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Fractional kinetics emerging from ergodicity breaking in random media
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We present a modeling approach for diffusion in a complex medium characterized by a random length scale.
The resulting stochastic process shows subdiffusion with a behavior in qualitative agreement with single-particle
tracking experiments in living cells, such as ergodicity breaking, p variation, and aging. In particular, this
approach recapitulates characteristic features previously described in part by the fractional Brownian motion and
in part by the continuous-time random walk. Moreover, for a proper distribution of the length scale, a single
parameter controls the ergodic-to-nonergodic transition and, remarkably, also drives the transition of the diffusion
equation of the process from nonfractional to fractional, thus demonstrating that fractional kinetics emerges from
ergodicity breaking.
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I. INTRODUCTION

Many processes in life sciences, soft condensed matter,
geology, and ecology show a diffusive behavior that cannot
be modeled by classical methods. These phenomena are
generally labeled with the term anomalous diffusion in order
to distinguish them from the normal diffusion, where the
adjective normal has the double aim of highlighting that (i)
a Gaussian-based process is considered, and (ii) that it is a
usual diffusion process with a linear growth in time of the
particle displacement variance. The observation in nature of
anomalous diffusion has been definitively established exper-
imentally and several theoretical models have been proposed
for the interpretation of such phenomenon [1–3]. Among
these theoretical efforts, the fractional calculus has emerged
to be a successful tool for modeling a class of anomalous
diffusion processes [4,5]. For this reason, anomalous diffusion
governed by equations built on fractional derivatives is often
also referred to as fractional diffusion. Several stochastic
approaches have been proposed in the literature to reproduce
fractional kinetics [6–10].

In the last decades, advances in fluorescence-based tech-
niques such as single-particle tracking (SPT) have allowed
to precise characterization of the diffusion of molecules in
biological systems [11]. In particular, the recording of long
single-molecule trajectories has revealed that the occurrence
of anomalous diffusion of some cellular components in living
cells is associated with ergodicity breaking (EB) [12–16], i.e.,
the nonequivalence of time and ensemble averages [2,3]. Often
EB and anomalous diffusion are concomitant with aging, i.e.,
the dependence of statistical quantities on the measurement
time [17].

Besides the fundamental interest of nonergodic processes
in statistical mechanics and its still unclear implications in cell
biology, the occurrence of EB further embodies a valuable cri-
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terium for the selection of the underlying diffusive stochastic
process. In this respect, comparative studies involving the frac-
tional Brownian motion (fBm) [18,19], the fractional Langevin
equation [18], and the continuous-time random walk (CTRW)
[19–21] have been conducted in order to determine which
type of motion could possibly cause nonergodic anomalous
diffusion. Among the mentioned theoretical frameworks, the
fBm and the fractional Langevin motion are ergodic, with
fBm displaying EB only in the ballistic limit [18]. On the
other hand, the CTRW is nonergodic [20,21], with the EB
stemming from the nonstationary nature of the process when
the distribution of waiting times has a power-law tail [20].
For this reason, the CTRW has been extensively used to
model the occurrence of nonergodic diffusion and the waiting
times have been associated to immobilization events caused
by biochemical interactions [2,3].

However, due to the lack of nonergodic model alternatives
to the CTRW, the use of EB as a criterion to select the
dynamic process has shown some limitations. An example
is provided by the seminal work of Golding and Cox [12].
In this case, although the presence of EB favors CTRW
as the model underlying the dynamics of RNA in cellular
cytoplasm, a moments-based criterion called p variation
[19] seems to indicate a diffusion compatible with fBm.
Similarly, other experiments also showed the simultaneous
occurrence of EB and nonlinear scaling of the time-averaged
mean-square displacement, making necessary to hypothesize
the coexistence of CTRW with other processes in order to
theoretically model the observed features [13–15].

In this paper, we provide a general framework in which
EB emerges as a consequence of the heterogeneity (or
randomness) of the system. The heterogeneity is described by
the random nature of a characteristic property of the medium,
such as a length scale �β , depending on a single parameter β.
Simple examples of this behavior are provided by a population
of particles, each of them diffusing in a Brownian fashion but
with a broad distribution of diffusion coefficients �β . However,
our conclusions do not depend on the type of motion performed
by the particles. We also show that for any nontrivial choice
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of the distribution �β , the parameter β continuously drives
the transition from ergodic to a nonergodic process. Notably, a
fractional kinetics straightforwardly emerges from EB and thus
allows us to associate nonergodicity to a fractional equation.

For its generality, our approach constitutes a flexible tool
to interpret the occurrence of EB in random media and
in living cells without involving CTRW and subordination.
From the biophysical point of view, it implies that EB can
be generated by heterogeneity in the diffusion, without the
need of particle trapping. In particular, we discuss how our
model can resolve the controversy on the interpretation of
Golding and Cox experiments [12,19,21,22] by considering
the fBm in a heterogeneous medium. Such a model allows
one to simultaneously obtain the apparently contradictory
features observed in Golding and Cox experiments, i.e., the
monotonically increasing p-variation test typical of the fBm
together with the EB parameter of the CTRW.

Finally, we show that our formulation can be further
generalized by considering a nonstationary length scale �β =
�β(t) and thus including the occurrence of aging.

II. ERGODICITY BREAKING FROM DIFFUSION
IN A RANDOM MEDIUM

In our model, we consider a stochastic process defined as

X(t) = �β Xgen(t) ,

describing a population of particles diffusing according to
a generic ergodic Gaussian process Xgen(t) in a complex
random medium. The medium properties are independent
of the diffusing particles, and its randomness is described
by a random characteristic quantity—such as a length scale
�β—with distribution depending on the parameter β. The role
of β thus consists in tuning the degree of randomness of the
medium by modulating the distribution of the length scale.
For the case in which Xgen(t) represents a random walk, �β

corresponds to a distribution of diffusion coefficients.
Although the following conclusions hold for every ergodic

Gaussian stochastic process, for the sake of simplicity, from
now on we will consider the fBm XH (t), an ergodic non-
Markovian Gaussian process characterized by the covariance
matrix:

γH (t,s) = t2H + s2H − |t − s|2H , (1)

where 0 < H < 1 is the Hurst exponent, and the variance
results to be 〈X2

H 〉 = 2 t2H .
Therefore, we investigate the following diffusion process

X(t) in a random medium:

X(t) = �β XH (t) . (2)

In order to study the dynamics of the process, we first con-
sider the time-averaged mean-square displacement [18,20,21]

δ2(T ) =
∫ T −�

0 [X(ξ + �) − X(ξ )]2 dξ

T − �
, (3)

where � is the time lag and T the measurement time. The
time-averaged mean-square displacement describes the time
dependence of the second moment of the particle’s position
and it is often used to classify the diffusion mode. For the pure
Brownian motion (2H = 1), δ2(T ) shows a linear growth with
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FIG. 1. Time-averaged mean-square displacement δ2 as a func-
tion of the time lag � calculated for several trajectories (thin red lines)
performing the fBm in a random medium, according to the ggBm
(7) with β = H = 0.3 and T = 104. The dashed line corresponds
to the time- and ensemble-averaged mean-square displacement. The
continuous thick line is a guide to the eye.

�, whereas the fBm shows a power-law behavior ∼ �2H , i.e.,
anomalous diffusion. The effect of the random length scale is
preserved in the calculation of δ2(T ). For the particular case
2H = 1 in which the process XH (t) in (2) corresponds to the
pure Brownian motion, the random length scale is proportional
to the diffusion coefficient. Consequently, as shown in Fig. 1,
time averages such as δ2(T ) remain random variables and
is thus irreproducible [23], causing ergodicity breaking. This
effect can be estimated through the calculation of the EB
parameter EB(T ) [18,21]. Let 〈·〉 represent the ensemble
averaging, then

EB(T ) = 〈[δ2(T )]2〉
〈δ2(T )〉2

− 1 (4)

is calculated in the large T limit and tends to 0 when the
process is ergodic [18].

With a fixed and nonrandom length scale, e.g., �β = 1, for
the stochastic process X(t) defined in (2), we obtain [18]

E
(�β=1)
B (T ) = E

(fBm)
B (T )

T →∞−−−→ 0 . (5)

In contrast, if �β is a random variable, for X(t) it holds that

E
(�β )
B (T ) =

〈
�4

β

〉
〈
�2

β

〉2 [
E

(fBm)
B (T ) + 1

] − 1
T →∞−−−→

〈
�4

β

〉
〈
�2

β

〉2 − 1 .

(6)

The condition 〈�4
β〉 > 〈�2

β〉2 is met in general for any distri-
bution as a consequence of the inequality K � S2 + 1 [24],
where K and S are the kurtosis and the skewness, respectively,
and in particular for any unilateral nonincreasing density
it holds K � 9/5 from the Gauss-Winckler inequality [24].
The limiting case 〈�4

β〉 = 〈�2
β〉2 is met when the distribution

of the length scale is the Bernoulli distribution with equal
success probability for values 0 and 1 or it is the Dirac-delta
distribution δ(�β − 1); therefore the process is nonergodic for
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every nontrivial choice of �β . Although these conclusions
might look somehow trivial, they show how a complex
medium, through a random distribution of the length scale,
might produce nonergodic behavior into an ergodic Gaussian
stochastic process, including the pure Brownian motion, only
by introducing heterogeneity [20].

III. ERGODICITY BREAKING AND THE
FRACTIONAL KINETICS

In the previous section we have shown that, since �β is
an independent random variable, EB can occur as the sole
consequence of the randomness of the medium in which
diffusion takes place (6) and independently of the chosen
ergodic Gaussian stochastic process.

In the following, we will focus our attention on the
stochastic process X(t) as defined in (2). This process has
already been studied in a specific characterization named
generalized gray Brownian motion (ggBm) [8,25,26]. As a
matter of fact, the ggBm trajectory Xβ,H (t) is obtained by
setting �β = √

�β , i.e.,

Xβ,H (t) = √
�β XH (t) , (7)

where the positive random variable �β is distributed according
to the one-side M-Wright–Mainardi function Mβ(λ), with λ �
0 and 0 < β < 1, defined as [27,28]

Mβ(λ) =
∞∑

k=0

(−1)k

k!

λk


[−βk + (1 − β)]
. (8)

The case of a nonrandom length scale, i.e., �β = 1, is
straightforwardly recovered in the limit β → 1 since it holds
M1(λ) = δ(λ − 1). The ggBm is a rather general model and
includes as special cases the Brownian motion (β = 2H = 1),
the fBm (β = 1), and the gray Brownian motion (β = 2H ).

It is well known that the probability density function of
Xβ,H (t) is [8]

P(x; γH ) = 1√
(2πλ)n det γH

×
∫ ∞

0
exp

{
− 1

2λ
xT γ −1

H x
}

Mβ(λ) dλ , (9)

where x = (x1, . . . ,xn) and γH = γH (ti ,tj ), i,j = 1, . . . ,n, is
the covariance matrix of the fBm defined in (1). Therefore, by
the Mellin transform of Mβ(λ) [29], i.e.,

∫ ∞
0 λs−1Mβ(λ) dλ =


[1 + (s − 1)]/
[1 + β(s − 1)], with s > 0, the covariance
matrix of the ggBm can be obtained as [8,26]

γβ,H (t,s) = 1


(1 + β)
(t2H + s2H − |t − s|2H ) . (10)

The one-point one-time density function can be derived from
(9) and becomes

P(x; t) = 1√
4πλ t2H

∫ ∞

0
exp

{
− x2

4λ t2H

}
Mβ(λ) dλ (11)

= 1

2 tH
Mβ/2

( |x|
tH

)
, (12)

where it emerges that the shape of probability density function
of displacements is affected by the medium, here represented

by Mβ(λ). In terms of the H function the density function
P(x; t) reads [30,31]

P(x; t) = 1

2 tH
H 10

01

[ |x|
tH

∣∣∣∣ − ; (1 − β/2,β/2)
(0,1) ; −

]
,

(13)

and the asymptotic decay is Mβ/2(|x| → ∞) ∼
|x| c

2 (β−1) e−b|x|c , with b = 21−c

c
ββc/2 and c = 2

2−β
[31,32].

From (10) the variance turns out to be

〈
X2

β,H

〉 = 2


(1 + β)
t2H , (14)

showing that the presence of the medium does not affect the
power-law growth of the particle displacement variance over
time. It is noteworthy to observe that the ggBm shows both
subdiffusion, 0 < H < 1/2, and superdiffusion, 1/2 < H <

1. Moreover, a remarkable case is represented by H = 1/2 in
which the particle displacement variance results to be linear
in time, see (14), but the density function is not Gaussian
according to (12). The Gaussian density is obtained from (12)
as a special case when β = 1.

The evolution equation for P(x; t) is given by

∂P
∂t

= 2H

β
t2H−1 Dβ−1,1−β

2H/β

∂2P
∂x2

, (15)

where Dξ,μ
η is the Erdélyi-Kober fractional derivative with

respect to t and then the process is also referred to as Erdélyi–
Kober fractional diffusion [33]. Special cases of Eq. (15) are
the classical diffusion (β = 2H = 1), the fBm master equation
(β = 1), and the time-fractional diffusion equation (β = 2H ).
A similar approach can be developed in the framework of the
space-time–fractional diffusion equation, which includes all
its special cases [34].

We would like to remark that the fractional kinetics, i.e.,
β �= 1, emerges directly from the EB due to the randomness
of �β = √

�β since Mβ �=1(λ) �= δ(λ − 1). Moreover, the frac-
tional order related to β can be experimentally computed by
means of the long-time limit of the EB parameter. In fact, for
large T , from (6) and �β = √

�β the EB parameter E
(ggBm)
B (T )

then becomes

E
(ggBm)
B (T )

T →∞−−−→
〈
�2

β

〉
〈
�β

〉2 − 1 = β

(β)
(β)


(2β)
− 1 , (16)

where again the Mellin transform of Mβ(λ) [29] has been used
to compute 〈�2

β〉 and 〈�β〉.
In summary, the existence of a random length scale turns

an ergodic process into a nonergodic one without the need
to introduce an alternative stochastic process. When this
transition occurs continuously with respect to a parameter
β, the distribution of the length scale can be related to
the M-Wright–Mainardi function and the resulting stochastic
process is driven by a fractional diffusion equation.

Therefore, the present formulation provides a foundation of
fractional kinetics on the basis of the appearance of the EB. In
other words, fractional kinetics can be considered as stemming
from the EB due to the heterogeneity of the medium in which
the diffusion takes place. In order to support this physical
foundation argument, we remark that from the proposed ggBm
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(7) the evolution of the particle density function is governed
by a fractional diffusion equation also in the special case H =
1/2, see (15), with XH (t) performing the classical Brownian
motion and the particles displaying a variance with a linear
growth in time (14).

IV. RELATION WITH EXPERIMENTS

Advances in biophysical techniques, such as SPT, have
allowed researchers to detail the motion of single molecules
and have revealed very complex diffusion patterns in living
cells [11]. In particular, the analysis of these experiments
has shown that several biological systems display nonergodic
behavior as a consequence of interactions occurring in het-
erogeneous cellular environments [12–16]. Such nonergodic
behavior has often been connected with the occurrence of
anomalous (sub)diffusion. The occurrence of EB has been
mainly identified through the nonequivalence of time and
ensemble averages and by the calculation of the EB parameter
(4) [18,21]. Owing to the importance of molecular transport
for the cellular function, theoretical efforts have been devoted
to understand the physical mechanism behind EB in biology.
Several stochastic models presenting nonstationary (and thus
nonergodic) (sub)diffusion have been proposed [3]. Among
these models, the most popular has definitively been the CTRW
[19–21,35,36], which has been extensively used to model
nonergodic subdiffusion in living cells [13–15]. The CTRW
has allowed association of the nonergodic behavior with the
occurrence of particle immobilization with a heavy-tailed
distribution of trapping times [37].

However, among the experimental evidences of EB in
biological systems, not all the observed features could be
directly addressed within the framework of CTRW alone.
For example, Refs. [12,14,15] showed subdiffusive scaling
of the time-averaged mean-square displacement obtained for
single trajectories, making necessary the postulation of the
coexistence of CTRW with other sources of subdiffusion, i.e.,
the fBm [15] or a fractal processes [14], in order to properly
interpret the results. In addition, some experiments did not
show the occurrence of inherent features of CTRW, such as
aging [38] or immobilization [16].

In order to determine the physical scenario behind the
subdiffusive EB, a number of diagnostic tools have been
proposed [39]. Among these, a valid criterion for selection of
stochastic processes is represented by the so-called p-variation
test [19]. The test is based on the calculation of the quantity

V (p)(t) = lim
n→∞ V (p)

n (t) , (17)

where for t ∈ [0,T ],

V (p)
n (t) =

2n−1∑
j=0

∣∣∣∣X
(

(j + 1)T

2n
∧ t

)
− X

(
jT

2n
∧ t

)∣∣∣∣
p

, (18)

with a ∧ b = min{a,b}, and allows the CTRW-like models and
the fBm to be distinguished, even on the single-trajectory level
[39].

In spite of the efforts in developing tests and methods to
distinguish between different stochastic models, contradictory
indications still prevent the unambiguous determination of the
physical mechanism behind EB in biological samples. An

example is provided by what is probably the first evidence
of EB in living cells, i.e., the experiments describing the
motion of individual mRNA molecules inside living E. coli
cells presented in the seminal paper by Golding and Cox
[12]. In this case, in order to explain the occurrence of EB
as evidenced by the large scattering of single-trajectory δ2

curves and a nonzero EB parameter, the CTRW was proposed
in Refs. [21] and [22] to model this dataset. However, in
order to account for the subdiffusive behavior of the time-
averaged mean-square displacement, the authors of both works
proposed the coexistence of CTRW with some degree of spatial
confinement, producing the power-law behavior of δ2 [21,22].
But the application of the p-variation test to the same dataset
[12] showed that the subdiffusion is unlikely to originate from
the CTRW, whereas the data are compatible with fBm [19].

In this scenario, the general stochastic process presented in
this work in (2) provides a plausible framework to describe
the subdiffusive nonergodic behavior observed in Ref. [12].
The introduction of a random length scale associate to a
random medium allows one to describe the complexity of the
cytoskeletal environment and reproduce the scatter of time-
average mean-square displacement observed at the single-
trajectory level. This observation is quantitatively translated
by the calculation of the EB parameter. As a matter of
fact, Eq. (16) shows that the EB parameter of the specific
process described in (7) is identical to that obtained for a
CTRW with a power-law distribution of waiting times, i.e.,
ψ(τ ) ∝ τ−(1+β), and an infinite average sojourn time [21,22],
independently of the ergodic Gaussian process used to model
diffusion. In addition, the flexibility of our method allows us
to choose the fBm to model single-particle diffusion (7) and
thus reproduce the subdiffusion in δ2 and maintain the same p-
variation behavior of the fBm V

(p)
ggBm(t) = �

p/2
β V

(p)
fBm(t), while

preserving the same degree of EB observed for CTRW-like
models (Fig. 2).

 1

 10

101 102 103 104

E
B
 (

T
,

)

T

=1
=10

=20
=30

=40
=50

0

2×103
4×103
6×103
8×103

0 2×103 4×103 6×103

V
n(2

) (t
)

t

n=9
n=8
n=7
n=6

FIG. 2. Plot of EB (T ) for the stochastic process (7) with β = 0.5
and H = 0.3 at various time lags � as a function of the measurement
time T . Larger � produces an increase of EB (T ) at short time T .
The EB (T ) values at large time T shown are in agreement with the
theoretical expectation (16) (dashed line). (Inset) Results of the the
p-variation test with p = 2 for the stochastic process (7) with β = 0.5
and H = 0.3, showing the same trend as the pure fBm.
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V. AGING

An interesting feature emerging from some single-particle
tracking experiments of cellular components [14–16] is
the occurrence of aging, i.e., the dependence of statistical
quantities—such as the time- and ensemble-averaged mean-
square displacement 〈δ2(T )〉—on the measurement time, as a
consequence of the presence of nonstationarity in the diffusive
mechanism [17]. Besides living cells, aging has been observed
for many complex systems such as blinking nanocrystals
[40–42], spin glasses [43], and colloidal suspension [44]. Since
aging can characterize long-term memory [45], it can be used
as a statistical indicator of complexity and thus exploited to
discriminate among different modeling approaches [46,47].
Furthermore, aging has been shown to be associated with
weak ergodicity breaking [48,49], i.e., a situation in which
the time needed to explore a system phase space is infinite, but
the phase space cannot be divided into mutually inaccessible
regions [48].

Our theoretical formulation allows reproduction of aging by
the extension to the case of a nonstationary random medium
�β = �β(t) [50]. The stochastic process results in the following
definition:

Xα,β,H (t) = √
tα�β XH (t) , (19)

where �β and XH (t), with 0 < H < 1, have the same meaning
as in Eq. (7). In this case, the increments of Xα,β,H (t) are
nonstationary, in contrast to the process defined in (7), which
is recovered as a particular case for α = 0. The parameter α

is constrained by the physical requirement that the process
is diffusive, meaning that the particle displacement variance
must grow in time. Since the variance of the process is given
by 〈

X2
α,β,H

〉 = 〈�β〉 tα+2H , (20)

the latter condition can be expressed as α > −2H . It can be
shown [50] that the time- and ensemble-averaged mean-square
displacement then is 〈δ2(T )〉 � �2H T α (Fig. 3).
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FIG. 3. Plot of the time- and ensemble-averaged mean-square
displacement 〈δ2(T )〉 at various time lags � and as a function of
the measurement time T for the process (19) with β = H = 0.3 and
α = −0.3. The curves asymptotically show a power-law decay T α

(dashed lines), demonstrating the presence of aging in the process.
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FIG. 4. Contour plot of the aging exponent α as a function of
the exponents controlling the power-law growth of the time- (2H )
and ensemble-averaged (α + 2H ) mean-square displacement for the
process (19). The continuous black line corresponds to the absence of
aging (α = 0). Dashed green lines separate sub- and superdiffusive
regions, characterized by exponent values < 1 and > 1, respectively.

It is interesting to note that our formulation shows properties
that were not recapitulated by any of the models for nonergodic
diffusion previously presented in literature [3]. First, the
exponents controlling the power-law behavior of δ2, 〈X2

α,β,H 〉
and 〈δ2(T )〉, depend on two parameters, α and H . As such they
can thus be independently tuned to reproduce any different
scaling of the two curves, in contrast to the other models [3].
In particular, our model show that the time- and ensemble-
averaged mean-square displacements can have marked differ-
ent behavior, for example, with one showing subdiffusivity
with the other showing superdiffusivity. In addition, the aging
can show a positive or negative exponent depending on the
relative magnitude of the exponents controlling the growth of
the time- and ensemble-averaged mean-square displacement
(Fig. 4).

Moreover, we highlight that the aging can be obtained even
in the case in which the time-averaged mean-square displace-
ment δ2 or the ensemble-averaged mean-square displacement
〈X2

α,β,H 〉 show Brownian behavior, i.e., when 2H = 1 or
α = 1, respectively. It is interesting to note that in the
case 2H = 1 we recover the same relationship between the
exponent of the ensemble-averaged mean-square displacement
(α + 1) and the time- and ensemble-averaged mean-square
displacement obtained for other models, such as the CTRW
[20], the scaled Brownian motion [51], the quenched trap [52],
and the patch model [53]. Moreover, the calculation of the
EB parameter (4) for the process (19) shows that even in the
presence of aging (α �= 0) the value of the EB parameter is
identical to the one obtained for a CTRW with infinite average
sojourn time and power-law distribution of waiting times [50].

VI. CONCLUSIONS

We have demonstrated that an ergodic Gaussian process
occurring in a heterogeneous medium characterized by a
random length scale can be turned into nonergodic without
altering the properties of the Gaussian process itself. We
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showed that for any nontrivial choice of the distribution of the
length scale, the transition from ergodicity to nonergodicity
can be continuously tuned by means of a parameter β. In these
cases, the distribution of the length scale can be related to
the M-Wright–Mainardi function and the resulting stochastic
process is controlled by a fractional diffusion equation.

These conclusions are valid for any ergodic Gaussian
process. Therefore, the generality of our formulation posits it
as a flexible tool for the interpretation of heterogeneous and/or
nonergodic diffusion in disordered systems, such as the many
examples of subdiffusion recently observed in living cells
[12–16,38]. Notably, our formulation includes the possibility
to model the simultaneous occurrence of subdiffusion (as well
as any other types of motion) at the single-particle level (Fig. 1)
and EB (Fig. 2), a feature observed in many experimental
reports [12–15]. This is in contrast with other nonergodic
models, such as the CTRW, predicting a linear scaling of the
time-averaged mean-square displacement. Therefore, the data
could not be satisfactorily interpreted by the CTRW alone and
needed to include an additional source of subdiffusion together
with CTRW models [14,15].

In particular, we showed that our framework offers an
interpretation of the data of Golding and Cox [12] on the
basis of a fBm in a heterogeneous medium. The stochastic
process (7) allows us to capture both the subdiffusivity in
the time-averaged mean-square displacement, the monotonic
temporal growing of the p-variations test (as for the fBm),

as well as the EB parameter value of the CTRW. Therefore,
our model allows us to reproduce all the features observed
experimentally and thus solve the disagreement about the
underlying stochastic process.

Furthermore, we show that by introducing a nonstationary
random medium (19), our model can be extended to include
the occurrence of aging, a feature often associated to EB in
living systems [14,16]. As such, we consider that our general
approach could contribute to investigate the occurrence of EB
and anomalous diffusion in life sciences as well as many other
fields, and help to elucidate their effects and implications.
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