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We investigate the maximum caliber variational principle as an inference algorithm used to predict dynamical
properties of complex nonequilibrium, stationary, statistical systems in the presence of incomplete information.
Specifically, we maximize the path entropy over discrete time step trajectories subject to normalization,
stationarity, and detailed balance constraints together with a path-dependent dynamical information constraint
reflecting a given average global behavior of the complex system. A general expression for the transition
probability values associated with the stationary random Markov processes describing the nonequilibrium
stationary system is computed. By virtue of our analysis, we uncover that a convenient choice of the dynamical
information constraint together with a perturbative asymptotic expansion with respect to its corresponding
Lagrange multiplier of the general expression for the transition probability leads to a formal overlap with the
well-known Glauber hyperbolic tangent rule for the transition probability for the stochastic Ising model in the
limit of very high temperatures of the heat reservoir.
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I. INTRODUCTION

A detailed knowledge of microscopic dynamics may be
neither necessary nor sufficient to understand the macroscopic
behavior of a complex system. For example, entropy is a
crucially important feature of macrostates that cannot be deter-
mined from microstates. Following the statistical mechanical
works of Gibbs [1] and inspired by Shannon’s advances in
information theory [2], Jaynes is the undisputed pioneer in the
use of entropy for optimal information processing leading to
reliable macroscopic predictions in the presence of incomplete
information [3–7]. We point out that information processing
is considered optimal when it takes into account all available
knowledge of the microphysics as well as all the available
macroscopic data. No arbitrary assumptions beyond that are
introduced.

A. Jaynes’s MaxEnt

Jaynes’s MaxEnt is an inductive method of reasoning for
making predictions about equilibrium properties of macro-
scopic phenomena in the presence of incomplete information
[3]. The only type of initial information allowed is values
of quantities which are observed to be constant in time.
In synthesis, MaxEnt is a state-based variational method of
information-theoretic nature aiming at inferring macroscopic
(conserved) properties of complex systems at equilibrium in
the presence of limited information about the microscopic
nature of the phenomena being investigated. Macroscopic
predictions generated by the MaxEnt inference algorithm
are related to the experimental behavior of actual physical
systems only when, and to the extent that, they lead to
sharply peaked probability distributions. Furthermore, if it
occurs that there is experimental evidence that a given MaxEnt
prediction is incorrect, one should reasonably conclude that
the enumeration of the possible microstates suggested by
our knowledge of the laws of physics was not correctly
given. The MaxEnt inference algorithm should be applied
again by modifying the set of input information constraints

corresponding to the newly updated enumeration of the
microstates of the system. Indeed, failure of the MaxEnt
algorithm could be regarded as more valuable than its success
since this can lead to fundamental advances in science [7].
For instance, the failures of classical statistical mechanics that
are rectified by quantum theory constitute valid examples of
such a possibility. Despite a few weak technical aspects of
Jaynes’s approach [8], it is unjustified to state that physics
becomes irrelevant in the MaxEnt formalism. As pointed out
earlier, failures of the MaxEnt inference algorithm are ascribed
to its physical rather than statistical aspects. The MaxEnt
inference is merely an algorithm, a messenger [9]. The MaxEnt
inference algorithm ensures the objectivity of its predictions
but does not claim deductive certainty for them. Ultimately,
conclusive successes and failures belong to physics. Having
said that, we also have to point out that the application
of MaxEnt is not limited to statistical mechanics. Practical
applications of the MaxEnt algorithm include, but are not
limited to, image reconstruction in radio and x-ray astronomy
[10,11], image reconstruction in medical tomography [12],
x-ray crystallography [13], molecular biology [14], nuclear
magnetic resonance spectroscopy [15], and the collective
dynamics of a population of neurons [16]. From a more
theoretical perspective, several applications of the MaxEnt
algorithm appear in the characterization of complexity of
natural phenomena [17–20], energy levels statistics [21,22],
quantum entanglement [23,24], and ferromagnetic materials
[25].

B. Jaynes’s MaxCal

The extension of Jaynes’s MaxEnt principle to nonequilib-
rium statistical mechanical phenomena is known as Jaynes’s
MaxCal principle [5,6]. It constitutes an inductive method of
reasoning for making predictions of nonequilibrium properties
of macroscopic phenomena in the presence of incomplete in-
formation. The type of initial information allowed is extended
to values of quantities which are observed to be nonconstant
in time. Unlike MaxEnt, MaxCal is a path-based variational
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method of information-theoretic nature aiming at inferring
macroscopic (dynamical) properties of complex systems out
of equilibrium in the presence of partial knowledge about the
microscopic nature of the phenomena of interest. From an
applied perspective, it is found that MaxCal is especially suit-
able for solving problems involving small systems that are out
of equilibrium where fluctuations become important. Systems
of this type appear naturally in biology and nanotechnology
[26–28]. Specifically, in Refs. [26,27] MaxCal was applied to
derive several flux distributions in diffusive systems: Fick’s
law of particle transport, Fourier’s law of heat transport, and
Newton’s viscosity law of momentum transport. In Ref. [28],
instead, MaxCal was experimentally tested in the study of
a single colloidal particle transitioning between two energy
wells. In recent years, MaxCal has also found application
to the dynamics of collectively moving animal groups [29].
Recent years have also witnessed a significant number of more
theoretically oriented applications of the MaxCal inference
algorithm [9,30–33]. In particular, MaxCal has been employed
to derive master equations [34,35] and Markov processes [36],
it has been challenged to make inferences in the realm of non-
Markovian dynamics [37], it has been used to recover classical
Newtonian equations of motion [32] and the Fokker-Planck
equation [33], and, finally, it has been proposed as a general
variational principle for nonequilibrium statistical mechanics
[38]. For an extensive review on the MaxCal formalism,
we refer to Ref. [39]. We emphasize that when taking into
consideration nonequilibrium scenarios, Jaynes was concerned
with continuous paths satisfying deterministic Hamiltonian
equations of motion [5,6] while Filyukov and Karpov focused
their attention on systems having discrete dynamical states
where trajectories are composed of discrete time steps [40–42].
Specifically, they assumed that the evolution of the system
may be specified by a Markov chain with discrete times
and a finite number of states. In particular, they noticed
that, in addition to the state probabilities, path probabilities
were required to study nonequilibrium processes since it was
important to know the rates of transition from one state to
another [40,41]. This discrete line of investigation is generating
very interesting findings. In Ref. [43], the MaxCal inference
procedure was used to infer the transition probabilities in a
stationary Markov process given the knowledge of both the
stationary-state populations and an average global dynamical
quantity. Specifically, Dixit and Dill showed that their work
yields the correct values of dynamical quantities (normal-
ized occupancy autocorrelation) in an example of molecular
dynamics simulations of a water solvation shell around a
single water molecule (the average fluctuation of the number
of molecules in the hydration shell was assumed known).
In Ref. [44], the MaxCal inference procedure was used to
infer both the stationary-state distributions and the transition
probabilities in a stationary Markov process in the presence
of both state- and path-dependent information constraints.
Specifically, Dixit considered a particle diffusing on a two-
dimensional square lattice where the external potential field
was used as the average global dynamical quantity in the
path entropy maximization procedure. In Ref. [45], MaxCal
was applied to network science in order to infer transition
rates between nodes of a network in the presence of partial
knowledge in the form of both state- and path-dependent

information. In particular, when the average global dynamical
quantity known was represented by the mean jump rate, it was
uncovered that the transition rates ωij exhibit a square-root
dependence on the stationary state populations at nodes i and j .

In principle, the Liouville equation is the conventional
starting point for the description of time-dependent statistical
systems [46]. However, in most spin systems, the lack of
complete knowledge leads to the absence of an explicit form
of the interaction Hamiltonian between the spins and the
heat reservoir [47]. This fact remains true even in the case
of the linear Ising chain, the simplest Ising model [48]. For
this reason, the Liouville equation is not useful whereas the
method of the master equation allows one to overcome this
technical difficulty. Indeed, within this latter method, it is only
necessary to know the Hamiltonian of the spin system while
the interaction that causes the time transition is assumed to be
stochastic. This line of reasoning leads to the so-called Glauber
stochastic Ising model [49]. As pointed out by Glauber himself
in Ref. [49], the functional form of the transition probabilities
proposed by him was motivated by simplicity requirements
rather than generality conditions.

In this article, motivated by the considerations presented
in Ref. [49] and especially inspired by the works presented
in Refs. [43–45], we maximize the path entropy over discrete
time step trajectories subject to normalization, stationarity, and
detailed balance constraints together with a path-dependent
dynamical information constraint reflecting a given average
global behavior of the complex spin system being considered.
We compute a general expression for the transition proba-
bility values associated with the stationary random Markov
processes describing the nonequilibrium stationary system.
Finally, we uncover that a convenient choice of the dynamical
information constraint together with a perturbative expansion
with respect to the corresponding Lagrange multiplier of
the general expression for the transition probability leads to
a formal overlap with the well-known Glauber hyperbolic
tangent rule for the transition probability for the stochastic
Ising model [50] in the limit of very high temperatures of the
heat reservoir.

The layout of this article is as follows. In Sec. II, we briefly
describe the stochastic Ising model as proposed by Glauber.
In particular, we recast Glauber’s hyperbolic tangent rule in a
form more convenient for our analysis. In Sec. III, we present
a synthetic picture of the philosophy underlying the MaxCal
formalism. We focus our attention on the statistical inference of
nonequilibrium properties of complex systems characterized
by discrete dynamical states where paths are composed of
discrete time steps. Section IV is divided into two parts. In
the first part, we show a detailed computation of the path
entropy maximization procedure in the presence of various
information constraints, including a path ensemble average
of the product of two neighboring spin values. In the second
part, we formally compare the outcome of our computation
with Glauber’s transition probability expression in two limiting
cases. Finally, our conclusions are reported in Sec. V.

II. THE STOCHASTIC ISING MODEL

As pointed out in the introduction, the Liouville equation
would be the standard starting point for the description of
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time-dependent statistical systems. However, in most cases, an
explicit form of the interaction Hamiltonian between the spins
and the heat reservoir is not fully known. For this reason, the
Liouville equation is not useful in such a case and the method
of the master equation allows one to overcome this technical
difficulty. Indeed, within this method, it is only necessary to
know the Hamiltonian of the spin system while the interaction
that causes the time transition is assumed to be stochastic. The
master equation is given by [51]

∂pi(t)

∂t
= −

∑
i �=j

[pi(t)ωi→j − pj (t)ωj→i], (1)

where pi(t) is the probability of the system being in the state
i at time t , while ωi→j is the transition rate for i → j . At
equilibrium,

∂pi(t)

∂t
= 0, (2)

that is,

pi(t)

pj (t)
= ωj→i

ωi→j

. (3)

Equation (3) is known as the detailed balance condition.
Observe that, in explicit analogy with equilibrium statistical
mechanics, the probability of the ith state occurring in a
classical system is given by

pi(t) = 1

Z e
− Ei

kBT , (4)

whereZ is the partition function and Ei is the energy of the spin
in the ith state. Usually, this probability is only approximately
known due to the denominator [51].

In the absence of any external magnetic field and in the
working hypothesis that each spin σi is coupled through
the transition probabilities ωi(σi → −σi) to only its nearest-
neighbor spins σi−1 and σi+1, and motivated by both simplicity
and symmetry arguments, Glauber considered a stochastic
Ising model described by a master equation in which the
transition probabilities were given by [49]

ωi(σi → −σi) = �

2

{
1 − 1

2
γ σi(σi−1 + σi+1)

}
. (5)

In Eq. (5), � is a parameter that characterizes the time scale on
which all transitions take place, �/2 denotes the rate per unit
time at which the particle makes transitions from either state to
the opposite, and γ is a parameter that describes the tendency
of spins toward alignment. The explicit expression for γ in
Eq. (5) can be obtained by imposing the detailed balancing
condition at equilibrium at temperature T for the Ising model,

pi(−σi)

pi(σi)
= ωi(σi → −σi)

ωi(−σi → σi)
. (6)

The quantity pi(σi) in Eq. (6) denotes the probability that the
ith spin will assume the value σi and is proportional to the
Maxwell-Boltzmann factor,

pi(σi) ∝ exp

[
− J

kBT
σi(σi−1 + σi+1)

]
, (7)

where J is the exchange coupling constant and kB is the
Boltzmann constant. Substituting Eqs. (5) and (7) into Eq. (6),

we obtain

γ = γ (kB, J , T ) = tanh

(
2J

kBT

)
. (8)

Substituting Eq. (8) into Eq. (5) and using the fact that σi = ±1
together with the point symmetry of the hyperbolic tangent
function, we find

ωi(σi → −σi) = �

2
[1 − σi tanh (βhi)], (9)

where β
def= 1

kBT
and hi denotes a local magnetic field defined

as

hi
def= J (σi−1 + σi+1). (10)

Equation (9) is the so-called Glauber hyperbolic tangent rule.
For future use, we recast this equation in a more convenient
form. Using again the fact that σi = ±1 and exploiting the
point symmetry of the hyperbolic tangent function, it follows
that

σi tanh (βhi) = tanh (βσihi). (11)

Observe that the energy difference �E between a proposed
new microstate j and an old microstate i is given by [52]

�E
def= Ej − Ei = 2σihi . (12)

Finally, inserting Eqs. (11) and (12) into Eq. (9), after some
algebra we obtain

ωij = �

2

[
1 − tanh

(
β�E

2

)]
, (13)

that is,

[ωij ]Glauber = �
e− β�E

2

e
β�E

2 + e− β�E

2

. (14)

For the sake of clarity, we remark that Glauber pointed out in
Ref. [49] that in the working hypothesis of nearest-neighbor
coupling among spins, the functional form of the transition
probability ωij that leads to the same equilibrium state as the
Ising model is not unique. The specific functional form of
ωij in Eq. (5) as employed by Glauber in the master equation
formalism was selected for simplifying the equations to handle
(for instance, equations describing the spin expectation values)
rather than satisfying a fundamental physical requirement.
More specifically, the manner in which ωij depends on
neighboring spin values chosen by Glauber was dictated by the
necessity of describing a tendency for each spin to align itself
parallel to its nearest neighbors. In summary, the assumption
that ωij depends symmetrically on the two neighboring spins
σi−1 and σi+1 as well as σi is a clever ad hoc assumption
adopted by Glauber.

The expression for the transition probability ωij in Eq. (14)
will be useful in the remainder of the article.

III. THE MAXCAL FORMALISM

In the MaxCal formalism [5,6,40,41], the path entropy to
be maximized can be defined as [40,41]

H ({p(C)}) def= −
∑
{C}

p(C) ln [p(C)], (15)
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where p(C) denotes the probability that the dynamical process
follows the path C. As mentioned in the introduction, we
recall that Jaynes was concerned with continuous paths C

satisfying deterministic Hamiltonian equations of motion
[5,6]. However, for systems having continuous dynamical
states, it is computationally hard to compute a path ensemble
using the microscopic dynamics. Rather than considering
continuous paths, Filyukov and Karpov focused their attention
on systems having discrete dynamical states where trajectories
are composed of discrete time steps [40,41]. Specifically, they
assumed that the evolution of the system may be specified by a
Markov chain with discrete times and a finite number of states.
The trajectory CT of a Markov chain of length T is described
by the sequence of states

CT = i0i1 · · · iT −1iT . (16)

Assuming a stationary first-order Markov process [53,54], the
probability p(CT ) of the trajectory is given by

p(CT ) = pi0ωi0i1 · · · ωiT −1iT , (17)

where ωij = ωij (τ ) denotes the conditional probability of
a transition on the time interval τ from the state i to the
state j while pi0 is the single state i0 occupation probability.
Note that the conditional transition probabilities ωij and the
stationary single state probabilities pi satisfy the normalization
constraints ∑

j

ωij = 1 and
∑

i

pi = 1, (18)

respectively. Furthermore, the stationarity of the chain is
encoded in the following constraint:∑

i

piωij = pj . (19)

It can be shown that for a sufficiently long ergodic chain, that is
to say a chain for which T approaches infinity and ωij > 0 (all
states are connected by a nonzero transition probability), the
path entropy in Eq. (15) can be approximated by (for further
details, see Refs. [39–41])

H ({p(C)}) ≈ H (T )
def= T H (1), (20)

where H (1) denotes the path entropy per step defined as

H (1)
def= −

∑
i,j

piωij ln[ωij ]. (21)

Observe that the path entropy per step reduces to the ordinary
entropy of equilibrium statistical mechanics when ωij = pj ,
that is to say, when an instant equilibration condition is
achieved.

The path entropy in Eq. (15) is also known as the caliber, a
cross sectional area of a tube that, in part, quantifies the flow
in a dynamic process. By maximizing the caliber subject to
all available constraints (normalization conditions, dynamical
averages, etc.), MaxCal yields the least biased probability p(C)
for the set of microscopic trajectories {C} consistent with
the observed information constraints. Specifically, given the
knowledge of all possible microscopic trajectories explored
in a specific interval of time by a system, MaxCal seeks to

construct a weighted ensemble of microscopic trajectories con-
sistent with the constrained averages obtained by measuring a
small (much smaller than the number of known microscopic
trajectories) number of dynamical quantities (for instance,
average microscopic fluxes). In turn, this weighted ensemble
of microscopic trajectories determines the time evolution of
all time-dependent observables of the system. In summary, in
analogy to MaxEnt, macroscopic quantities are computed in
terms of derivatives of a dynamical partition function defining
the normalization factor of the least biased probability p(C).

IV. PATH ENTROPY MAXIMIZATION AND
NEIGHBORING SPIN VALUES

In what follows, we assume that the path entropy per unit
time to be maximized is given by the caliber in Eq. (21),

C def= −
∑
i,j

piωij ln[ωij ]. (22)

A. The explicit computation

The first information constraint that we impose is the
transition probability normalization constraint,∑

j

ωij = 1, ∀i, (23)

that is, ∑
j

piωij = pi , ∀i. (24)

This constraint describes the fact that, from the state i at time t ,
the system has to transition to some state j at time t + δt . The
second information constraint that we consider is the stationary
state probability normalization constraint given by∑

i,j

piωij = 1, (25)

that is, ∑
j

pj = 1. (26)

The third constraint is the stationarity constraint described in
terms of the following constraining relation:∑

i

piωij = pj , ∀j . (27)

The constraint in Eq. (27) describes the fact that a system
in state j at time t + δt comes from one of the states i at
time t . Before introducing the fourth constraint, we observe
that within the MaxCal formalism a global constraint 〈σ (t)〉
is defined in terms of a path ensemble average of a dynamical
quantity σ (t) that depends on both the initial and final states i

and j , respectively. Specifically [41,43],

〈σ (t)〉 def=
∑
{C}

p(C)〈σ 〉C =
∑
i,j

piωijσij , (28)
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where 〈σ 〉C denotes the average of σ over a steady state path

C
def= · · · a → b → c → d · · · of length T ,

〈σ 〉C def= 1

T
(· · · σab + σbc + σcd + · · · ). (29)

We assume that the fourth constraint is described in terms of
a path ensemble average of a dynamical quantity σ = σ (t)
specified by the product of two spin values σi(t) and σj (t).
This constraint is given by

〈σ (t)〉 =
∑
i,j

piωijσij , (30)

where we can generally define σij (t)
def= σi(t)σj (t). Since each

spin σi is coupled to only its nearest-neighbor spins σi−1

and σi+1 in Glauber’s stochastic Ising model, we make the
following clarifying remark. For nearest-neighbor pairs of
spins σi and σj with j ∈ {i ± 1} we consider σij = σiσi+1,
σji = σi−1σi , and σij + σji = σi(σi−1 + σi+1) ∝ �E, where
�E is the energy difference between an old and a new
microstate of the spin system as presented in Eq. (12). Finally,
the fifth condition we impose is the detailed balance constraint
given by

piωij = pjωji . (31)

Given the path entropy per unit time in Eq. (22) and the
information constraints in Eqs. (24), (25), (27), (30), and (31),
the caliber to be maximized becomes

C = −
∑
i,j

piωij ln[ωij ] +
∑

i

αi

⎛
⎝∑

j

piωij − pi

⎞
⎠

+β

⎛
⎝∑

i,j

piωij − 1

⎞
⎠+

∑
j

γj

(∑
i

piωij − pj

)

+δ

⎛
⎝∑

i,j

piωijσij − 〈σ 〉
⎞
⎠+

∑
i,j

ξij

(
piωij − pjωji

)
,

(32)

where αi , β, γj , δ, and ξij are Lagrange multipliers. Note that
the variation of the caliber C with respect to the (unknown)
stationary state probability pi and the transition probability
ωij is given by δC,

δC = δC
δωij

δωij + δC
δpi

δpi . (33)

For the sake of completeness, we emphasize at this juncture
that there are scenarios in which variations of functionals ap-
pear with respect to the Lagrange multipliers. For instance, in
the presence of space-time-dependent information constraints
in transport theory, the covariance functions Kij are expressed
in terms of the second functional derivative of lnZ as follows
[6]:

Kij

(
x,t ; x ′,t ′

) def= δ2[lnZ]

δλi(x,t)δλj (x ′,t ′)
, (34)

whereZ = Z({λi(x,t)}) denotes the partition functional while
λi are the Lagrange multipliers with 1 � i,j � m and m

denoting the cardinality of the information constraints being
chosen. Within the MaxCal formalism, Lagrange multipliers
are generated by the first functional derivatives of the caliber
while higher derivatives of the partition function lead to higher
moments of the observables. The stationarity of δC in Eq. (33)
requires that both δC

δωij
and δC

δpi
must simultaneously vanish. Let

us observe that, after some algebra, δC
δωij

δωij is given by

δC
δωij

δωij = −
⎧⎨
⎩
∑
i,j

[pi ln ωij + pi − αipi − βpi − γjpi

−δpiσij − piξij + piξji]δωij

⎫⎬
⎭, (35)

that is,

ωij = eαi+β+γj +δσij +(ξij −ξji)−1. (36)

Furthermore, let us notice that δC
δpi

δpi becomes, after some
algebra,

δC
δpi

δpi

=
{ −∑

j ωij ln ωij + αi

∑
j ωij − αi + β

∑
j ωij

+∑
j γjωij − γj + δ

∑
j ωijσij +∑

j ωij

(
ξij − ξji

)
}

× δpi , (37)

that is,∑
j

ωij ln ωij

= +αi

∑
j

ωij − αi + β
∑

j

ωij +
∑

j

γjωij − γj

+δ
∑

j

ωijσij +
∑

j

ωij (ξij − ξji). (38)

Substituting Eq. (36) into Eq. (38), after some manipulations,
we obtain the following relation between the Lagrange
multipliers αi and γi :

αi + γi = 1, ∀i. (39)

For the sake of notational simplicity, let us relabel the Lagrange
multipliers as follows:

Ai
def= e−αi , eAj

def= eγj , B
def= e−β, and Eij

def= eξij −ξji ,

(40)

where e denotes the Neper constant. Then, using Eqs. (36) and
(39), the transition probability ωij becomes

ωij = 1

B

Aj

Ai

eδσij Eij . (41)

The quantity Eij can be obtained by imposing the detailed
balance constraint in Eq. (31). After some algebra, it is found
that

ωij

ωji

= pj

pi

=
(

Aj

Ai

)2

eδ(σij −σji)E2
ij , (42)
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that is,

Eij =
√

pj

pi

Ai

Aj

e− δ
2 (σij −σji). (43)

Finally, combining Eqs. (41) and (43), we obtain

[ωij ]MaxCal = N
√

pj

pi

e− γ

2 (σij +σji), (44)

where N and γ are defined as

N def= 1

B
and γ

def= −δ, (45)

respectively. The Lagrange multiplier B = N−1 can be ob-
tained by imposing the normalization condition∑

j

ωij = 1, (46)

that is, ∑
j

Wijφj = Bφi , (47)

with φi
def= √

pi and Wij
def= e− γ

2 (σij +σji ). Furthermore, the La-
grange multiplier δ can be obtained by imposing the path
ensemble average of the dynamical variable σ (t) in Eq. (30).
After some algebraic manipulations, we finally determine

[ωij ]MaxCal = N
√

pj

pi

cosh
[γ

2

(
σij + σji

)]

×
{

1 − tanh
[γ

2

(
σij + σji

)]}
, (48)

where σij (t)
def= σi(t)σj (t). The functional form of the tran-

sition probabilities in Eq. (48) is the one inferred by the
MaxCal inference algorithm given the information constraints
in Eqs. (24), (25), (27), (30), and (31).

B. Statistical mechanical remarks

In what follows, several statistical mechanical remarks are
presented. First, within statistical mechanics, the common
wisdom is that high temperatures lead to decay of correlations
[55–59]. For instance, in his 1925 Ph.D. thesis, Ising showed
that the spin-spin correlation function 〈σkσl〉 in the one-
dimensional Ising model with Hamiltonian H in the absence
of an external magnetic field decays exponentially with respect
to the characteristic length ξ [48],

〈σkσl〉 def= 1

Z
∑
{σi }

σkσle
−βH = e

− |l−k|
ξ , (49)

where |l − k| denotes the distance between sites k and l while
ξ is defined as

ξ = ξ (β)
def= 1

|ln [tanh (βJ )]| , (50)

with J denoting the exchange coupling constant between
spins. Observe that ξ diverges as βJ approaches infinity.
For T �= 0, correlations decay exponentially as a function of
the correlation length. A short correlation length means that
distant spins are very weakly correlated. At high temperatures,

βJ � 1, ξ becomes extremely short, and 〈σkσl〉 decays expo-
nentially. To have a grasp of what high temperatures means,
let us assume that the exchange coupling constant between
spins is J ≈ 1 eV and, recalling that the Boltzmann constant
equals kB ≈ 1.38 × 10−23 J/K, an approximate estimate of
the temperature yields T ≈ 1 × 104 K = 10 kK. This order
of temperature corresponds to the Fermi boiling point for a
valence electron, a temperature that for a metal is two orders of
magnitude above room temperature. Second, within statistical
mechanics, the asymptotic analysis of power-series expansions
of expected values of observable quantities is very important
[60]. In particular, it is the case that series expansions agree
well with high accuracy Monte Carlo simulations, renormal-
ization group results, and findings for exactly solvable models
[61]. In the high-temperature series expansion, the Boltzmann
factor is expanded in powers of the inverse temperature. For
example, it can be shown that the asymptotic high-temperature
approximation of the nearest-neighbor spin-spin correlation
function 〈σkσl〉 in the two-dimensional Ising model in the
absence of an external magnetic field is given by [60]

〈σkσl〉 = β + 5
3β3 + O(β4). (51)

In what follows, we exploit the consequences of these two
remarks in our own discussion.

C. The formal comparison

In the working hypothesis of extremely high temperatures,
we observe that Glauber’s transition probability ωij is propor-
tional to the square root of the ratio between the stationary
state probabilities of state i and state j . Specifically, the
first-order expansion in the parameter β of Glauber’s transition
probability ωij in Eq. (14) leads to the following approximate
expression:

[ωij ]Glauber
β�1≈ 1

2
�e− β�E

2 = 1

2
�

√
pj

pi

, (52)

where, using Eq. (4), we find
pj

pi

= e−β�E . (53)

Furthermore, if we relax this working assumption and consider
instead high temperatures, we uncover that Glauber’s transition
probability ωij is no longer proportional to the square root of
the ratio between the stationary state probabilities of state i

and state j and in this regime a new approximate expression
is obtained. Specifically, the second-order expansion in the
parameter β of Glauber’s transition probability ωij in Eq. (10)
yields

[ωij ]Glauber = 1

2
�e− β�E

2

[
1 − 1

2

(
β�E

2

)2

+ O
(
β4
)]

. (54)

In what follows, in addition to considering very high temper-
ature values T , we also limit our analysis to energy difference
values �E in Eq. (54) that belong to an interval of very
small Lebesgue measure proportional to δE that is centered
at an energy difference value �E∗ that sets the energy scale
of the stochastic Ising model being considered. Specifically,
our approximate analysis proceeds in the following manner.
We restrict our attention to energy difference values �E
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with �E∗ − δE � �E � �E∗ + δE and 0 � δE � 1. In
this case, the linear approximation of �E2 in the neighborhood
of �E∗ is given by

�E2 = �E2
∗ + 2�E∗(�E − �E∗) + O

(|�E − �E∗|2
)
,

(55)

that is,

�E2 ≈ 2�E∗�E − �E2
∗ . (56)

Within this set of working hypotheses, combining Eqs. (54)

and (56) and recalling from Eqs. (10) and (12) that �E
def=

2σiJ (σi−1 + σi+1), we obtain the following approximate
expression for Glauber’s transition probability:

[ωij ]Glauber = 1

2
�e− β�E

2

[
1 − 1

2
J�E∗β2σi(σi−1 + σi+1)

+�E2
∗

8
β2 + O(β4)

]
. (57)

Using Eq. (53) and introducing the notations

�̃
def= �E2

∗
8

β2 and γ̃
def= J�E∗β2, (58)

we finally determine that the new approximation for Glauber’s
ωij becomes

[ωij ]Glauber = 1

2
�

√
pj

pi

[
1 − 1

2
γ̃ σi(σi−1 + σi+1)

+�̃ + O(β4)

]
, (59)

that is,

[ωij ]Glauber
β2�1≈ 1

2
�

√
pj

pi

[
1 − 1

2
γ̃ σi(σi−1 + σi+1) + �̃

]
.

(60)

We emphasize that the functional form obtained in Eq. (60) is
not exact and it is only approximately valid in the limit of very
high temperatures T and narrowly distributed energy changes
�E in the spin system being considered. Finally, we remark
that the parameter γ̃ in Eq. (60) is a quadratic function of
the parameter β as evident from Eq. (58). The approximate
expressions in Eqs. (52) and (60) will be compared with their
analogs obtained within the MaxCal platform. First, observe
that in the absence of a path-dependent dynamical information
constraint, one sets the Lagrange multiplier γ in Eq. (48) equal
to zero. In this case, the expression of the transition probability
inferred by MaxCal reduces to

[ωij ]MaxCal = N
√

pj

pi

. (61)

Furthermore, if we assume as a working hypothesis that the
Lagrange multiplier γ in Eq. (48) is nonvanishing but very
small, that is, 0 �= γ � 1, considering the first order series
expansion in γ of the transition probability ωij in Eq. (48), we
obtain

[ωij ]MaxCal = N
√

pj

pi

[
1 − 1

2
γ (σij + σji) + O(γ 2)

]
, (62)

that is,

[ωij ]MaxCal
γ�1≈ N

√
pj

pi

[
1 − 1

2
γ (σij + σji)

]
. (63)

On the one hand, upon comparison of Eqs. (52) and (61), we
can essentially identify the normalization factors N and � and
conclude that the inferred transition probability inferred by
the MaxCal formalism in the absence of a path-dependent dy-
namical information constraint exhibits the same square-root
dependence that appears in Glauber’s approximate expression
(first-order expansion in β, extremely high temperatures) of
the transition probability in the limiting case of extremely high
temperature values. On the other hand, comparison of Eqs. (60)
and (63), in addition to identification of the normalization
factors N and � (more specifically, N ↔ 1+�̃

2 �), allows one
to link the quantity γ in Eq. (48) to the quantity γ̃ in Eq. (58)
(more specifically, γ ↔ 1

1+�̃
γ̃ ) and exploit the relation σij +

σji = σi(σi−1 + σi+1) in the working hypothesis of nearest-
neighbor interactions of each spin σi with pairs of spins σj

with j ∈ {i ± 1}. We then uncover that the MaxCal formalism
infers an approximate expression (first-order expansion in γ )
of the transition probability that is functionally identical to
the approximate expression (second-order expansion in β,
high temperatures) obtained from Glauber’s analysis. The fact
that we have equated a relation obtained from a first-order
expansion in γ [MaxCal, Eq. (63)] with a relation derived
from a second-order expansion in β [Glauber, Eq. (60)] is
remarkably consistent since we have identified the MaxCal
Lagrange multiplier γ with γ̃ = γ̃ (β) ∝ β2 in Eq. (58).

We remark that the MaxCal algorithm allows us to
make plausible inferences but not logical deductions. Such
inferences rely on the nature of the chosen information
constraints used in the algorithm. The validation of this type
of modeling scheme can be checked only a posteriori. If
discrepancies between the inferred predictions and experimen-
tal observations are recorded, a different set of information
constraints has to be chosen. In our analysis, we do not
recover the exact functional form of Glauber’s transition
probability. Our correspondence between the MaxCal and
Glauber’s solutions is only approximately valid in the limit
of very high temperatures and narrowly distributed energy
changes in the spin system being investigated. A more refined
attempt to recover the exact expression would also require the
clever introduction of some sort of information constraint that
captures the ad hoc assumption employed by Glauber, that is,
the symmetric dependence of the transition probability on the
two neighboring spins σi−1 and σi+1 as well as σi .

V. CONCLUSIVE REMARKS

In this article, we employed the MaxCal variational prin-
ciple as an inference algorithm used to predict dynamical
properties of complex nonequilibrium stationary statistical
systems in the presence of incomplete information. Specifi-
cally, we maximized the path entropy over discrete time step
trajectories subject to normalization, stationarity, and detailed
balance constraints together with a path-dependent dynamical
information constraint reflecting a suitably chosen average
global behavior of the complex system. Furthermore, we
considered a path-dependent information constraint defined
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in terms of the average of the product of two neighboring
spin values σi(t) and σj (t) as specified in Eq. (30). A
general expression for the transition probability associated
to the stationary random Markov processes describing the
nonequilibrium stationary system was computed and reported
in Eq. (48),

[ωij ]MaxCal = N
√

pj

pi

cosh
[γ

2
(σij + σji)

]

×
{

1 − tanh
[γ

2
(σij + σji)

]}
. (64)

The expression in Eq. (64) was then compared to the well-
known Glauber hyperbolic tangent rule for the transition
probability that characterizes the stochastic Ising model as
recast by us in Eq. (14),

[ωij ]Glauber = �
e− β�E

2

e
β�E

2 + e− β�E

2

. (65)

The comparison was presented in two limiting cases. In the first
case, we uncovered that, in the absence of a path-dependent
dynamical information constraint, ωij in Eq. (64) exhibits
the same square-root dependence that appears in Glauber’s
approximate expression (first-order expansion in β, extremely
high temperatures) of the transition probability ωij in Eq. (65)
in the limiting case of extremely high temperature values. This
first comparison was performed by considering Eqs. (52) and
(61). In the second case, we uncovered that in the presence
of a path-dependent dynamical information constraint the
MaxCal formalism infers an approximate expression (first-
order expansion in γ ) of the transition probability ωij in
Eq. (64) whose functional structure is identical to that of the
approximate expression (second-order expansion in β, high
temperatures) obtained from Glauber’s ωij in Eq. (65). This
second comparison was performed by considering Eqs. (60)
and (63).

In summary, the main findings of our scientific activity
reported in this manuscript can be outlined as follows:

(i) We established a quantitative link between the MaxCal
formalism [5,6,40,41] and the stochastic Ising model as orig-
inally presented by Glauber [49]. Specifically, a connection

between the transition probability inferred by MaxCal and
Glauber’s hyperbolic tangent rule is proposed in two limiting
scenarios.

(ii) We advanced the line of research based on the MaxCal
inference algorithm, especially the one advocated by Dixit
[44], by extending the applicability of his use of the MaxCal
formalism to a dynamical constraint in the form of a path
ensemble average of the product of two neighboring spin
values.

(iii) We significantly elaborated on the very intriguing
preliminary remark concerning the relation between MaxCal
and Glauber’s dynamics as recently reported in Ref. [45].
Our elaboration led to an important advancement in the
conceptual understanding of the above mentioned preliminary
consideration.

We think our work presented herein is a valid addition
to our continuing effort of providing a unifying theoretical
framework of a statistical mechanical nature for describing
and understanding complex systems of arbitrary nature in
the presence of incomplete information [62]. As pointed
out by Feynman in his Nobel lecture [63], using different
mathematical approaches for describing the same physical
result can provide a better starting point for subsequent
reasoning. This statement seems to be especially well suited
for the connection between the MaxCal formalism and the
conventional nonequilibrium statistical mechanical thinking.
MaxCal could potentially be used to understand what is not yet
understood. In light of these considerations, it is our sincere
hope that other scientists will find our work presented here
relevant and worthy of further refinement.
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