂U

∂V

)
S,{Ni }

,

(2)

μi =
(

∂U

∂Ni

)
S,V,{Nj,j �=i }

.

In graduate texts on Newtonian mechanics, there is a
demonstration that [3] ∂U/∂S is the mean kinetic energy
if one identifies the S ≡ kB ln � as the phase volume of a
Hamiltonian dynamics; and −∂U/∂V as the momentum
transfer on the wall of a box that contains gas particles.
While these demonstrations are not general, they have
provided definitive mechanical interpretations of the two
emergent thermodynamic quantities. On the contrary, there
is no mechanical interpretation for the ∂U/∂N in (2). It is
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widely felt that a “mechanistic” interpretation of the chemical
potential μi has to be a probabilistic one. We hasten to
mention that a large portion of living organisms are sustained
as nonequilibrium systems mainly driven by �μ, not a
difference in T or p. Therefore, a fundamental understanding
of the irreversibility of life requires a deeper understanding of
μ, which is still lacking a rigorous submacroscopic foundation.

We report here, mathematically, the chemical potential
μ has an origin in the mesoscopic description of chemical
kinetics, as an emergent macroscopic quantity. We reserve
the lengthy rigorous mathematical analysis in a much longer
manuscript [4], and report here the physics and mathematical
discovery for a broader audience.

II. MESOSCOPIC CHEMICAL KINETIC SYSTEMS

The mesoscopic description of a well-mixed chemical
kinetics is based on a system of elementary chemical reactions
with arbitrary complexity; reactions occur one at a time in
a stochastic fashion, as now clearly demonstrated in single-
molecule studies [5]. The general setting has N chemical
species and M reactions in a fixed volume of V [6]:

ν+
�1X1 + ν+

�2X2 + · · · ν+
�NXN � ν−

�1X1

+ν−
�2X2 + · · · ν−

�NXN, (3)

in which 1 � � � M . νij = (ν−
ij − ν+

ij ) are the stoichiometric
coefficients relating species to reactions. In a reaction vessel
with rapidly stirred chemical solutions, the numbers of species
i at time t is denoted by ni(t). Our theory assumes the
following:

(i) Each reaction is microscopically reversible, with for-
ward rate r+�[n(t)] and backward rate r−�[n(t)] where n =
(n1, . . . ,nN ) denoting the copy numbers of all the species.
Both r±� are non-negative, but their dependencies on n can
essentially be arbitrary.

2470-0045/2016/94(5)/052150(4) 052150-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.052150


HAO GE AND HONG QIAN PHYSICAL REVIEW E 94, 052150 (2016)

(ii) As an elementary reaction, each occurs as a Markov pro-
cess with exponential waiting time following the distribution
r(n)e−r(n)t , in which r(n) is the corresponding rate function.

(iii) The mesoscopic rate r+�(n) is the number of occur-
rences of the �th forward reaction per unit time in the volume
V . Therefore, for a macroscopic system with extremely large
n and V : (x1, . . . ,xN ) ≡ x = n/V are the concentrations, and
R±�(x) = limV →∞ r±�(V x)/V are the concentration-based
rates of the reactions.

At finite volume V , the time evolution of probability
governing the stochastic trajectory n(t) can be described by
the chemical master equation

dpV (n,t)

dt

=
M∑

�=1

[pV (n − ν�,t)r+�(n − ν�) − pV (n,t)r−�(n)

−pV (n,t)r+�(n) + pV (n + ν�,t)r−�(n + ν�)]. (4)

The chemical reaction system can be either closed or open.
A closed system has no exchange of matter with its surround-
ings; an open system can exchange various chemical species
with its surroundings, which are kept at constant concentra-
tions. If all the “externally buffered” species are themselves at
a chemical equilibrium, the situation is like a dialysis system,
which ultimately reaches a chemical equilibrium both within
and with its surroundings. If, however, there are at least two
species that are sustained at a nonequilibrium condition, then
the system eventually settles into a nonequilibrium state with
stationary concentration fluctuations. This last scenario is the
biochemical kinetic setup for modeling a living cell under a
continuous chemostat.

Kurtz has shown in 1972 [7] that in the limit of V → ∞,
the mesoscopic stochastic description n(t) of the chemical
reaction system (3) becomes the following set of deterministic
rate equations for the macroscopic kinetics:

dxi(t)

dt
=

M∑
�=1

ν�i[R+�(x) − R−�(x)], (5)

1 � i � N , in which x(t) is the concentration (particle number
per unit volume) of chemical species at time t . Kurtz’s theorem
paves the way for a unified mathematical theory of chemical
kinetics in a rapidly stirred vessel of both small and large size.

III. MESOSCOPIC NONEQUILIBRIUM
THERMODYNAMICS

On the other hand, based on the Markov jumping processes
associated with Eq. (4), a mesoscopic statistical (or stochastic)
thermodynamic theory has been developed in recent years
in the field of nonequilibrium statistical physics. The most
celebrated result from this theory is the Jarzynski-Crooks
equality [8,9]. The mesoscopic theory also, for the first
time, demonstrated a free energy balance equation: One can
introduce a generalized, nonequilibrium free energy F (meso) for
any chemical reaction system at the mesoscopic level. Then
it can be mathematically shown that this F (meso) satisfies an
instantaneous balance relation [10–14]:

dF (meso)

dt
= Ein − ep, (6)

in which

F (meso)
[
pV (n,t)

] =
∑

n

pV (n,t) ln

(
pV (n,t)

pss
V (n)

)
, (7)

the free energy input rate, also called housekeeping heat [15]

Ein[pV (n,t)]

=
M∑

�=1

∑
n

[pV (n,t)r+�(n) − pV (n + ν�,t)r−�(n + ν�)]

× ln

(
pss

V (n)r+�(n)

pss
V (n + ν�)r−�(n + ν�)

)
, (8)

and the free energy output rate, i.e., entropy production rate

ep[pV (n,t)]

=
M∑

�=1

∑
n

[pV (n,t)r+�(n) − pV (n + ν�,t)r−�(n + ν�)]

× ln

(
pV (n,t)r+�(n)

pV (n + ν�,t)r−�(n + ν�)

)
. (9)

pss
V (n) is the stationary distribution for n at volume V .

Since we only consider the isothermal case, we assume
that kBT = 1 throughout the article. Therefore F (meso) has the
dimension of energy, and Ein as well as ep has the dimension
of energy per unit time.

Both Ein and ep are non-negative, and dF (meso)/dt is never
positive. When applied to the chemomechanics of a single
ATPase motor protein, the Ein is the amount of chemical
energy input per unit time, e.g., ATP hydrolysis, and ep is
the minimal amount of heat dissipation [16]. If the motor
is actually performing mechanical work against an external
elastic force f (ext) and moving with velocity v, then both Ein

and ep contain the mechanical power f (ext)v.
For a closed chemical reaction system, or an open system

in contact with a single external chemical potential μext, it can
be shown that Ein = 0. In this case, the F (meso) is indeed the
free energy of the molecular system approaching equilibrium
[17,18].

So far, Eq. (6) is only established in the mesoscopic setting.
So all three non-negative quantities, entropy production rate
ep, free energy input rate Ein, and free energy dissipation rate
−dF (meso)/dt are functions of the volume parameter V .

IV. MACROSCOPIC NONEQUILIBRIUM
THERMODYNAMICS

Now if we perform the limit of V → ∞, Kurtz’s theorem
tells us that x(t) = limV →∞ n(t)/V is the solution to the
nonlinear rate equation (5). Furthermore, the probability
theory also suggests that for a wide class of chemical
reaction models, a macroscopic chemical energy function
ϕss(x) naturally emerges from the limit of − 1

V
log f (x|V )

when V is large, in which f (x|V ) is the stationary probability
density f (x|V ) = Vpss

V (V x) [19].
Since we have set kBT = 1, ϕss(x) actually is also the limit

of − kBT
V

log f (x|V ) which has the dimension of energy per
unit volume (energy density).
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Then we can approximate the probability density as

f (x|V ) ≈ �(x)e−V ϕss(x)

	(V )
, (10)

where

	(V ) =
∫

�(x)e−V ϕss(x)dx.

Here �(x) is analogous to the “degeneracy” in a partition
function calculation. As a part of the mathematical theory of
large deviations within probability distributions, Eq. (10) and
alike have been considered as the mathematical foundation of
equilibrium statistical thermodynamics [20].

What is the mechanistic force corresponding to the emer-
gent chemical energy function ϕss(x)? More specifically, how
does this “force” affect the macroscopic kinetics? First, one
needs to consciously recognize the vast separation of time
scales in the mesoscopic and macroscopic kinetics. That is
why the dynamics of the latter is partially dictated by the
stationary behavior of the former, in the form of ϕss(x). It is
clear that ϕss(x) is a consequence of a global, infinitely long
time behavior of the mesoscopic system.

The emergent chemical energy function ϕss(x) satisfies the
following equation first derived by Hu in 1986 [21]:

M∑
�=1

{R+�(x)[1 − eν�·∇ xϕ
ss(x)]

+R−�(x)[1 − e−ν�·∇xϕ
ss(x)]} = 0, (11)

where ν� = (ν�1, . . . ,ν�N ).
Based on the fact that R±�(x) = limV →∞ r±�(V x)/V , the

probability of the mesoscopic chemical kinetics n(t) becomes
concentrating at x(t) at time t and 1

V
log pss

V (V x) ≈ −ϕss(x) at
large V , one can prove that in the “macroscopic limit,” i.e.,
V → ∞,

V −1F (meso) → ϕss(x), (12a)

dϕss(x)

dt
= cmf(x) − σ (x), (12b)

V −1ep → σ (x) =
M∑

�=1

[R+�(x) − R−�(x)] ln

(
R+�(x)

R−�(x)

)
,

(12c)

V −1Ein → cmf(x)

=
M∑

�=1

[R+�(x) − R−�(x)] ln

×
(

R+�(x)

R−�(x)
eν�·∇ xϕ

ss(x)

)
. (12d)

The macroscopic chemical thermodynamics is formulated
here under “per unit volume.” cmf(x) and σ (x) have the
dimension of energy per unit volume per unit time.

Equation (12b) is a macroscopic chemical (free) energy
balance equation, in which the emergent chemical motive force
(cmf) characterizes the force the environment puts upon the
kinetic system, and entropy production rate σ (x) character-

izes the amount of free energy that is dissipated from the
system.

Similar to the mesoscopic situation, both σ (x) and cmf(x)
are non-negative, while dϕss(x)/dt is never positive, showing
that the deterministic macroscopic trajectories of Eq. (5)
always go downhill of ϕss(x).

σ (x) = 0 if and only if the strong detailed balance condition
is satisfied at x, i.e., for each reaction �, R+�(x) = R−�(x). This
is the thermodynamic equilibrium state.

cmf(x) = 0 if and only if the weak detailed balance
condition is satisfied at x based on (11) and the inequality
log x � x − 1, i.e.,

ln

(
R+�(x)

R−�(x)

)
= −ν� · ∇ xϕ

eq
x (x), ∀�. (13)

Equation (13) formalizes the fundamental insights of Lewis
on the importance of detailed balance in chemical kinetics
[22]. In this case there is a chemical equilibrium between the
local kinetics and its environment that is created by the other
reactions in the same kinetic system.

The validity of the weak detailed balance condition for any
x and � is equivalent to the well-known Wegscheider-Lewis
cycle condition [4,22–24]. In this case, any stable fixed
point of Eq. (5), i.e., local minimum of ϕss(x), satisfies the
strong detailed balance condition, which is at thermodynamic
equilibrium. Hence once the open, driven kinetic system
eventually settles into a nonequilibrium steady state xss (or
some more complex behaviors like oscillations), Eq. (13)
should not always hold for any x, which is equivalent to say that
cmf �= 0. At any nonequilibrium steady state xss, cmf(xss) =
σ (xss) > 0.

The macroscopic chemical energy function ϕss(x) can fur-
ther give rise to a general fluctuation-dissipation theorem for
the chemical reaction models discussed here. Denote q as a sta-
ble fixed point of Eq. (5), and define three matrices 	, A, and B,
in which 	ij = ∂2ϕss(q)

∂xi ∂xj
, Aij = ∑M

�=1[R+�(q) + R−�(q)]ν�iν�j ,

and Bij = ∂Fi (q)
∂xj

where Fi(q) is the right-hand side of Eq. (5)
at x = q. Just taking the second derivative to both sides of
Eq. (11), we can have the equality

	A	 = −	B − B	. (14)

If 	 is invertible, then A = −B	−1 − 	−1B.
It is a more rigorous and general version of the fluctuation-

dissipation theorem discovered by Keizer in the 1980s [25].
Keizer’s original approach is based on the local diffusion
approximation, which does not explicitly contain ϕss(x).
Also note that the diffusion approximation breaks all the
conservation relations of the chemical reaction system (3),
while the stochastic chemical reaction model (4) from which
the ϕss(x) emerges keeps all of them.

The emergence of ϕss(x) given in Eq. (11) is highly abstract.
One example of this, thanks to the recent work of Anderson
et al. [26], is when the kinetic system is complex balanced, a
notion introduced by Horn and Jackson in 1972 [27]. This is
a class of models with the law of mass action, which contains
detailed balance, all unimolecular reaction networks, as well
as many open, driven, nonlinear chemical systems [28]. In this
case, it can be shown that the kinetics equation (5) has a unique
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steady state xss and

ϕss(x) =
N∑

i=1

xi ln

(
xi

xss
i

)
− xi + xss

i , (15)

which is a solution to (11), and has actually the same
expression as the free energy function G(x) per unit volume
(notice that we have set kBT = 1). For complex balanced
systems under weak detailed balance condition, Eq. (12b)
becomes dG/dt = −σ (x) � 0; and ν� · ∇xG(x) = �μ�(x) =
kBT ln[R−�(x)/R+�(x)], in which �μ�(x) is the free energy
difference of the �th reaction.

We note that Eq. (15) is a generic, universal expression of
the chemical energy ϕss(x), for this large class of complex
balanced chemical kinetics, linear and nonlinear, closed and
open, equilibrium and nonequilibrium [26]. This illustrates
the important idea that macroscopic emergent behavior, such
as thermodynamics, should be independent of the underlying
details of the kinetics.

In practice, for chemical reaction systems without detailed
balance, one can numerically obtain the macroscopic chemical
free energy ϕss(x) through the geometric minimum action
method [29–31].

V. SUMMARY AND CONCLUSION

In summary, macroscopic chemical thermodynamics, equi-
librium or nonequilibrium, can have a rigorous mesoscopic,
statistical, reaction kinetic foundation. Macroscopic chemical

free energy ϕss(x) per unit volume, which is a generalization
of equilibrium free energy, is an emergent quantity in the
macroscopic limit. It actually has a free energy balance
equation which is different from Newtonian mechanical energy
conservation as well as Helmholtz-Boltzmann’s derivation of
the first law of thermodynamics based on their mechanical
theory of heat. This balance equation is actually a form of the
entropy balance equation that is pertinent to the second law
of thermodynamics of open systems [32]. This free energy
balance equation is applicable to closed and driven chemical
reaction kinetic systems under isothermal conditions. This
chemical theory of reaction kinetics also provides a concrete
example for Anderson’s structure of scientific laws [33,34]:
Macroscopic laws are emergent behaviors from the dynamics
of a level below; to a large extent, such laws are insensitive to
the details of the dynamics.

Finally, it has not escaped our notice that the mathematical
theory presented in this work might suggest possible
mechanisms for the entropic theory of gravity and the laws of
Newton [35].
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