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Two-dimensional photon echoes reveal non-Markovian energy transfer in an excitonic dimer
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We show that strong non-Markovian effects can be revealed by the steady-state two-dimensional (2D) photon
echo spectra at asymptotic waiting times. For this, we use a simple dimer toy model that is strongly coupled to
a harmonic bath with parameters typical for photoactive biomolecules. We calculate the 2D photon echo spectra
employing both the numerically exact hierarchy equation of motion and the quasiadiabatic path integral approach
and compare these results with approximate results from a time-nonlocal quantum master equation approach.
While the latter correctly reproduces the exact population dynamics at long times, it fails at the same time to
correctly describe the 2D photon echo spectra at long waiting times. The differences show that non-Markovian
effects are much more important for the steady-state 2D photon echoes than for the equilibrium populations.
Thus, accurate theoretical descriptions of the energy transfer dynamics in biomolecular complexes have to be
based on numerically exact simulations of the environmental fluctuations when nonlinear response functions are
analyzed.
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I. INTRODUCTION

In recent years, ultrafast nonlinear optical spectroscopy
has been developed into a very successful tool to study the
nonequilibrium dynamics of quantum systems [1–3]. For
example, it allows us to probe and analyze highly complex
artificial photoactive and natural photosynthetic complexes on
the femtosecond time scale revealing their excitonic energy
transfer dynamics [4–11].

Theoretical descriptions commonly employ a Frenkel-
exciton model within a system-bath approach. Thereby,
one focuses on the excitonic degrees of freedom and few
vibrational modes strongly coupled to the exciton system.
All other electronic and vibrational degrees of freedom are
treated as a harmonic bath [12], i.e., a source of environmental
fluctuations which are finally integrated out in a statistical
average. Often the strong environmental fluctuations acting
in photosynthetic complexes at ambient temperatures prohibit
perturbative treatments of the system-bath coupling [13,14]
and ask for numerically exact procedures. Usually, however,
for complexes with many relevant degrees of freedom only
approximate treatments of the system-bath coupling are nu-
merically efficient [7–9]. For small photosynthetic complexes,
like the Fenna-Mathews-Olsen complex, the hierarchy equa-
tion of motion (HEOM) has successfully been implemented
[15,16] and, by way of massive parallelization, even a study of
the LH1 + LH2 complex of the purple photosynthetic bacteria
became possible, which involves a 50-pigment system [17].
The quasiadiabatic path integral (QUAPI) approach [18–20]
can also be employed and has the advantage that arbitrary
spectral functions of the environment can be treated, in contrast
to the HEOM approach. However, the numerical effort is
immense and only a dimer system can be efficiently tackled
by QUAPI when also the double excited states are to be taken
into account.

A particular form of nonlinear spectroscopy is two-
dimensional photon echo spectroscopy in which three laser
pulses with wave vectors �k1, �k2, and �k3 act on the complex and,
then, the out-coming signal in �ks = −�k1 + �k2 + �k3 is recorded.
When the employed laser pulses are very short compared to any
time scale of the dynamics of interest, they can be treated as δ

pulses, which then allows us to make use of nonlinear response
functions [1–3]. Typical pulses last for tens of femtoseconds,
which is similar to typical dephasing and excitonic oscillation
times. Then, the full extended time range of the pulses has to be
taken into account. Subsequently, only the time evolution of the
total dipole operator can be determined. Various approaches
then allow us to determine the 2D photon echo signal. For
instance, the high-order polarization can be calculated by the
perturbative expansion of the light-matter interactions and the
photon echo can be obtained by the appropriate combination
of the selected polarization signals [21]. Moreover, the photon
echo signal can be calculated by the phase-matching approach,
which disentangle the signal into certain phase-matching
directions [22,23].

Non-Markovian effects emerging at strong system-bath
coupling [13] and/or small maximal bath frequency [14] are
well established in the study of the population dynamics and
the coherent (short time) excitonic dynamics observed in 2D
photon echoes for rather short waiting times, i.e., T � 200 fs.
Energy transfer in photosynthetic complexes occurs on longer
time scales, i.e., ∼1000 fs. Here, the typical transfer dynamics
is mainly incoherent and strong system-bath influences are
believed to result mainly in renormalizing the equilibrium
populations of the excitonic states. Thus, biomolecular en-
ergy transfer in large photosynthetic complexes is typically
modeled by employing numerically inexpensive but approxi-
mate methods. While such approximate approaches are often
accepted to be reliable for the investigation of the mere popu-
lation dynamics, their reliability in connection with advanced
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and refined nonlinear spectroscopic techniques is usually not
considered. This is the starting point of the present work.

In this paper, we show that the steady-state 2D photon
echo spectra calculated with different approaches may differ
significantly, although, for the same parameters, the equilib-
rium populations do not differ. To illustrate this, we compare
numerically exact calculations with approximate calculations.
This shows that non-Markovian effects play an important
role in 2D photon echoes at long waiting times. Conversely,
2D photon echoes can be used to reveal these effects in
photoactive complexes. In detail, we show this effect by
employing a simple dimer model strongly coupled to a bath
introduced in Sec. II. We determine the 2D photon echo
spectra employing the two numerically exact approaches of
the hierarchy equations of motion (HEOM) and the QUAPI.
We compare these results with approximate results from
a time-nonlocal quantum master equation (TNL) [24]. All
methods are shortly discussed in Sec. III. In Sec. IV we give
our concrete results. Section V concludes the paper.

II. DIMER MODEL

We investigate a dimer system consisting of two monomers.
For each monomer j = 1,2, we consider a single optical
excitation with ground S0 (|gj 〉) and first excited state S1

(|ej 〉) separated by the excitation energy Ej . Additionally, each
monomer is coupled via HSB,j = |ej 〉〈ej |

∑
k λk(b†k,j + bk,j )

to its separate environment described as a harmonic bath
with the Hamiltonian HB,j = ∑

k ωkb
†
k,j bk,j . Here, λk is the

coupling constant between monomer and bath mode k with
annihilation/creation operator b

†
k,j /bk,j . In total, we obtain the

monomer Hamiltonian

Hj = |ej 〉〈ej |
(

Ej +
∑

k

λk(b†k,j + bk,j )

)
+ HB,j . (1)

Each monomer has a transition dipole moment μ̂j =
�μj (|gj 〉〈ej | + |ej 〉〈gj |). We assume the two dipole moments
of both monomers to have the same amplitudes and to be
orthogonal to each other, i.e., �μ1 ⊥ �μ2. The total dipole
moment μ̂1 + μ̂2 = X + X†, with

X = �μ1|g1〉〈e1| + �μ2|g2〉〈e2|,

couples to the electric field,

�El(t) = ê[El(t)e
−iωt−i�kl �r + c.c.],

of the pulse l. Therein, El(t) = exp[−4 ln 2(t − tl)2/τ 2
p] de-

notes the pulse profile with width τp, which peaks at tl , �kl

the wave vector, ê its polarization vector, and ω the respective
frequency of the laser pulse and �r the position of the dimer in
space.

The dipolar coupling between the dipole moments of the
monomers results in a dimer with Hamiltonian

Hd = H1 + H2 + J (|g1e2〉〈e1g2| + |e1g2〉〈g1e2|), (2)

with dipolar coupling constant J .

A. Choice of model parameter

We study a system with coupling J = 150 cm−1. Optical
excitation energies of a chromophore monomer are considered
to be in the optical regime, i.e., Ej ∼ 15 000 cm−1, with an
energy difference E2 − E1 = 100 cm−1. The laser frequency
ω0 will be centered in between both exciton energies and we
apply the rotating wave approximation so that we might set
the site energies reduced by ω0 leading to E2 = 50 cm−1 and
E1 = −50 cm−1. We fix the laser pulse length to τp = 40 fs.

We assume that the bath coupled to each monomer is
described by the same Ohmic spectral function J (ω) =
π

∑
k λ2

kδ(ω − ωk) = γωf (ω,ωc) with a dimensionless cou-
pling strength γ and a cutoff function f (ω,ωc) with cutoff
frequency ωc. We compare results obtained for a Debye-
like cutoff function fD(ω,ωc) = ω2

c/(ω2
c + ω2) with results

for an exponential cutoff function fe(ω,ωc) = exp(−ω/ωc).
We assume both baths to have no cross correlations, i.e.,
〈b†k,1(t)bk,2(t0)〉 = 0. We consider a strong system-bath cou-
pling with γ = 1 and ωc = 150 cm−1 as typical in biomolec-
ular systems [25].

The reorganization energy ER = 1
π

∫ ∞
0 dω J (ω)/ω can be

evaluated to be ∼48 cm−1 for the exponential cutoff and
75 cm−1 in the case of the Debye like cutoff function.
Furthermore, we assume the bath being initially in thermal
equilibrium at the temperature T0 = 300 K resulting in an
initial state given by the equilibrium density operator ρ(0) =
|g1〉〈g1| ⊗ |g2〉〈g2| ⊗ ρ

(eq)
B with ρ

(eq)
B = e−(HB,1+HB,2)/T0/Zph

and Zph = Tr[e−(HB,1+HB,2)/T0 ] with kB = 1.
To simulate experimentally realistic situations, we take

inhomogeneous broadening into account by a diagonal en-
ergetic static disorder characterized by a Gaussian distribution
with the width σ = 50 cm−1 (FWHM). We convolute the
calculated homogeneous spectra with the Gaussian-shaped in-
homogeneous broadening function. Furthermore, we consider
an all-parallel setup for the three laser pulse polarizations and
an isotropic distribution of fixed molecules. We orientationally
average our results accordingly.

III. METHODS

To determine the 2D photon echo response of the model
dimer to the three incident laser pulses we employ a phase
matching approach perturbative in the light-matter interaction
[22]. The underlying open quantum dynamics is calculated by
the approximate TNL quantum master equation, by the HEOM
approach and by the numerically exact QUAPI approach. Be-
low, we briefly summarize these well-established techniques.

A. 2D photon echoes for finite-length laser pulses

In the perturbative phase-matching approach [22], the
polarization of the dimer in the photon-echo direction is
calculated by simultaneously propagating three auxiliary
density matrices ρ1, ρ2, and ρ3. Employing the rotating-wave
approximation leads to the auxiliary dynamical equations

∂tρ1(t) = −i[Hd − V1(t) − V
†

2 (t) − V
†

3 (t),ρ1(t)],

∂tρ2(t) = −i[Hd − V1(t) − V
†

2 (t),ρ2(t)], (3)

∂tρ3(t) = −i[Hd − V1(t) − V
†

3 (t),ρ3(t)],
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where Vj (t) = XEj (t). To obtain the third-order 2D photon
echo signal, the polarization in the phase matching direction
is

PPE(t1,t2,t3) = 〈X(ρ1(t) − ρ2(t) − ρ3(t))〉 + c.c., (4)

where the bracket 〈. . .〉 denotes the trace and the times tj refer
to the peak times in the respective pulse profiles. Experimen-
tally, in the limit of ideal detection, the heterodyne photon echo
signal is proportional to the polarization PPE(t1,t2,t3,t), where
t is the detection time. Therefore, the ideal total 2D signal can
be expressed as

ST (ωτ ,T ,ωt ) ∝
∫ ∞

−∞
dτ

∫ ∞

−∞
dt e−iωτ τ+iωt t iPPE(τ,T ,t), (5)

where τ , T , and t denote the coherence time, the popu-
lation (waiting) time, and the detection time, respectively,
τ = t2 − t1, T = t3 − t2. We note that all the pulses are
assumed to have the same line shape, carrier frequencies, and
durations.

B. Time nonlocal quantum master equation

The dynamic Eqs. (3) can be solved employing established
techniques of open quantum systems. A numerically highly
efficient choice is the time-nonlocal quantum master equation
(TNL),

ρ̇s(t) = Leff
s ρs(t) +

∫ t

0
K(t,t ′)ρs(t

′) + �(t), (6)

which is based on the Zwanzig equation of motion with a
projection scheme. The time-evolution of the reduced system
density operator ρs(t) is described by a system part Leff

s ρs(t),
a memory term

∫ t

0 K(t,t ′)ρs(t ′), and the inhomogeneous term
�(t). The latter is associated to potential initial correlations
between system and bath. Based on the second-order approxi-
mation of the system-bath interactions, the use of the memory
kernel K(t,t ′) can be avoided by introducing two types of
auxiliary density matrices ρr (t), ρi(t). The time-retarded
Eq. (6) is then elegantly deconvoluted into coupled first-order
ordinary differential equations, which then can be solved
numerically very efficiently. More details can be found in
Ref. [24].

C. Hierarchy equation of motion

The derivation of the hierarchy equation of motion (HEOM)
can be found in Ref. [26]. For a spectral density with Dude
cutoff, the bath autocorrelation function can be expressed as
an exponential in the form c(t) = 2ER exp(−ωct). Here, ER

and ωc is the reorganization energy and the cutoff frequency,
respectively. Within a high-temperature approximation
β�γj < 1, the HEOM follows as

ρ̇s(t) = −
⎛
⎝iL +

N∑
j=1

njγj

⎞
⎠ρ(n,t)

+
N∑

j=1

[
jρs(nj+,t) + nj�jρs(nj−,t)], (7)

for a set of nonnegative integers, n = (n1,n2, . . . ,nN ). nj±
is the hierarchy note by changing from nj to nj ± 1.
The relaxation operators are given by 
j = i(|ej 〉〈ej |)x ,
�j = i( 2ER

β�2 (|ej 〉〈ej |)x − i ER

�
ωc(|ej 〉〈ej |)◦), where the opera-

tor Oxf = Of − f O and O◦f = Of + f O.

D. Quasiadiabatic propagator path-integral

To calculate the spectra with the exponential cutoff function
numerically exactly, the QUAPI [18,19] is typically more
efficient than the HEOM. In brief, the algorithm is based on a
symmetric Trotter splitting of the short-time propagator for the
full Hamiltonian into two parts, one depending on the system
Hamiltonian and one involving the bath and the coupling term.
The short-time propagator determines the time evolution over
a Trotter time slice δt . The discrete time evolution becomes
exact in the limit δt → 0. On the other side, the environmental
degrees of freedom generate correlations that are nonlocal in
time. For any finite temperature, these correlations decay on
a time scale denoted as the memory time scale. The QUAPI
scheme defines an “augmented” reduced density tensor, which
lives on this memory time window. Then, an iteration scheme
is established in order to extract the time evolution of this
object. All correlations are completely included over the
finite memory time τmem = Kδt but are neglected for times
beyond τmem. One increases the memory parameter K until
convergence is found, at the same time respecting the limit
δt → 0.

IV. RESULTS

Equipped with the different tools to evaluate the quantum
dissipative dynamics, we next determine the population dy-
namics of the dimer and the 2D spectra.

A. Population dynamics

We determine the population dynamics of the dimer for a
Debye-like cutoff function employing the TNL and HEOM.
Thereby, we start from an initially excited monomer 1 and

FIG. 1. Time-dependent probabilities of an excitation to be in
monomer 1 or 2, i.e., ρ11(t) and ρ22(t), for the parameters given in
the text and calculated by the TNL quantum master equation and by
the HEOM technique.
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FIG. 2. Real part of the two-dimensional photon echo spectra
(rephrasing and nonrephasing) for a dimer calculated for three
different waiting times T = 0 fs, T = 100 fs, and T = 200 fs
(positive, solid lines; negative, dashed lines). The left column shows
results obtained by numerically exact HEOM approach, while the
right column shows the results obtained by the approximate TNL
technique (for the parameters, see text). The transfer rate between the
two exciton states was analyzed by the global fitting approach, which
yields the time scale of 150 fs for both methods. We also show the
frequency spectrum of the excitation laser (dashed red lines) and the
linear photoabsorption spectra (solid black lines).

focus on the energy transfer dynamics within the single-
excitation subspace. In Fig. 1, we show the time dependence of
the occupation probability ρ11(t) for the excitation in monomer
1 and ρ22(t) for the excitation in monomer 2. Despite the
rather strong system-bath coupling, both methods show an
oscillatory behavior for the first 500 fs with similar oscillation
frequencies. The TNL result slightly overestimates the decay
times. Importantly, the TNL quantum master equation gives
identical results for the long-time steady-state occupation of
both states when compared to the numerically exact HEOM
results.

B. 2D spectra

In Fig. 2, we depict the 2D photon echo spectra for the
dimer for three different waiting times T = 0 fs, T = 100 fs,

FIG. 3. Magnitude of the peaks A and B in the photon echo
spectra versus waiting time T . The solid and dashed lines mark the
HEOM results, while the markers (square and circle) indicate the
TNL results.

and T = 200 fs. The left column shows the results obtained by
the numerically exact HEOM approach and data plotted in the
right column are calculated by the approximate TNL approach.
As expected, both techniques yield qualitatively and, in big
parts, also quantitatively identical results for the 2D photon
echo spectra. Nevertheless, clear differences are also visible.
The off-diagonal peak above the diagonal at ωt 
 140 cm−1

and ωτ 
 −140 cm−1 (denoted as peak C in the following) is
more pronounced in the TNL calculations.

A more detailed quantitative comparison is achieved when
waiting time traces at specific points in the 2D photon echoes
are analyzed, specifically for the different peaks. In Fig. 3,
the maximal height of the diagonal peak A (red lines), with
ωt 
 170 cm−1 and ωτ 
 170 cm−1, and the diagonal peak B
(black lines), with ωt 
 −190 cm−1 and ωτ 
 −190 cm−1, are
plotted versus waiting time T up to 1000 fs. Figure 4 shows the
maximal height of the off-diagonal peak C (blue lines) at ωt 

170 cm−1 and ωτ 
 −190 cm−1 and the off-diagonal peak
D (magenta lines) at ωt 
 −190 cm−1 and ωτ 
 190 cm−1

accordingly. The full lines are HEOM results and the dashed
lines TNL results. The results of the TNL and the numerically
exact HEOM approach agree qualitatively well for all peaks.
Quantitatively, the decay times and the oscillation frequencies
obtained from both approaches for the short time behavior,

FIG. 4. Same as in Fig. 3, but for peaks C and D.
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FIG. 5. Heights of the peaks A, B, and C in the photon echo
spectra for an exponentially cutoff bath spectral function versus
increasing waiting time. The symbols indicate the numerically exact
QUAPI results and the dashed lines mark the approximate TNL
results.

i.e., T � 500 fs, agree reasonably well. However, except for
peak B the results for the long-time peak heights determined
by the TNL approach differ clearly from the numerically exact
HEOM result.

Since the TNL approach is based on the Markovian
approximation, our results reveal the difference of the kinetics
calculated by the non-Markovian approach although the results
for the population dynamics (see Fig. 1) agree well. The 2D
spectra show clear differences both in the asymptotic values
and in the decay times and manifest non-Markovian effects.

C. Exponential cutoff function

In order to check how sensitive our results are to the
high-frequency regime of the environmental fluctuational
spectrum, we have additionally studied the dimer model with
an exponential cutoff function instead of a Debye-like one.
In this case, the HEOM technique is less efficient to treat
the dissipative influence of the bath, since the HEOM relies
on the exponential form of the bath autocorrelation function,
which is not strictly given for the exponential cutoff. Since
the QUAPI approach does not suffer from this limitation, we
have used it to compare to the TNL quantum master equation.
The results for the waiting time traces for the various peak
heights are shown in Fig. 5. Due to the immense numerical
costs of QUAPI, only a limited set of waiting times can be
studied. The results are marked by the symbols in Fig. 5.
The comparison of the QUAPI results with the TNL results
(solid lines in Fig. 5) shows nevertheless that for peak B
and C clearly the long-time steady-state values significantly
differ. Thus, the same conclusions as for the Debye spectral
function can be drawn, namely that non-Markovian effects

due to strong system-bath coupling strongly influence the
steady-state 2D photon echo spectra at long waiting times
although their influence is relatively weak for the population
dynamics of the dimer.

V. CONCLUSION

In large photosynthetic clusters, the time scale of the energy
transfer is commonly determined by the weak interactions
between the molecular subunits. Often, these subunits reach
a steady state on the same time scale after being initially
excited. Hence, strong-damping approaches are required,
which properly describe the rather fast subunit relaxation,
while the transfer dynamics between different subunits evolves
on a comparable time scale. For theoretical studies of such
large photosynthetic clusters, often only approximate methods
are numerically efficient when the influence of environmental
degrees of freedom is taken into account. They are regularly
based on the Markovian approximation and it becomes a
valid question whether weak-coupling Markovian approaches
are accurate enough to properly describe such a dynamical
process.

As reported in this work, this is not the case and approximate
Markovian tools have to be used with care when nonlinear
response functions such as 2D photon echo spectra are
calculated. We show here that considerable non-Markovian
effects due to a strong system-bath coupling prevail on long
waiting times in the 2D spectra, even when such effects are
not visible in the population dynamics of the same model.
In particular, the steady-state 2D photon echo spectra differ
significantly, which is illustrated by comparing numerically
exact results with approximate results for a simple dimer
model. It is important to realize that the differences persist
although the equilibrium populations do not differ. This result
is also confirmed by the work of Ref. [27]. In addition, the
comparison of time-local (TL) and TNL approaches has been
done by Ref. [28] and they found that, for certain cases, TL
is quite superior to the TNL master equation. The benchmark
study of TL and TNL methods should be done and compared to
the numerically exact method in the future. This, in turn, forces
one to employ numerically exact methods also when analyzing
the long-time energy transfer dynamics in photosynthetic
complexes. Likewise, 2D photon echo spectra can be used
to reveal strong non-Markovian effects at play.
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[28] M. Schröder, M. Schreiber, and U. Kleinekathöfer, J. Chem.
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