
PHYSICAL REVIEW E 94, 052149 (2016)

Effect of long-range interactions on the phase transition of Axelrod’s model
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Axelrod’s model with F = 2 cultural features, where each feature can assume k states drawn from a Poisson
distribution of parameter q, exhibits a continuous nonequilibrium phase transition in the square lattice. Here we
use extensive Monte Carlo simulations and finite-size scaling to study the critical behavior of the order parameter
ρ, which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over
many runs. We find that it vanishes as ρ ∼ (q0

c − q)β with β ≈ 0.25 at the critical point q0
c ≈ 3.10 and that

the exponent that measures the width of the critical region is ν0 ≈ 2.1. In addition, we find that introduction
of long-range links by rewiring the nearest-neighbors links of the square lattice with probability p turns the
transition discontinuous, with the critical point qp

c increasing from 3.1 to 27.17, approximately, as p increases
from 0 to 1. The sharpness of the threshold, as measured by the exponent νp ≈ 1 for p > 0, increases with the
square root of the number of nodes of the resulting small-world network.
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I. INTRODUCTION

Axelrod’s model for the dissemination of culture takes into
account two key ingredients of social dynamics [1–3], namely,
social influence through which people become more similar
when they interact and homophily, which is the tendency of
individuals to interact preferentially with similar others [4].
Explicitly, in Axelrod’s model the individuals are modeled by
agents, which are strings of cultural features of length F , where
each feature can adopt a certain number k of distinct states.
The F cultural features of an agent determine its culture. The
N agents are fixed at the nodes of a network (regular lattice or
complex network) and the interaction between two connected
agents takes place with probability proportional to the number
of states they have in common and always results in an increase
of the similarity between them.

Whereas social influence is a main feature of the standard
two-opinion voter model [5] and homophily has been allowed
for in the three-opinion constrained voter model [6,7], the
number of states—two and three, respectively—is not a free
parameter in those models. As a result, the two-opinion voter
model exhibits only consensus absorbing configurations in
regular lattices of arbitrary dimension [5] (see, however,
Ref. [8] for a report of incomplete ordering on small-world
networks). The same conclusion holds for the constrained
voter model in an infinite one-dimensional lattice (see, e.g.,
Refs. [9–12]) and since increasing the range of the agents’
interactions favors the consensus regime [13,14], we expect
this conclusion to hold for regular lattices of higher dimension
as well. In Axelrod’s model, however, increase of the number
of states k for a fixed string length F leads the social dynamics
to freeze in multicultural absorbing configurations even in a
one-dimensional lattice [10,11].

In fact, Axelrod’s model exhibits two types of absorbing
configurations in the thermodynamic limit N → ∞: ordered
configurations, which are characterized by a few cultural
domains of macroscopic sizeS, and disordered configurations,
where all domains are microscopic [15–19]. By cultural
domain we mean a bounded region of uniform culture. The
competition between the disorder of the initial configuration
that favors cultural fragmentation and the ordering bias of

social influence that favors homogenization results in the
nonequilibrium phase transition between those two classes
of absorbing states [15]. We note that, similar to the standard
percolation [20], the phase transition occurs in the properties
of the absorbing states and so it is static in nature [11].

In this paper we reexamine the nonequilibrium phase
transition of a variant of Axelrod’s model in which the initial
states of the F cultural features of the agents are drawn
randomly from a Poisson distribution of parameter q ∈ [0,∞),

Pk = exp (−q)
qk

k!
, (1)

with k = 0,1,2, . . .. In the original model, these states are
chosen randomly from a uniform distribution on the integers
1,2, . . . ,q [4]. In the square lattice, the Poisson variant exhibits
a continuous phase transition for F = 2 and a discontinuous
one for F > 2 [15]. In the one-dimensional lattice, only
the disordered regime exists for F = 2 and a discontinuous
transition between the disordered and the ordered regimes is
observed for F > 2 [11]. Here we focus on the case F = 2
only and study the effect of long-range interactions on the
standard order parameter of Axelrod’s model ρ = 〈Smax〉/N ,
which measures the fraction of agents that belong to the largest
cultural domain, whose size is denoted by Smax, averaged over
many independent runs (see, e.g, Refs. [11,14,15]).

A previous study of the continuous phase transition for
F = 2 in the square lattice considered as order parameter the
mean density of domains μ = 〈N 〉/N , where N denotes the
number of domains of an absorbing configuration and showed

that it vanishes as μ ∼ (q − q0
c )

β ′
with β ′ = 0.67 ± 0.01 at

the critical point q0
c = 3.10 ± 0.02 [19]. We note that μ is

not an order parameter for the standard percolation since it is
continuous and nonzero at the threshold [20]. The advantage
of considering μ is that it is nonzero in the disordered regime
where the convergence of the dynamics to the absorbing
configurations is very fast as compared to the convergence to
the quasiconsensus configurations of the ordered regime (see,
e.g., Ref. [12]). The present study complements that analysis
by showing that the more usual order parameter ρ vanishes at
the critical point as ρ ∼ (q0

c − q)
β

with β = 0.25 ± 0.02.
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In addition, here we study the effect of long-range inter-
actions by considering small-world networks in which each
link of the square lattice with periodic boundary conditions
is rewired with probability p. Rewiring of a link is done by
replacing the original neighbor of a given site by a random site
chosen uniformly among all possible sites that avoid self-loops
and link duplication [21]. The average degree of the resulting
network is 4, regardless of the value of p. The extremes p = 0
and p = 1 correspond to the regular square lattice and to a
random network, respectively. Since the underlying regular
lattice used to generate the small-world networks is the square
lattice we can introduce the length L ≡ N1/2, although it has
no geometrical meaning for p > 0. We find that the transition
is discontinuous for p > 0 and that the critical exponent
that determines the width of the critical region for finite L

is νp = 1.0 ± 0.05. However, in the case p = 0, where the
transition is continuous, we find ν0 = 2.1 ± 0.1.

The remainder of the paper is organized as follows. For the
sake of completeness, in Sec. II we present a brief account of
Axelrod’s model [4] and of the Watts and Strogatz algorithm
for constructing small-world networks [21]. In Sec. III we
study the behavior of the order parameter ρ near the critical
region for three network topologies: the square lattice (p = 0),
random networks (p = 1), and small-world networks with
rewiring probability p = 0.1. Finally, Sec. IV offers our
concluding remarks.

II. THE MODEL

The Poisson variant of Axelrod’s model differs from the
original model only by the procedure that generates the cultural
states of the agents at the beginning of the simulation: for each
feature l = 1, . . . ,F of each agent i = 1, . . . ,N a state k =
0,1, . . . is drawn independently using the distribution Eq. (1).
Once the initial configuration is set, the dynamics proceeds as
in the original model [4]. In particular, at each time we pick
an agent at random—the target agent—as well as one of its
neighbors. These two agents interact with probability equal
to their cultural similarity, defined as the fraction of common
cultural features they have. An interaction consists of selecting
at random one of the distinct features, and making the selected
feature of the target agent equal to the corresponding feature
of its neighbor. This procedure is repeated until the system
is frozen into an absorbing configuration. According to these
rules, at an absorbing configuration any pair of neighbors are
either identical or completely different regarding their cultural
states.

A feature that sets Axelrod’s model apart from most lattice
models that exhibit nonequilibrium phase transitions [22]
is that all stationary states of the dynamics are absorbing
states, i.e., the dynamics always freezes in one of these
states. This contrasts with lattice models that exhibit an active
state in addition to infinitely many absorbing states [23] and
the phase transition occurs between the active state and the
usually equivalent absorbing states (see Ref. [24] for a simple
change in the update rule of Axelrod’s model that results in
dynamically active metastable states).

The implementation of the Watts and Strogatz algorithm
[21] for constructing the small-world networks used in our
study begins with a square lattice of linear size L with nearest

neighbors interactions and periodic boundary conditions (i.e.,
a torus). Then for every site i = 1, . . . ,N = L2 we rewire the
link between i and, say, its left neighbor, with probability p.
As mentioned before, rewiring of a link is done by replacing
the original neighbor of site i (in this case, the left neighbor) by
a random site chosen uniformly among all possible sites that
avoid self-loops and link duplication. The procedure is then
repeated for, say, the top neighbor of every site of the lattice.
Note that for p = 1 the resulting network is not a classic
random network [25], since the rewiring scheme guarantees
that any site will be connected to at least two other sites,
whereas for classical random graphs any site has probability
e−4 of being isolated from the other N − 1 sites. Otherwise,
the resulting networks are very similar to classical random
graphs.

III. ANALYSIS OF THE ORDER PARAMETER

For a randomly generated initial configuration of the agents’
cultures, we follow the dynamics of Axelrod’s model until it
reaches an absorbing state—this comprises a single run—and
then we calculate the size of the largest cultural domain Smax.
Average of this quantity over a large number of independent
runs (typically 104), which differ by the choice of the initial
cultural states of the agents as well as by their update
sequence, yields the order parameter ρ = 〈Smax〉/N we use to
characterize the nature of the absorbing configurations. In the
case of random (p = 1) and small world (0 < p < 1) networks
we generate a different network for each run.

Figure 1 offers a bird’s eye view of the dependence of
the order parameter ρ on the parameter q of the Poisson
distribution, which determines the number of different cultural
states in the initial population, for the three network topologies
we will consider here, viz. the square lattice (p = 0), small-
world networks with p = 0.1, and random networks (p = 1).
This figure reveals a few interesting features of Axelrod’s
model. First, the presence of long-range links favors the
ordered regime as indicated by the shift of the threshold region
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FIG. 1. Mean fraction of sites in the largest domain ρ as function
of the Poisson parameter q for the square lattice (p = 0), small-
world networks with p = 0.1, and random networks (p = 1). The
different symbols represent different number of sites N = L2, viz.
L = 100 (♦), L = 200 (×), and L = 400 (�). The error bars are
smaller than the symbol sizes.
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to high values of q, i.e., as the fraction p of long-range links
increases, the disorder in the initial configuration must also
increase in order the dynamics reaches a disordered absorbing
configuration [14]. Second, deep into the ordered phase, say
for q < 10, the order parameter is completely insensitive to
increasing the fraction of long-range links beyond a certain
value, say p = 0.1. Third, the crossing of the data for different
L for p > 0 signals the presence of a discontinuous transition
in the limit L → ∞, whereas for p = 0 the condition ρ(L1) �
ρ(L2) for L1 < L2 is satisfied for all values of q > 0.

Next we study in detail the behavior of the order parameter ρ

in the critical region for the three network topologies exhibited
in Fig. 1.

A. Square lattice

The square lattice considered here exhibits only short-range
interactions and so it offers a baseline for assessing the effects
of long-range links on the phase transition of Axelrod’s model.
In addition, as pointed out before, this study complements
previous analyses of the Poisson variant of Axelrod’s model in
the square lattice [15,19]. In fact, whereas Ref. [15] considered
the qualitative aspects of the continuous nonequilibrium
transition (in the sense that there were no attempt to estimate
the critical point q0

c and the critical exponents), Ref. [19]
focused on an alternative order parameter. Since we expect
that the location of the critical point is not affected by the
choice of the order parameter (in cases there is such choice),
here we borrow from Ref. [19] the estimate q0

c = 3.10 ± 0.02.
The discernment of this resolution will be evaluated by the
goodness and consistency of our results.

Figure 2 offers a more detailed view of the order parameter
ρ near the critical point q0

c . Rather remarkably, the finite-size
scaling theory asserts that for large L the data shown in this
figure can be described by the scaling relation [26]

ρ ∼ L−β/ν0
f0

[
L1/ν0(

q0
c − q

)]
, (2)
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FIG. 2. Mean fraction of sites in the largest domain ρ in the criti-
cal region for the square lattice (p = 0) with linear size L = 200 (×),
L = 400 (�), L = 600 (�), L = 800 (�), and L = 1000 (©). The
dotted vertical line indicates the location of q0

c ≈ 3.1 and the solid
curve is the two-parameters fitting function ρ = A(q0

c − q)β , with
A = 0.40 ± 0.01 and β = 0.25 ± 0.02. The error bars are smaller
than the symbol sizes.
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FIG. 3. Log-log plot of ρ against q0
c − q with q0

c = 3.1 for the
square lattice (p = 0) with L = 200 (×), L = 600 (�) and L =
1000 (©). The solid line is the fitting function ρ = A(q0

c − q)β with
A = 0.40 ± 0.01, and β = 0.25 ± 0.02.

where the scaling function is f0(x) ∝ xβ for x � 1 and ν0 > 0
is a critical exponent that determines the width of the critical
region for finite L. Hence, in the limit L → ∞ one has ρ ∼
(q0

c − q)
β

near the critical point, where β > 0 is a critical
exponent.

Figure 3 summarizes the results of the fitting of the data for
L = 200 with the function ρ = A(q0

c − q)
β
, where A and β

are the two adjustable parameters of the fitting. The choice of
the fitting region is determined by requiring that the fit curve
goes through the data for L = 600 as well. This procedure
yields β = 0.25 ± 0.02 for the critical exponent that governs
the vanishing of the order parameter ρ at the critical point. The
resulting fit curve is also shown in Fig. 2 using a linear scale.

According to the scaling relation Eq. (2), ρ must decrease
to zero as the power law ρ ∼ L−β/ν0

at q = q0
c and we explore

this fact in Fig. 4, where ρ is plotted against 1/L in a
log-log scale, to determine the ratio β/ν0 = 0.117 ± 0.002.
Finally, we are now in a position to estimate the exponent
ν0 = 2.1 ± 0.1. The goodness of our estimates of the critical
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FIG. 4. Log-log plot of ρ against the reciprocal of the linear
lattice size at the critical point q0

c ≈ 3.1. The curve fitting the data
is ρ = BLβ/ν0

with B = 0.371 ± 0.005 and β/ν0 = 0.117 ± 0.002.
The error bars are smaller than the symbol sizes.
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FIG. 5. Scaled order parameter against the scaled distance to
the critical point for the square lattice (p = 0) with linear size
L = 200 (×), L = 400 (�), L = 600 (�), L = 800 (�), and L =
1000 (©). The error bars are smaller than the symbol sizes. The
parameters are q0

c = 3.10, β/ν0 = 0.117, and ν0 = 2.1.

exponents as well as the judiciousness of borrowing the
location of the critical point from Ref. [19] can be assessed by
checking whether the scaled quantity Lβ/ν0

ρ is independent of
the lattice size L when plotted against the scaled distance to
the critical point L1/ν0

(q0
c − q) as predicted by Eq. (2). This

is shown in Fig. 5. The quality of the collapse of the data
for distinct lattice sizes supports heartily our estimates of the
critical exponents.

The two critical exponents β ≈ 0.25 and ν0 ≈ 2.1 that
determine the behavior of the order parameter ρ in the critical
region of Axelrod’s model set its continuous nonequilibrium
phase transition apart from the known universality classes
of nonequilibrium lattice models [22]. This is probably due
to the static nature of the transition and to the existence of
infinitely many absorbing configurations in both—ordered and
disordered—phases.

B. Random networks

To study the phase transition for random networks gener-
ated by the limit of sure rewiring (i.e., p = 1) of the Watts
and Strogatz algorithm [21], we need first to obtain a good
estimate of the location of the critical point q1

c . According to
Fig. 1, in the limit L → ∞ one expects that ρ → 0 for q > q1

c

and ρ → ρ(q) > 0 for q < q1
c , so that the order parameter

jumps from 0 to ρ1
c at q = q1

c . Hence, in order to determine
q1

c , in Fig. 6 we plot ρ against 1/L for several values of q in
the critical region. A rough estimate of this region is provided
by Fig. 1, which also offers a good estimate for the jump at
the critical point, ρ1

c ≈ 0.18. At q = q1
c the order parameter

is independent of L (hence the intersection of the data for
different L at the critical point); i.e., ρ exhibits a plateau as
1/L → 0. Although such plateaus exist for all q < q1

c since
ρ → ρ(q) for large L, there is no risk of confusing the two
types of plateaus because the range of ρ shown in Fig. 6 is about
one order of magnitude smaller than ρ1

c . Visual inspection
of Fig. 6 indicates that 27.15 < q1

c < 27.2, so we estimate
q1

c = 27.175 ± 0.125.
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FIG. 6. Order parameter ρ against the reciprocal of L for random
networks and q = 27.0 (�), 27.1 (�), 27.15 (©), 27.2 (�), and
27.5 (	). The critical point is q1

c = 27.175 ± 0.125. The error bars
are smaller than the symbol sizes and the lines are guides to the eye.

Figure 6 also illustrates the strong finite-size effects that
hinder the analysis of the order parameter ρ in the critical
region. Consider, for instance, the data for q = 27.5. If our
analysis were restricted to L 
 500 that value of q would be
a good candidate for the critical point, because of the plateau
observed in the range 200 < L < 500. In fact, the data for
p = 1 shown in Fig. 1 cross at about q = 27.5. Hence, to probe
the correct critical behavior of ρ we must consider random
networks with L > 600. This contrasts to our findings for the
square lattice, for which the analysis of rather small networks
(e.g., L = 200) yields useful information about the critical
behavior (see Figs. 3 and 5).

We focus now on the characterization of the sharpness of
the threshold, i.e., the range of q about q1

c where the threshold
features persist. To achieve that we will assume that the critical
region shrinks to zero like L−1/ν1

as L → ∞; i.e., we will
assume that the order parameter is described by the expression
ρ = f1[L1/ν1

(q1
c − q)] in the critical region. Here f1 is a

continuous function such that f1(x) → 0 for x → −∞ and
f1(x) → ρ1

c for x → ∞. Our approach is in the same spirit of
the finite-size scaling of combinatorial problems [27,28] (see
Ref. [29] for a similar study in the context of the quasispecies
model), for which there is no geometric criterion for defining a
quantity analogous to a correlation length, and so the success
of the method in accounting for the size dependence of the
order parameter ρ cannot be attributed to the divergence of a
correlation length and the consequent onset of a second-order
phase transition. In addition, we recall that even the parameter
L has no geometric interpretation for random networks.

Figure 7 confirms that, in the critical region, the order
parameter ρ is a smooth function of the properly rescaled
distance to the critical point. The estimate ν1 = 1.0 for the
critical exponent was obtained by requiring that the data for
distinct L collapse into a single curve, the function f1(x).
In particular, we find f1(0) ≈ 0.021 � ρ1

c , as expected (see
Fig. 6). The uncertainty of the estimate of ν1 can be evaluated
using the same procedure, i.e., by gauging the quality of
the data collapse as the exponent departs from ν1 = 1. We
find very poor data collapses for exponents outside the range
ν1 = 1.0 ± 0.05 (data not shown). This figure reveals also our
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FIG. 7. Order parameter against the scaled distance to the critical
point for random networks (p = 1) with L = 600 (�), L = 800 (�),
and L = 1000 (©). The error bars are smaller than the symbol sizes.
The parameters are q1

c = 27.175, and ν1 = 1.0.

difficulty to obtain reliable results in the ordered phase q < q1
c

due to the very long convergence times [12]. We conclude then
that the sharpness of the transition increases with the square
root of the number of agents, N1/2.

C. Small-world networks

We turn now to the analysis of the discontinuous transition
for small-world networks with rewiring probability p = 0.1.
Our aim is to verify whether the exponent νp, and hence the
sharpness of the threshold, is influenced by the value of p.
Figure 1 indicates that in the limit L → ∞ the order parameter
jumps from ρ0.1

c ≈ 0.22 to 0 at the threshold. The procedure
used to determine the critical point is the same as that illustrated
in Fig. 6 for random networks and yields q0.1

c = 14.40 ± 0.05.
The finite-size effects are also very strong in this case and so
it is also necessary to resort to large networks, say L > 500,
to assess the critical region.

In Fig. 8 we examine the assumption that the order
parameter satisfies ρ = f0.1[L1/ν0.1

(q0.1
c − q)] in the critical

region. As before, f0.1 is such that f0.1(x) → 0 for x → −∞
and f0.1(x) → ρ0.1

c for x → ∞. The best collapse of the data
for distinct L is obtained with ν0.1 = 1.0 ± 0.05 and it is shown
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FIG. 8. Order parameter against the scaled distance to the critical
point for small-world networks with p = 0.1 and L = 600 (�), L =
800 (�), and L = 1000 (©). The error bars are smaller than the
symbol sizes. The parameters are q0.1

c = 14.40 and ν0.1 = 1.0.

in the figure. The uncertainty of the exponent is estimated as
before, i.e., by varying ν0.1 around 1.0 and gauging the quality
of the resulting data collapse. In addition, Fig. 8 shows that
f0.1(0) ≈ 0.015, implying that the data for different L intersect
at (14.40,0.015) in the plane (q,ρ).

We have also considered values of rewiring probability
down to p = 10−4 and verified that the order parameter ρ

when plotted against q for different values of L (see Fig. 1)
always cross at some value q

p
c , thus signaling the existence of

a discontinuous transition between the ordered (ρ � ρ
p
c ) and

the disordered (ρ = 0) phases. Although we have estimated
the sharpness of the threshold for p = 1 and p = 0.1 only, the
observed irresponsiveness of the exponent νp to this tenfold
decrease of p prompt us to conjecture that this exponent is a
universal feature of the discontinuous transitions of Axelrod’s
model with two cultural features (F = 2) in small-world
networks.

IV. CONCLUSION

Axelrod’s model exhibits a good balance between simplic-
ity and realism, being considered a choice model to study
collective social phenomena from a quantitative perspective
[30]. For instance, Axelrod’s model has proven useful to study
the effects of global media on the polarization of public opinion
[31–34] as well as to understand the emergence of a collective
intelligence from the local interactions between dumb agents
[35,36]. However, rather than explore the riveting applications
of Axelrod’s model in social and political science [4], here we
focused on the not less enthralling contributions of Axelrod’s
model to statistical physics [2].

In particular, our aim in this contribution was to offer a
quantitative characterization of the critical behavior of the
order parameter ρ, which measures the fraction of agents,
sites or nodes that belong to the largest cultural domain of the
absorbing configurations. Such quantitative analysis is feasible
only for the Poisson variant of Axelrod’s model [15], since we
need to probe the very close vicinity of the critical point in
order to compute the critical exponents that characterize the
order parameter. Such detailed study is lacking even for the
familiar square lattice [15,19], as pointed out in Sec. I.

Here we considered a family of small-world networks for
which the square lattice and the random networks are extreme
limits of the rewiring probability p. The larger the value of
p, the greater the number of long-range links in the network
[21]. We found that for p > 0 the order parameter ρ exhibits
a discontinuity at the critical point q

p
c and that q

p
c increases

with increasing p, indicating that the long-range links enlarge
the domain of the ordered phase. More pointedly, we found
that the transition is discontinuous down to p = 10−4 and so
we conjecture that it is discontinuous for all p > 0. This is
similar to the findings for the Ising model in small-world ring
lattices, which show that a ferromagnetic ordered phase exists
for any finite value of p [37]. We note that these qualitative
points were already made in Ref. [14], whose authors studied
Axelrod’s model in several complex networks, small-world
networks included, for integer, uniformly distributed initial
cultural states, and F = 10.

Interestingly, in his original paper Axelrod speculated that
the introduction of random long-range interactions would
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eliminate the culturally fragmented absorbing configurations
[4]. Our analysis shows, however, that even in the extreme case
of random networks those disordered configurations persist,
provided the disorder of the initial configurations is sufficiently
high, i.e., q > q1

c ≈ 27.17 (see also Ref. [14]). Nonetheless,
in agreement with Axelrod’s hunch, long-range links do favor
ordered configurations as indicated by the increase of q

p
c with

the rewiring probability p. This is so because the rewired
links provide shortcuts to connect distant sites on the square
lattice and, as a result, the walls (i.e., links connecting agents
that do not interact because of their antagonistic cultures) can
easily be circumvented by the dominant culture. In fact, this is
also the reason the ordered phase is absent in the Poisson
variant of the one-dimensional Axelrod model for F = 2,
whereas it is present in the two-dimensional model considered
here [11]. The switch of the transition from continuous to
discontinuous when long-range links are introduced has to
do with the suppression of fluctuations by those links, which
makes the model more mean-field-like than the short-range
model (see Refs. [38,39] for the discussion of similar findings
in the context of the Ising and voter models).

The distinctive aspect of our work on small-world networks
is that we were able to characterize the critical region, i.e.,
to estimate the sharpness of the threshold through the critical
exponent νp (see Sec. III B). Our finding that νp ≈ 1 for p = 1
and p = 0.1 implies that the sharpness of the discontinuous
transition increases with N1/2 where N is the number of agents.
We expect that this result holds true for all p > 0. In fact,
if the value of νp were to depend on p, this dependence
should be observed with the tenfold decrease of p shown in
Figs. 7 and 8.

Our findings regarding the critical behavior of ρ in the
square lattice for which the nonequilibrium phase transition is
continuous [15,19] corroborate its unique character: the critical
exponents β = 0.25 ± 0.02 and ν0 = 2.1 ± 0.1 set it apart
from the known universality classes of nonequilibrium lattice
models [22]. This may be due to the distinctive static character
of the transition, which separates two types of absorbing
configurations that differ on their distributions of domain sizes.

The manner we produced the discontinuous transitions in
Axelrod’s model with F = 2 cultural traits was through the
introduction of long-range links on the basal square lattice.
However, there is another, perhaps more natural, way to
produce those transitions in the square lattice, namely, by
increasing the number of cultural traits beyond F = 2 [15].
Although this approach would result in a considerable raise
on the computational cost to simulate Axelrod’s model, the
unveiling of the dependence of the exponent ν on F > 2
might be worth the cost since such study would conclude the
full characterization of the nonequilibrium phase transition of
Axelrod’s model in the square lattice.
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