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We have studied zero-temperature metastable minima in classical m-vector component spin glasses in the
presence of m-component random fields for two models, the Sherrington-Kirkpatrick (SK) model and the
Viana-Bray (VB) model. For the SK model we have calculated analytically its complexity (the log of the number
of minima) for both the annealed case where one averages the number of minima before taking the log and the
quenched case where one averages the complexity itself, both for fields above and below the de Almeida-Thouless
(AT) field, which is finite for m > 2. We have done numerical quenches starting from a random initial state (infinite
temperature state) by putting spins parallel to their local fields until there is no further decrease of the energy
and found that in zero field it always produces minima that have zero overlap with each other. For the m = 2 and
m = 3 cases in the SK model the final energy reached in the quench is very close to the energy Ec at which the
overlap of the states would acquire replica symmetry-breaking features. These minima have marginal stability
and will have long-range correlations between them. In the SK limit we have analytically studied the density of
states ρ(λ) of the Hessian matrix in the annealed approximation. Despite the fact that in the presence of a random
field there are no continuous symmetries, the spectrum extends down to zero with the usual

√
λ form for the

density of states for fields below the AT field. However, when the random field is larger than the AT field, there
is a gap in the spectrum, which closes up as the AT field is approached. The VB model behaves differently and
seems rather similar to studies of the three-dimensional Heisenberg spin glass in a random vector field.
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I. INTRODUCTION

In recent years there has been a resurgence of interest in
the properties of metastable states, due mostly to the studies
of the jammed states of hard-sphere systems; see for reviews
Refs. [1,2]. There are many topics to study, including, for
example, the spectrum of small perturbations around the
metastable state, i.e., the phonon excitations and the existence
of a boson peak, and whether the Edwards hypothesis works
for these states. In this paper we shall study some of these
topics in the context of classical Heisenberg spin glasses both
in the presence and absence of a random magnetic field. Here
the metastable states that we study are just the minima of the
Hamiltonian, and so are well defined outside the mean-field
limit. It has been known for some time that there are strong
connections between spin glasses and structural glasses [3–5].
It has been argued in very recent work [6] that the study of
the excitations in classical Heisenberg spin glasses provides
the opportunity to contrast with similar phenomenology in
amorphous solids [7,8]. The minima and excitations about the
minima in Heisenberg spin glasses have been studied for many
years [9–11] but only in the absence of external fields.

In Sec. II we define the models to be studied as special cases
of the long-range one-dimensional (1D) m-component vector
spin glass where the exchange interactions Jij decrease with
the distance between the spins at sites i and j as 1/rσ

ij . The spin
Si is an m-component unit vector. m = 1 corresponds to the
Ising model, m = 2 corresponds to the XY model, and m = 3
corresponds to the Heisenberg model. By tuning the parameter
σ , one can have access to the Sherrington-Kirkpatrick (SK)
model and on dilution to the Viana-Bray (VB) model, and
indeed to a range of universality classes from mean-field type
to short-range type [12], although in this paper only two special
cases are studied; the SK model and the Viana-Bray model.

The cases that correspond to short-range models are a subject
for future study.

In Sec. III we have used numerical methods to learn about
the metastable minima of the SK model and the Viana-Bray
model. Our main procedure for finding the minima is to
start from a random configuration of spins and then align
each spin with the local field produced by its neighbors
and the external random field, if present. The process is
continued until all spins are aligned with their local fields.
This procedure finds local minima of the Hamiltonian. In
the thermodynamic limit, the energy per spin ε of these
states reaches a characteristic value, which is the same for
almost all realization of the bonds and random external fields,
but slightly dependent on the dynamical algorithm used for
selecting the spin to be flipped, e.g., the “polite” or “greedy”
or Glauber dynamics or the sequential algorithm used in the
numerical work in this paper [13,14]. In the context of Ising
spin glasses in zero random fields such states were first studied
by Parisi [14]. For Ising spins these dynamically generated
states are an unrepresentative subset of the totality of the
one-spin-flip stable metastable states, which in general have
a distribution of local fields p(h) with p(0) is finite [15],
whereas those generated dynamically are marginally stable
and have p(h) ∼ h, just like that in the true ground state [16].
Furthermore, these states have a trivial overlap with each
other: P (q) = δ(q) [14]; there is no sign of replica symmetry
breaking among them. Presumably, to generate states that show
this feature one needs to start from initial spin configurations
drawn from a realization of the system at a temperature where
broken replica symmetry is already present before the quench.

Because the initial state is random, one would also expect
for vector spin glasses that the states reached after the quench
from infinite temperature would have only a trivial overlap
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with each other [13] and this is indeed found to be the case
in Sec. III A. We have studied the energy, which is reached
in the quench for both the m = 2 and m = 3 SK models but
for the case of zero applied random field and in both cases
it is very close to the energy Ec, which marks the boundary
above which the minima where spins are parallel to their local
fields have trivial overlaps with each other, while below it
the minima have overlaps with full broken replica symmetry
features [9,17]. In Ref. [9] the number NS(ε) of minima of
energy ε was calculated for the case of zero random field in
the SK model and in fact it is only for this model and zero
field that the value of Ec is available. That is why in Sec. III B
only this case was studied numerically. The work in Sec. IV
was the start of an attempt to have the same information in the
presence of random vector fields.

The number of minima NS(ε) is exponentially large so it is
useful to study the complexity defined as g(ε) = ln NS(ε)/N ,
where N is the number of spins in the system. Despite the fact
that minima exist over a large range of values of ε a quench by
a particular algorithm seems to reach just the minima, which
have a characteristic value of ε. What is striking is that this
characteristic value is close to the energy Ec at which the
minima would no longer have a trivial overlap with each other
but would start to acquire replica symmetry breaking features,
at least for the m = 2 and m = 3 SK models in zero field.
The states reached in the quenches are usually described as
being marginally stable [18]. The coincidence of the energy
obtained in the numerical quenches with the analytically
calculated Ec suggests that long-range correlations normally
associated with a continuous transition will also be found
for the quenched minima since such features are present in
the analytical work at Ec [17]. In the Ising case the field
distribution p(h) produced in the quench is very different from
that assumed when determining Ec, and the quenched state
energy at ≈ −0.73 was so far below from the Ising value of
Ec = −0.672 that the connection of its marginality to the onset
of broken replica symmetry has been overlooked. We believe
that the identification of the energy Ec reached in the quench
with the onset of replica symmetry breaking in the overlaps of
the minima is the most important of our results.

In Sec. IV we present our analytical work on the m-
component SK model in the presence of an m-component
random field. It has been shown that in the mean-field limit [19]
that under the application of a random magnetic field, of
variance h2

r , there is a phase transition line in the hr -T plane,
the so-called de Almeida-Thouless (AT) line, across which the
critical exponents lie in the Ising AT universality class. Below
this line, the ordered phase has full replica symmetry breaking.
This ordered phase is similar to the Gardner phase expected in
high-dimensional hard-sphere systems [1]. In Sec. IV we study
the minima of the Heisenberg Hamiltonian in the presence of
a random vector field. In the presence of such a field the
Hamiltonian no longer has any rotational invariances so one
might expect there to be big changes in the excitations about the
minimum as there will be no Goldstone modes in the system.

We start Sec. IV by studying the number of local minima
NS(ε) of the Hamiltonian, which have energy per spin of ε.
The calculation within the annealed approximation, where one
calculates the field and bond averages of NS(ε) is just an
extension of the earlier calculation of Bray and Moore for zero

random field [9]. When the random field hr > hAT , where hAT

is the field at which the AT transition occurs, the complexity
is zero, but g(ε) becomes nonzero for hr < hAT . When it is
nonzero, it is thought better to average the complexity itself
over the random fields and bonds so that one recovers results
likely to apply to a typical sample. We have attempted to
calculate the quenched complexity g for the SK model in
the presence of a random field. The presence of this random
field greatly complicates the algebra and the calculations in
Sec. IV B and the Appendix really just illustrate the problems
that random fields pose when determining the quenched
average but do not overcome the algebraic difficulties.

The annealed approximation is much simpler and using it
we have calculated the density of states ρ(λ) of the Hessian
matrix associated with the minimum for the SK model. When
hr > hAT there is a gap λ0 in the spectrum below which there
are no excitations. λ0 tends to zero as hr → hAT . For m �
4, ρ(λ) ∼ √

λ − λ0 as λ → λ0. For m = 3 the square-root
singularity did not occur, much to our surprise. For hr < hAT ,
the square-root singularity applies for all m > 2 with λ0 = 0.
Thus, in the low-field phase, despite the fact that in the presence
of the random fields there are no continuous symmetries in the
system and hence no Goldstone modes, there are massless
modes present. In Sec. V B we present numerical work, which
shows that even for hr < hAT when the annealed calculation
of the density of states of the SK model cannot be exact, it
nevertheless is in good agreement with our numerical data.

We have also calculated in Sec. V A the zero-temperature
spin glass susceptibility χSG for hr > hAT for the SK model
and find that for all m > 2 it diverges to infinity as hr → hAT

just as is found at finite temperatures [19].
For the SK model, because the complexity is zero for

hr > hAT , the quench produces states sensitive to the existence
of an AT field. The quench then goes to a state, which is the
ground state or at least one very similar to it. The AT field is a
feature of the true equilibrium state of the system, which in our
case is the state of lowest energy. In Sec. V A we have studied
a spin glass susceptibility obtained from the minima obtained
in our numerical quenches and only for the SK model is there
evidence for a diverging spin glass susceptibility. For the VB
model, there is no sign of any singularity in the spin glass
susceptibility defined as an average over the states reached
in our quench from infinite temperature, but we cannot make
any statement concerning the existence of an AT singularity in
the true ground state. This is the problem studied in Ref. [20].
Finally, in Sec. VI we summarize our main results and make
some suggestions for further research.

II. MODELS

The Hamiltonians studied in this paper are generically of
the form

H = −m
∑
〈i,j〉

Jij Si · Sj − √
m
∑

i

hi · Si , (1)

where the Si , i = 1,2, . . . ,N , are classical m-component vec-
tor spins of unit length. This form of writing the Hamiltonian
allows for easy comparison against a Hamiltonian where the
spins are normalized to have length

√
m. We are particularly

interested in Heisenberg spins, for which m = 3. The magnetic
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fields h
μ

i , where μ denotes a Cartesian spin component, are
chosen to be independent Gaussian random fields, uncorrelated
between sites, with zero mean, which satisfy[

h
μ

i hν
j

]
av

= h2
r δij δμν. (2)

The notation [· · · ]av indicates an average over the quenched
disorder and the magnetic fields.

We shall study two models, the Sherrington-Kirkpatrick
(SK) model and the Viana-Bray (VB) model. Both are
essentially mean-field models. In the Sherrington-Kirkpatrick
model, the bonds Jij couple all pairs of sites and are drawn
from a Gaussian distribution with zero mean and the variance
1/(N − 1).

The Viana-Bray model can be regarded as a special case of
a diluted one-dimensional model where the sites are arranged
around a ring. The procedure to determine the bonds Jij to
get the diluted model is as specified in Refs. [12,21,22]. The
probability of there being a nonzero interaction between sites
(i,j ) on the ring falls off with distance as a power law, and
when an interaction does occur, its variance is independent of
rij . The mean number of nonzero bonds from a site is fixed to
be z. To generate the set of pairs (i,j ) that have an interaction
with the desired probability the spin i is chosen randomly, and
then j ( �= i) is chosen at distance rij with probability

pij = r−2σ
ij∑

j (j �=i) r
−2σ
ij

, (3)

where rij = N
π

sin [ π
N

(i − j )] is the length of the chord
between the sites i,j when all the sites are put on a circle.
If i and j are already connected, the process is repeated until
a pair that has not been connected before is found. The sites
i and j are then connected with an interaction picked from a
Gaussian interaction whose mean is zero and whose standard
deviation is set to J ≡ 1. This process is repeated precisely
Nb = zN/2 times. This procedure automatically gives Jii = 0.
Our work concentrates on the case where the coordination
number is fixed at z = 6 to mimic the 3D cubic scenario. The
SK limit (z = N − 1,σ = 0) is a special case of this model, as
is the VB model, which also has σ = 0, but the coordination
number z has (in this paper) the value 6. The advantage of
the one-dimensional long-range model for numerical studies
is that by simply tuning the value of σ one can mimic the
properties of finite-dimensional systems [12,21,22] and we
have already done some work using this device. However, in
this paper we only report on our work on the SK and VB
models.

III. NUMERICAL STUDIES OF THE MINIMA OBTAINED
BY QUENCHING

In this section we present our numerical studies of the
minima of the VB and SK models. We begin by describing
how we found the minima numerically. They are basically
just quenches from infinite temperature. In Sec. III A we have
studied the overlap between the minima and we find that the
minima produced have only trivial overlaps with one another.
In Sec III B we describe our evidence that the minima of the
SK model in zero field have marginal stability as they have
an energy per spin close to the energy Ec, which marks the

energy at which the minima starting to have overlaps showing
replica symmetry-breaking features.

At zero temperature, the metastable states (minima) that
we study are those obtained by aligning every spin along its
local field direction, starting off from a random initial state. In
the notation used for our numerical work based on Eq. (1) we
iterate the equations

Sn+1
i = Hn

i∣∣Hn
i

∣∣ , (4)

where the local fields after the nth iteration, Hn
i , are given by

Hn
i = √

mhi + m
∑

j

Jij Sn
j . (5)

For a given disorder sample, a random configuration of spins
is first created, which would be a possible spin configuration at
infinite temperature. Starting from the first spin and scanning
sequentially all the way up to the N th spin, every spin is
aligned to its local field according to Eq. (4), this whole process
constituting one sweep. The vector (
S1,
S2, . . . ,
SN ) is
computed by subtracting the spin configuration before the
sweep from the spin configuration generated after the sweep.

The quantity η = 1
Nm

∑m
μ=1

√∑N
j=1(
Sjμ)2 is a measure of

how close the configurations before and after the sweep are.
The spin configurations are iterated over many sweeps until
the value of η falls below 0.00001, when the system is deemed
to have converged to the metastable state described by Eq. (9),
which will be a minimum of the energy at zero temperature.
Differing starting configurations usually generate different
minima, at least for large systems.

A. Overlap distribution

It is informative to study the overlaps between the various
minima. Consider the overlap between two minima A and B

defined as

q ≡ 1

N

∑
i

SA
i · SB

i . (6)

Numerically, the following procedure is adopted. A particular
realization of the bonds and fields is chosen. Choosing a
random initial spin configuration, the above algorithm is
implemented and descends to a locally stable state. This
generates a metastable spin state that is stored. One then
chooses a second initial condition, and the algorithm is applied,
which generates a second metastable spin state, which is also
stored. One repeats this Nmin times generating in total Nmin

metastable states (some or all of which might be identical).
One then overlaps all pairs of these states, so there are
Npairs = Nmin(Nmin − 1)/2 overlaps, which are all used to
make a histogram. The whole process is averaged over Nsamp

samples of disorder. Figure 1 shows the overlap distribution
of the metastable states obtained by the above prescription for
the VB model. The figure suggests that in the thermodynamic
limit, the distribution of overlaps, P (q) = δ[q − q0(hr )]. In
zero field we have found that q0(hr = 0) = 0. Since we
study only a finite system of N spins, the δ-function peak
is broadened to a Gaussian centered around q0 and of width
O( 1√

N
). We studied also the SK model, for a range of values for
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FIG. 1. The overlap distribution P (q) for the VB model
(σ = 0,z = 6, hr = 0.6) for the minima generated by the prescription
described in the text. P (q) seems to be approaching a δ function as
N tends to infinity.

the hr fields, and the data are consistent with P (q) just having
a single peak in the thermodynamic limit. This suggests that
the metastable states generated by the procedure of repeatedly
putting spins parallel to their local fields starting from a random
state always produces minima, which have a P (q) of the same
type as would be expected for the paramagnetic phase.

Newman and Stein [13] showed that for Ising spins in zero
field that when one starts off from an initial state, equivalent to
being at infinite temperature, and quenches to zero temperature
one always ends up in a state with a trivial P (q) = δ(q), in
agreement, for example with the study of Parisi [14]. Our
results for vector spin glasses seem exactly analogous to the
Ising results.

B. Marginal stability

In this section we shall focus on the Ising, XY (m = 2)
and Heisenberg (m = 3) SK models with zero random field.
Parisi found for the Ising case that when starting a quench from
infinite temperature, when the spins are just randomly up or
down, and putting spins parallel to their local fields according
to various algorithms, the final state had an energy per spin
ε = −0.73 [14]. In their studies of one-spin-flip stable spin
glasses in zero field, Bray and Moore [9,17] found that such
states associated with a trivial P (q) = δ(q) should not exist
below a critical energy Ec and for the Ising case Ec = −0.672.
States with an energy close to −0.73 would be expected to be
have a P (q) rather similar to those for full replica symmetry
breaking, but those generated in the quench have a trivial P (q).
There is no paradox as the states generated in the quench
have more than one-spin-flip stability [16]. This results in a
distribution of local fields behaving at small fields so that
p(h) ∼ h, very different from that expected from the study of
the p(h) of one-spin-flip stable states [15] for which p(0) is
finite, and instead similar to what is found in the true ground
state—the state that is stable against flipping an arbitrary
number of spins. It is by that means that the theorem of
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FIG. 2. The average energy per site and spin component for
the XY SK spin glass model (m = 2) with hr = 0 plotted against
1/N 2/3 in order to estimate the infinite system value of the energy
obtained from a quench from infinite temperature. For m = 2,
Ec = −0.866 [9].

Newman and Stein [13], that in a quench from a random initial
state the final P (q) should be trivial, is realized, despite the
quenched energy being in the region where one would expect
the P (q) of one-spin-flip stable states to be nontrivial. The
change in the form of p(h) means that the true Ec is not at
−0.672, but instead is at least closer to −0.73.

For the vector SK spin glasses in zero field we have studied
the energy reached in a quench from infinite temperature
by putting the spins parallel to their local fields. In Figs. 2
and 3 we have plotted our estimates of this energy as a
function of 1/N2/3, the form commonly used for the energy
size dependence of the SK model [23,24]. For m = 2, the
extrapolated energy per spin component is ≈−0.870, whereas
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FIG. 3. The average energy per site and spin component for
the Heisenberg SK spin glass (m = 3) with hr = 0 plotted against
1/N 2/3 in order to estimate the infinite system value of the energy
obtained from a quench from infinite temperature. For m = 3,
Ec = −0.914 [9].
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its Ec = −0.866 according to the analysis in Ref. [9]; for m =
3 the extrapolated energy per spin component is ≈−0.915
whereas its Ec = −0.914 [9]. Minima whose energies lie
below the critical energy Ec, are associated with nontrivial
(i.e., RSB) form for their P (q), calculated from the overlaps
of the minima at the same energy [9,17]. We found just as
for the Ising SK model that the energy reached in the quench
varied little when the greedy algorithm was used instead of the
sequential algorithm [14].

As the energy of the quenched state is remarkably close
to the critical energies calculated by Bray and Moore [9,17]
for m = 2 and m = 3, this suggests that the state reached in
the quench is well described by the calculations in Ref. [9],
whereas for the Ising case the equivalent calculation, which
enumerates the number of one-spin-flip stable states does
not give the resulting p(h) of the quenched states with
much accuracy and so does not produce an accurate estimate
of Ec.

One knows a lot about behavior at Ec at least for Ising
spins in zero random field [17]. For states of energy per spin
ε > Ec, the annealed and quenched averages agree with each
other, but for energies ε < Ec, the two calculations differ. As ε

approaches Ec, behavior is as at a critical point, with growing
length scales, etc., and massless modes [17]. For the Ising case
the properties of these modes were discussed in Ref. [17]. This
topic, in particular for the case of vector spin glasses, is a topic
for future study.

When one sets an Ising spin parallel to its local field in
the course of the quench, spin avalanches may be triggered. If
the number of neighbors z is of order N then the avalanches
can be on all size scales [25,26]. Thus, the Ising SK model is
an example of a system with marginal stability as discussed
by Müller and Wyart [18]. It was argued in Ref. [18] that
as the quench progresses the system will reach the marginal
manifold, which separates stable from unstable configurations.
As this point is approached the dynamics slows and eventually
freezes near the marginal manifold. The VB model with
z = 6 does not have large-scale avalanches [26] and does not
have any marginal features; a first study of avalanches in the
undiluted one-dimensional long-range models can be found in
Ref. [25]. While the Ising VB model does not have large-scale
avalanches, there certainly will be an energy Ec below which
the minima will have nontrivial overlaps. What is not clear is
whether it is the large avalanches, which ensures that the states
generated in a quench are close to this energy.

We also do not know what difference the existence of a
finite-temperature phase might make to the properties of the
quenched state. For example, are there features of the quenched
states of one- and two-dimensional Ising spin glasses, where
there is no finite-temperature spin glass transition, which differ
significantly from those of the three-dimensional spin glass,
where there is a finite-temperature phase transition? We also do
not know what features might arise if there is a phase transition
to a state with full replica symmetry breaking, as opposed to a
state with just replica symmetry.

For systems for which the excitations are not discrete, such
as in vector spin glasses, marginality takes a different form,
and seems related to the development of negative eigenvalues
in the Hessian [18,27]. Such eigenvalue instabilities might be
triggered in a quench where one puts spins parallel to their

local fields. On the other hand, one could imagine a steepest
descent procedure starting from the initial spin orientation and
smoothly proceeding to a minimum. Does that result in a final
state whose properties differ from those generated by putting
spins parallel to their local fields?

There are many topics that should be studied. We believe
that the proximity of the quenched energy to the calculated
critical energy Ec, at least for the cases of m = 2 and m = 3
will provide valuable analytical insights concerning marginal
stability. One of our motivations for the analytic work in the
next section was to calculate Ec(hr ) in the presence of a
nonzero random vector field, but, as we shall see, algebraic
difficulties prevented us from achieving this goal. However,
it would be good to know how general is the result that the
energy obtained in a quench coincides with the energy at which
the overlaps of the minima display replica symmetry-breaking
features.

IV. METASTABLE STATES IN THE SK MODEL IN THE
PRESENCE OF A RANDOM FIELD

In this section we follow the method of Ref. [9] to study the
complexity and Hessian properties of the minima for the SK
model but in the presence of a random vector field. We begin by
writing down the first steps in the formalism following Ref. [9].
In Sec. IV A we show that within the annealed approximation,
where one averages NS(ε) itself over the bonds Jij and the
random fields hex

i analytical progress is fairly straightforward.
Fortunately, the annealed approximation is also exact for fields
hr > hAT . In Sec. IV B we describe our attempts to solve the
quenched case. We believe that our approach based on replica
symmetry assumptions should be good down to its limit of
stability which would be at Ec(hr ), but algebraic difficulties
prevented us from actually determining Ec(hr ).

We find it convenient to write the Hamiltonian for the
m-vector spin glass in an m-component external field as

H = −m

2

∑
i,j

Jij Si · Sj − m
∑

i

hex
i · Si , (7)

where the m-component spins Si = {Sα
i }, (α = 1, . . . ,m, i =

1, . . . ,N) have a unit length Si = 1. The interactions Jij are
chosen from a Gaussian distribution with zero mean and the
variance 1/N . In this section, for convenience, we use the
notation hex

i = hi/
√

m for the random Gaussian external fields
with zero mean and the variance

〈
h

ex,α
i h

ex,β

j

〉 = h2
r

m
δij δ

αβ. (8)

At zero temperature, the spins are aligned in the direction
of the local internal field H i , i.e.,

Si = Ĥ i ≡ H i

Hi

, (9)

where

H i =
∑

j

Jij Sj + hex
i . (10)
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In terms of the local fields, the ground-state energy E can be
written as

E = −m

2

∑
i

(
Hi + Ĥ i · hex

i

)
. (11)

The number of metastable states with energy ε per site and
per spin component is given by

NS(ε) =
∫ ∏

i,α

dHα
i

∫ ∏
i,α

dSα
i

∏
i,α

δ
(
Sα

i − Ĥ α
i

)

×
∏
i,α

δ

⎛
⎝Hα

i −
∑

j

Jij S
α
j − h

ex,α
i

⎞
⎠| det M{Jij }|

× δ

(
Nmε + 1

2
m
∑

i

(
Hi + Ĥ i · hex

i

))
, (12)

where

M
αβ

ij = ∂

∂S
β

j

(
Sα

i − Ĥ α
i

) = δij δ
αβ − Jij

P
αβ

i

Hi

(13)

with P
αβ

i ≡ δαβ − Ĥ α
i Ĥ

β

i is the projection matrix.

A. Annealed approximation

We now calculate the average of NS(ε) over the random
couplings and the random external fields. As we will see
below, the direct evaluation of the quenched average 〈ln NS(ε)〉
is very complicated. Here we first present the annealed
approximation, where we evaluate the annealed complexity
gA(ε) = ln〈NS(ε)〉/N . The whole calculation is very similar
to those in Appendix 2 of Ref. [9] except for the part involving
the average over the random field. Below we sketch the
calculation.

The first delta functions in Eq. (12) can be integrated away.
We use the integral representations for the second and third
delta functions using the variables xα

i and u, respectively, along
the imaginary axis. The average over the random couplings can
be done in an exactly the same way as in Ref. [9]. We briefly
summarize the results below. The random couplings appear in
the factor〈

exp

⎡
⎣−

∑
i<j

Jij

∑
i,α

(
xα

i Ĥ α
j + xα

j Ĥ α
i

)⎤⎦|det M{Jij }|
〉

J

= exp

⎡
⎣ 1

2N

∑
i<j

{∑
α

(
xα

i Ĥ α
j + xα

j Ĥ α
i

)}2
⎤
⎦

×
〈∣∣∣∣ det M

{
Jij − O

(
1

N

)}∣∣∣∣
〉
J

. (14)

After neglecting the O(1/N) term, we evaluate the average of
the determinant as [9]

〈| det M{Jij }|〉J = exp

(
1

2
Nmχ̄

)∏
i

(
1 − χ̄

Hi

)m−1

, (15)

where the susceptibility χ̄ satisfies the self-consistency equa-
tion [9]

χ̄ =
(

1 − 1

m

)
1

N

∑
i

1

Hi − χ̄
(16)

with the condition Hi � χ̄ . Using the rotational invariance and
the Hubbard-Stratonovich transformation, we can rewrite the
exponential factor in front of the determinant as

exp

[
1

2m

∑
i,α

(
xα

i

)2

]

×
∫

dv

(2π/Nm)1/2
exp

[
−Nm

2
v2 + v

∑
i,α

xα
i Ĥ α

i

]
. (17)

In the present case, we have to average over the random field.
Collecting the relevant terms, we have〈

exp

[
−
∑
i,α

(
xα

i + 1

2
umĤα

i

)
h

ex,α
i

]〉
hex

= exp

[
h2

r

2m

∑
i,α

(
xα

i

)2 + h2
r

2
u
∑
i,α

xα
i Ĥ α

i + Nm
h2

r

8
u2

]
.

(18)

All the site indices are now decoupled. We express the
condition Eq. (16) using the integral representation of the delta
function with the variable λ running along the imaginary axis.
Putting all the terms together, we have

〈[NS(ε)]〉J,hex =
∫

du

2πi

∫
dv√

2π/Nm

∫
dχ̄

∫
dλ

2πi

× exp

[
Nmλχ̄ + Nm

2
χ̄2 − Nmεu

− Nm

2
v2 + Nm

h2
r

8
u2 + N ln I ′

]
, (19)

where

I ′ =
∫

H�χ̄

∏
α

dHα

∫ ∏
α

dxα

2πi

(
1 − χ̄

H

)m−1

× exp

[
1 + h2

r

2m

∑
α

(xα)2 +
(

v + h2
r

2
u

)∑
α

xαĤ α

+
∑

α

xαHα − (m − 1)λ(H − χ̄)−1 − m

2
uH

]
. (20)

The Gaussian integral over xα can be done analytically. The
integrals in Eq. (19) are evaluated via the saddle-point method
in the N → ∞ limit. Following the procedure described in
Ref. [9], we introduce new variables h ≡ (H − χ̄ )Ĥ and 
 =
−v − χ̄ and use the saddle-point condition for χ̄ , which is

λ − 
 − u

2
= 0. (21)

052143-6



METASTABLE MINIMA OF THE HEISENBERG SPIN . . . PHYSICAL REVIEW E 94, 052143 (2016)

We finally have an expression for the annealed complexity
gA(ε) ≡ N−1 ln〈NS(ε)〉 as

gA(ε) = m

(
− 
2

2
− εu + h2

r

8
u2

)
+ ln I, (22)

where

I =
(

m

2π
(
1 + h2

r

)
)m/2

Sm

∫ ∞

0
dh hm−1

× exp

[
− m

2
(
1 + h2

r

)(h − 
 + h2
r

2
u

)2

− (m − 1)

h

(

 + u

2

)
− m

2
uh

]
(23)

with the surface area of the m-dimensional unit sphere
Sm = 2πm/2/�(m/2). The parameters 
 and u are determined
variationally as ∂gA/∂
 = ∂gA/∂u = 0.

We focus on the total number of metastable states, which are
obtained by integrating exp[NgA(ε)] over ε, or equivalently by
setting u = 0. Thus, we are effectively focusing on the most
numerous states, those at the top of the band where gA(ε) is
largest. In this case, gA = −(m/2)
2 + ln I0, where

I0 = Sm

(
m

2π
(
1 + h2

r

)
)m/2 ∫ ∞

0
dh hm−1

× exp

[
−(m − 1)




h
− m(h − 
)2

2
(
1 + h2

r

)
]
. (24)

The parameter 
 is determined by the saddle-point equation


 = 1

2 + h2
r

〈h〉 −
(

1 − 1

m

)(
1 + h2

r

2 + h2
r

)〈
1

h

〉
, (25)

where the average is calculated with respect to the probability
distribution for the internal field given by the integrand of I0 in
Eq. (24). Using 〈h〉 = 
 + 〈h − 
〉, we can rewrite Eq. (24)
as




[
1 −

(
1 − 1

m

)〈
1

h2

〉]
= 0. (26)

For various values of the external field hr , we solve numer-
ically Eq. (25). For m = 3, we find that when hr > hAT = 1
there is only a trivial solution, 
 = 0. (Note that the Almeida-
Thouless field hAT at T = 0 is hAT = 1/

√
m − 2 [19]). From

Eq. (24), we see that in this case I0 = 1 and the complexity
g vanishes above the AT field. For hr < hAT , a nontrivial
solution, 
 �= 0 exists. We find that the values of 
 and
gA increase as the external field hr decreases from hAT , and
approach the known values, 0.170 and 0.00839 at zero external
field [9]. For hr smaller than but very close to hAT , 
 is very
small. We may obtain an analytic expression for gA in this
case. By expanding everything in Eq. (26) in powers of 
, we
find for m = 3 that

gA = 3

2

(
h2

AT − h2
r

)

̃2 + 8

√
3

2π

̃3 ln 
̃ + O(
̃3), (27)

where 
̃ = 
/
√

1 + h2
r . The fact that gA must be stationary

with respect to 
̃, enables one to determine how the complexity
vanishes as hr → hAT and the value of 
̃ in this limit.

Using the distribution for the internal field H (or h), we
first calculate the spin glass susceptibility χSG ≡ (Nm)−1Trχ2

with the susceptibility matrix χ = χ
αβ

ij [9]. Note that the
susceptibility in Eq. (16) is just χ̄ = (Nm)−1Trχ . The spin
glass susceptibility is given by [9] χSG = (1 − λR)/λR , where

λR = 1 −
(

1 − 1

m

)
1

N

∑
i

1

(Hi − χ̄ )2
. (28)

This quantity is exactly the one in the square bracket in
Eq. (26). Therefore, since 
 �= 0 for hr < hAT , λR vanishes
and consequently χSG diverges. Above the AT field, there is
only a trivial solution 
 = 0. In this case the integrals are just
Gaussians and we can evaluate explicitly 1

N

∑
i

1
(Hi−χ̄ )2 , with

the result that λR = [h2
r − 1/(m − 2)]/(1 + h2

r ), so the spin
glass susceptibility as a function of the external random field
for hr > hAT is given by

χSG = 1 + h2
AT

h2
r − h2

AT

, (29)

provided hr > hAT and m > 2. The simple divergence of χSG

as hr → hAT is a feature of the SK limit and is not found in
the Viana-Bray model at least among the quenched states of
our numerical studies, see Sec. V A.

We now calculate the eigenvalue spectrum of the Hessian
matrix A. The calculation closely follows the steps in Ref. [11]
for the case of zero external field. We consider (transverse)
fluctuations around the T = 0 solution S0

i ≡ Ĥ i by writ-
ing Si = S0

i + εi , where εi = ∑
α εα

i êα(i) with the (m −
1) orthonormal vectors êα(i), α = 1, . . . ,m − 1 satisfying
S0

i · êα(i) = 0. Inserting this into Eq. (7), we have the Hessian
matrix as

A
αβ

ij ≡ ∂(H/m)

∂εα
i ∂ε

β

j

= Hiδij δ
αβ − Jij êα(i) · êβ(j ). (30)

The eigenvalue spectrum ρ(λ) can be calculated from the
resolvent G = (λI − A)−1 as

ρ(λ) = 1

N (m − 1)π
Im TrG(λ − iδ), (31)

where I is the (m − 1)N -dimensional unit matrix and δ

is an infinitesimal positive number. The locator expansion
method [28] is used to evaluate ρ(λ), which yields the follow-
ing self-consistent equation for Ḡ(λ) ≡ [(m − 1)N ]−1TrG(λ):

Ḡ(λ) =
〈

1

λ − H − (
1 − 1

m

)
Ḡ(λ)

〉
, (32)

where 〈〉 denotes the average over the distribution for h given in
the integrand in Eq. (24). Note that H = h + χ̄ and χ̄ = (1 −
1/m)〈1/h〉 from Eq. (16). We first separate Ḡ = Ḡ′ + iḠ′′
into real and imaginary parts and solve Eq. (32) numerically for
Ḡ′(λ) and Ḡ′′(λ) as a function of λ. The eigenvalue spectrum
is just ρ(λ) = π−1Ḡ′′(λ).

As we can see from Figs. 4 and 5, ρ(λ) does not change
very much as we increase hr from zero up to hAT = 1. For
the external field larger than the AT field, however, Fig. 5
clearly shows that the eigenvalue spectrum develops a gap.
The gap increases with the increasing external field. By directly

052143-7



AUDITYA SHARMA, JOONHYUN YEO, AND M. A. MOORE PHYSICAL REVIEW E 94, 052143 (2016)

0 0.5 1 1.5 2 2.5 3
λ

0

0.1

0.2

0.3

0.4

ρ(
λ)

hr=0

hr=0.2

hr=0.4

hr=0.6

hr=0.8

hr=1.2

hr=1.4

hr=1.6

hr=1.8

FIG. 4. The eigenvalue spectrum of the Hessian at zero tempera-
ture for the vector spin glass with m = 3 in the SK limit. The various
lines correspond to different values of hr , the external random field.

working on Eq. (32) in the small-λ limit, we find that for small
eigenvalues

ρ(λ) � 1

π (1 − 1/m)

1√
s

√
λ − λ0, (33)

where s = (1 − m−1)〈1/h3〉 and λ0 = λ2
R/4s with λR defined

in Eq. (28). Our numerical solution of the equations for G(λ)
confirms that there is no gap below hAT , which is consistent
with the previous observation that λR vanishes there. However,
the integral by which s is defined diverges for hr > hAT when
m < 3 and we no longer see a square-root singularity at the
band edge. In the case of m = 3 our numerical solution shown
in Fig. 5 suggests instead of the square-root dependence there
is a roughly linear dependence as λ approaches the numerically
determined band edge λ0, but unfortunately we have not been
able to derive its form analytically. Figure 4 shows that away
from λ0 the density of states is rather as if it had the square-root
form. As hr → hAT this square-root form works all the way
to zero.
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λ

0
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hr=1.6

hr=1.8

FIG. 5. The magnified view of the same figure as Fig. 4 but for
the small eigenvalues.

B. Quenched average

In this subsection, we attempt to evaluate the quenched
complexity g(ε) = N−1〈ln NS(ε)〉. The calculations are quite
complicated and some of the details are sketched in the
Appendix. In order to calculate 〈ln NS(ε)〉, we consider an
average of the replicated quantity 〈[NS (ε)]n〉J,hex . We then have
an expression similar to Eq. (19), where the integrals are now
over replicated variables, uη, vη, χ̄ η, and λη with the replica in-
dices η,μ = 1, . . . ,n. In addition to these, the expression also
involves the integrals over the variables carrying off-diagonal
replica indices, which are denoted by Aην , A∗

ην , Bην , and B∗
ην

with η < ν. In the absence of external field, it can be shown [9]
that Aην = A∗

ην = Bην = B∗
ην = 0 is always a solution to the

saddle-point equations. It is shown to be stable for ε > Ec

for the Ec, for which the quenched average coincides with
the annealed one. For hr �= 0, however, we find that this is no
longer the case. Aην = A∗

ην = Bην = B∗
ην = 0 is not a solution

to saddle-point equations. The saddle-point solutions involve
nonvanishing off-diagonal variables in replica indices. We find
that in general the saddle-point equations are too complicated
to allow explicit solutions. (See the Appendix for details.)

The quenched average is different from the annealed one
for a finite external field when hr < hAT . When hr > hAT

the annealed and quenched averages are identical in every
way for the SK model, which has vanishing complexity in
this region. We doubt whether the same statement is true
for any model such as the Viana-Bray model which has
nonzero complexity for hr > hAT . We also do not know
for sure whether our replica symmetric solution for Aην ,
etc., is stable. It is possible that even at u = 0 there is a
need to go to full replica symmetry breaking. Unfortunately,
algebraic complexities have prevented us from even finding
a solution of the replica symmetric equations, so determining
their stability looks very challenging. However, the results of
the numerical work reported on the form of P (q) in Sec. III
for the Viana-Bray model in a field suggests that the states
reached in the quench have replica symmetry.

We look for the saddle points in the replica symmetric form,

Aην = A, A∗
ην = A∗, Bην = B∗

ην = B,

uη = u, vη = v, χ̄η = χ̄ , λη = λ. (34)

After a lengthy calculation (see Appendix), we arrive at the
expression for the quenched complexity as follows.

g(ε) = m

{
− 
2

2
− εu − A

2m
+ 1

2
(AA∗ + B2)

}

+
∫

dmw

(2π )m/2

∫
dm y

(2π )m/2

∫
dmzdmz∗

(2π )m

× exp

[
−1

2

m∑
α

(
w2

α + y2
α + zαz∗

α

)]

× ln K(w, y,z,z∗), (35)

where

K =
∫

dmh
∫ i∞

−i∞

dmx
2πi

exp

[
1 − mA∗

2m
x2

+ (h − 
 − B)x · ĥ − (m − 1)

 + u/2

h
− m

2
uh
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+
√

A∗ + h2
r

m
w · x +

√
A + mh2

r

4
u2 y · ĥ

+
√

1

2

(
B + h2

r

2
u

)
(z · x + z∗ · ĥ)

]
. (36)

All the parameters, 
, A, A∗, B, and u are to be determined in
a variational way. We found, however, that it is very difficult
to solve the saddle-point equations and obtain the quenched
complexity, even numerically.

For the total number of metastable states, u = 0, we can find
a simple solution to saddle-point equations at 
 = A = B = 0
and A∗ = 1/m. In this case, K = 1 and the complexity g

vanishes. This solution must describe the case where hr > hAT

and it is identical to the annealed average. For the external field
hr just below hAT , 
, A, B and C ≡ 1/m − A∗ are expected
to be very small, and we may expand the integrals in Eq. (35)
in these variables. We find after a very lengthy calculation that

g � m

1 + h2
r

(
h2

AT − h2
r

)[
2

2
+ AC

2
− B2

2

]
. (37)

Note that from Eq. (A7), we expect B is pure imaginary.
In order to determine how these variables behave near hAT ,
we need higher-order terms. Unfortunately, the complicated
nature of these equations, however, has prevented us from
going beyond the quadratic orders. It seems natural to expect
that the 
 sector is decoupled from the off-diagonal variables,
and so will have the same 
3 ln 
 behavior as in Eq. (27). But
the effort to obtain a full solution is so large that we abandoned
further work on it.

V. HESSIAN STUDIES

In this section we write down the Hessian for the m = 3
Heisenberg spin glass in a form that is convenient for numerical
work. The Hessian is of interest as it describes the nature of
the energy of the spin glass in the vicinity of the minima. It
is also closely related to the matrices needed to describe the
spin waves in the system [9]. We follow the approach used
in the paper of Beton and Moore [29] to find the elements of
the Hessian matrix T corresponding to directions transverse
to each spin subject to the above metastability condition. We
first define the site-dependent two-dimensional orthogonal unit
vectors êx(i) and êy(i) such that

êm(i) · S0
i = 0 (38)

êm(i) · ên(i) = δmn, (39)

where m,n = x,y denotes the directions perpendicular to the
spin at the ith site, which is deemed in the z direction.
The linear combinations ê±

i = 1√
2
[êx(i) ± iêy(i)] turn out to

be particularly useful. Expanding Si about S0
i , subject to the

condition that the length of the spins remains unchanged yields,
up to second order:

Si = S0
i + �x

i êx(i) + �
y

i êy(i) − 1
2

[(
�x

i

)2 + (
�

y

i

)2]
S0

i . (40)

Equivalently,

Si = S0
i + Z−

i ê+
i + Z+

i ê−
i − Z−

i Z+
i S0

i , (41)

where Z±
i = 1√

2
(�x

i ± i�
y

i ), and (Z+
i )∗ = Z−

i . Defining the
2N -dimensional vector

|Z〉 =
(

Z−
i

Z+
i

)
, (42)

the change in energy per spin component degree of freedom
δE
3 due to a change in spin orientations |Z〉, is given by:

δE

3
= 1

2
〈Z|T |Z〉, (43)

where T is the 2N × 2N Hessian matrix given by

T = 1

3

(|Hi |δij + A∗
ij B∗

ij

Bij |Hi |δij + Aij

)
,

where the matrix elements are

Aij = A∗
ji = −3Jij ê

+
i · ê−

j

Bij = B∗
ji = −3Jij ê

+
i · ê+

j .

Converting to spherical coordinates, the matrix elements
are

A∗
ij = −3Jij

2
{[cos(θi) cos(θj ) + 1] cos(φi − φj )

+ i[cos(θi) + cos(θj )] sin(φi − φj ) + sin(θi) sin(θj )}

B∗
ij = −3Jij

2
{[cos(θi) cos(θj ) − 1] cos(φi − φj )

− i[cos(θi) − cos(θj )] sin(φi − φj ) + sin(θi) sin(θj )}

Bij = −3Jij

2
{[cos(θi) cos(θj ) − 1] cos(φi − φj )

+ i[cos(θi) − cos(θj )] sin(φi − φj ) + sin(θi) sin(θj )}

Aij = −3Jij

2
{[cos(θi) cos(θj ) + 1] cos(φi − φj )

− i[cos(θi) + cos(θj )] sin(φi − φj ) + sin(θi) sin(θj )}.
(44)

In Sec. V A we use the Hessian to numerically calculate the
spin glass susceptibility of both the SK model and VB model
in a range of random fields for the Heisenberg spin glass.

A. Spin glass susceptibility

The spin glass susceptibility for the metastable states can
be computed from the inverse of the Hessian matrix using the
relation [9]

χSG = 1

N
Tr (T −1)2. (45)

For the SK model and hr > hAT = 1, we have calculated
χSG analytically and Fig. 6 shows that our numerical work
is approaching the analytical solution, but finite-size effects
are still very considerable at the sizes we can study. Notice
that for the SK model there is (weak) numerical evidence that
χSG diverges below the AT field. For the VB model, the plot
of χSG in Fig. 7 obtained from our metastable states, which lie
above the true ground-state energy provides no evidence that
an AT field has much relevance for these states.
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FIG. 6. The inverse of the spin glass susceptibility χ−1
SG versus h2

r

for a range of system sizes of the Heisenberg SK model. The analytic
curve is the result of Eq. (29). For hr � 1, one expects that χ−1

SG = 0,
but finite-size effects make it nonzero.

B. Density of states

The density of states of the eigenvalues of the Hessian
matrix has been obtained numerically for the minima obtained
in a quench from infinite temperature to zero temperature.
The results have remarkable agreement with the analytical
calculation performed on the Heisenberg SK model as shown
in Fig. 8. The analytical calculation itself is not for the same
set of metastable states. It applies to the states corresponding
to u = 0 (i.e., those with the largest complexity within the
annealed approximation). In Fig. 8, data are shown for
hr = 0.8hAT , where no gap is present. The agreement between
the analytical curve, which is obtained for the thermodynamic
limit, and the data for a N = 1024 size system from numerical
simulations, is striking. Notice that the

√
λ form predicted from

the annealed study (see Sec. IV A) seems to hold as λ → 0,
despite there being no Goldstone theorem in the presence of a
random field to ensure the existence of massless modes.
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FIG. 7. The inverse of the spin glass susceptibility χ−1
SG versus h2

r

for a range of system sizes for the VB model with z = 6.
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FIG. 8. The averaged density of states of the Hessian matrix
of the metastable states obtained after a quench to T = 0 starting
from spins with random orientations, i.e., T = ∞ for the SK model
(σ = 0,z = N − 1 of the diluted model). Data shown here for the
special case of hr = 0.8, for which the system is in the spin glass
phase, just below hAT = 1. The analytical curve is that calculated
from Eqs. (31) and (32) for metastable states at the top of the
band within the annealed approximation. The numerical results are
strikingly similar to the analytical results, despite the fact that they
refer to Hessians for quite different situations!

We have also studied the density of states and quantities
such as the inverse participation ratios for the quenched
state minima in models such as the VB model and the one-
dimensional long-range models. Basically, the results seem
similar to those reported in Refs. [6] for the three-dimensional
Heisenberg spin glass model in a random field. However, it
requires large systems to get accurate results for the density of
states at small values of λ and we are leaving these issues for
future study.

VI. CONCLUSIONS

We believe that the most interesting feature that has turned
up in our studies is the discovery for the SK model in zero
external fields that the quenched states reached for m = 2 and
m = 3 are quite close to the critical energies Ec at which the
overlap of the states would acquire features associated with
a P (q) with broken replica symmetry. In the Ising SK model
the local fields after the quench are so different from those
used in the analytical calculations of Ec that the connection of
the quenched state to being just at the edge of the states with
broken replica symmetry was not recognized. Thus, in systems
with marginal stability this means that features normally
associated with continuous phase transitions, in particular
diverging length scales, could be studied as in Ref. [17].

We have noticed too that the energy of the states reached
from the quench have zero overlap with each other. This
behavior was predicted for the Ising case in Ref. [13] by
Newman and Stein who proved that after a quench from infinite
temperature for Ising systems the states that are reached have
a characteristic energy and a trivial P (q). It would be good to
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extend their theorems to vector spin systems both in zero field
and also in the presence of random fields.

In Sec. IV we attempted to extend the old calculations
of Bray and Moore [9], which were for zero random field
to nonzero random fields. For fields hr > hAT where the
complexity is zero, the annealed approximation is exact and
we were able to obtain the exact form for the behavior of
the density of states of the Hessian matrix. There was found
to be a gap in the spectrum, which went to zero in the limit
hr → hAT . When hr < hAT one needs to study the quenched
average in order to get results pertinent to typical minima, but
we were not able to overcome the algebraic complexities (see
Sec. IV B and the Appendix), although the only difficulty is
that of solving the equations that we have obtained. If that
could be done then one could investigate the limit of stability
of the replica symmetric solution and determine Ec(hr ). Then
one could investigate whether a quench in a field hr takes one
to the limit of stability towards full replica symmetry breaking,
i.e., Ec(hr ), just as we found for hr = 0.

The annealed approximation is tractable but alas it is only
an approximation. Nevertheless the studies in Sec. V B show
that it gives good results for the density of states of the Hessian
for the SK model for hr < hAT .

The VB model is a mean-field model and one could hope
that it too could be understood analytically, but we do not
know how this might be achieved. Our numerical studies of

the density of states of its Hessian indicates that this is very
different from that of the SK model. This is probably because
for the SK model all the eigenstates are extended, whereas for
the VB model eigenvectors can also be localized. In fact our
results for the VB model are quite similar to those reported
for the three-dimensional Heisenberg spin glass in a field [6].
There seems to be localized states lying in the gap region,
all the way down to λ = 0. But understanding the VB model
analytically is very challenging.
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APPENDIX: QUENCHED COMPLEXITY DETAILS

We present in this Appendix some of the details of the cal-
culation of the quenched complexity g(ε) = N−1〈ln NS(ε)〉.
We first replicate Eq. (12) to obtain

[NS(ε)]n =
∫ ∏

i,α,η

dH
η

iα

∫ ∏
i,α,η

dx
η

iα

2πi

∫ ∏
η

duη

2πi
exp

⎡
⎣∑

i,α,η

x
η

iαH
η

iα −
∑

i<j,α,η

Jij

(
x

η

iαĤ
η

jα + x
η

jαĤ
η

iα

)−
∑
i,α,η

x
η

iαhex
iα

⎤
⎦

×
∏
η

| det Mη{Jij }| exp

[
−
∑

η

uηNmε −
∑

η

1

2
uηm

∑
i

(
H

η

i + Ĥ
η

i · hex
i

)]
, (A1)

where i,j, . . . = 1, . . . ,N are the site indices, α,β, . . . = 1, . . . ,m the vector component indices, and η,μ,ν, . . . = 1, . . . ,n

replica indices. The average over Jij can be done as in Ref. [9]. We have

〈
exp

⎡
⎣−

∑
i<j

Jij

∑
i,α

(
x

η

iαĤ
η

jα + x
η

jαĤ
η

iα

)⎤⎦∏
η

| det Mη{Jij }|
〉

J

= exp

⎡
⎣ 1

2N

∑
i<j

{∑
α,η

(
x

η

iαĤ
η

jα + x
η

jαĤ
η

iα

)}2
⎤
⎦〈∏

η

∣∣∣∣ det Mη

{
Jij − O

(
1

N

)}∣∣∣∣
〉

J

. (A2)

After neglecting the O(1/N ) term, the determinant can be evaluated to yield the replicated version of Eq. (15). Using the
Hubbard-Stratonovich transformation and the rotational invariance, we can write the exponential factor in front of the determinant
as

exp

⎡
⎣ 1

2m

∑
i,α,η

(
x

η

iα

)2

⎤
⎦∫ ∏

η

dvη

(2π/Nm)1/2
exp

[
−Nm

2

∑
η

(vη)2 +
∑

η

vη

(∑
i,α

x
η

iαĤ
η

iα

)]

×
∫ ∏

η<ν

dAηνdA∗
ην

(π/Nm)
exp

[
−Nm

∑
η<ν

|Aην |2 +
∑
η<ν

A∗
ην

(∑
i,α

x
η

iαxν
iα

)
+
∑
η<ν

Aην

(∑
i,α

Ĥ
η

iαĤ ν
iα

)]

×
∫ ∏

η<ν

dBηνdB∗
ην

(π/Nm)
exp

[
−Nm

∑
η<ν

|Bην |2 +
∑
η<ν

B∗
ην

(∑
i,α

x
η

iαĤ ν
iα

)
+
∑
η<ν

Bην

(∑
i,α

Ĥ
η

iαxν
iα

)]
. (A3)
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The average over the random external field is done as〈
exp

⎡
⎣−

∑
i,α,η

(
x

η

iα + 1

2
uηmĤ

η

iα

)
hex

iα

⎤
⎦〉

hex

= exp

⎡
⎣ h2

r

2m

∑
i,α,η

(
x

η

iα

)2 + h2
r

2

∑
η

uη

(∑
i,α

x
η

iαĤ
η

iα

)
+ Nm

h2
r

8

∑
η

(uη)2

⎤
⎦

× exp

[
h2

r

m

∑
η<ν

{(∑
i,α

x
η

iαxν
iα

)
+ m

2
uν

(∑
i,α

x
η

iαĤ ν
iα

)
+ m

2
uη

(∑
i,α

Ĥ
η

iαxν
iα

)
+ m2

4
uηuν

(∑
i,α

Ĥ
η

iαĤ ν
iα

)}]
. (A4)

All the site indices are now decoupled. Using the δ function constraint for χ̄ , we have

〈[NS(ε)]n〉J,hex =
∫ ∏

η

duη

∫ ∏
η

dvη

∫ ∏
η

dχ̄η

∫ ∏
η

dλη

∫ ∏
η<ν

dAηνdA∗
ην

∫ ∏
η<ν

dBηνdB∗
ην

× exp

[
Nm

∑
η

ληχ̄η + Nm

2

∑
η

(χ̄ η)2 − Nmε
∑

η

uη − Nm

2

∑
η

(vη)2 + Nm
h2

r

8

∑
η

(uη)2

− Nm
∑
η<ν

(|Aην |2 + |Bην |2) + N ln I

]
, (A5)

where

I =
∫ ∏

η,α

dHη
α

∫ ∏
η,α

dxη
α

(
1 − χ̄ η

Hη

)m−1

× exp

[
1 + h2

r

2m

∑
ηα

(
xη

α

)2 +
∑

η

(
vη + h2

r

2
uη

)∑
α

xη
αĤ η

α +
∑
η,α

xη
αHη

α − (m − 1)
∑

η

λη(Hη − χ̄ η)−1 − m

2

∑
η

uηHη

]

× exp

[∑
η<ν

(
A∗

ην + h2
r

m

)(∑
α

xη
αxν

α

)
+
∑
η<ν

(
Aην + mh2

r

4
uηuν

)(∑
α

Ĥ η
α Ĥ ν

α
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× exp

[∑
η<ν

(
B∗

ην + h2
r

2
uν

)(∑
α

xη
αĤ ν

α

)
+
∑
η<ν

(
Bην + h2

r

2
uη

)(∑
α

Ĥ η
α xν

α

)]
. (A6)

The saddle-point equation for the off-diagonal variables are given by

Aην = 1

m

〈∑
α

xη
αxν

α

〉
, A∗

ην = 1

m

〈∑
α

Ĥ η
α Ĥ ν

α

〉
, Bην = 1

m

〈∑
α

xη
αĤ ν

α

〉
, B∗

ην = 1

m

〈∑
α

Ĥ η
α xν

α

〉
, (A7)

where 〈〉 is calculated with respect to I . We can easily see that when hr �= 0, these averages do not become zero even when all
the integration variables carrying off-diagonal replica indices vanish. Therefore, Aην = A∗

ην = Bην = B∗
ην = 0 is not a solution

of the saddle-point equations.
We now study the saddle points in the replica symmetric form,

Aην = A, A∗
ην = A∗, Bην = B∗

ην = B, uη = u, vη = v, χ̄η = χ̄ , λη = λ. (A8)

Then

g(ε) = N−1〈ln NS(ε)〉J,hex = m

{
λχ̄ + 1

2
χ̄2 − εu − 1

2
v2 + h2

r

8
u2 + 1

2
(|A|2 + B2)

}
+ lim

n→0

[
1

n
ln I

]
, (A9)

where

I =
∫ ∏

η,α

dHη
α

∫ ∏
η,α

dxη
α

(
1 − χ̄

Hη

)m−1

× exp

[
1 + h2

r

2m

∑
η,α

(
xη

α

)2 +
(

v + h2
r

2
u

)∑
η,α

xη
αĤ η

α +
∑
η,α

xη
αHη

α − (m − 1)λ
∑

η

(Hη − χ̄ )−1 − m

2
u
∑

η

Hη

]
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× exp

[(
A∗ + h2

r

m

)∑
η<ν

∑
α

xη
αxν

α +
(

A + mh2
r

4
u2

)∑
η<ν

∑
α

Ĥ η
α Ĥ ν

α

]

× exp

[(
B + h2

r

2
u

)∑
η<ν

(∑
α

xη
αĤ ν

α +
∑

α

Ĥ η
α xν

α

)]
. (A10)

We now use the Hubbard-Stratonovich transformations on the last three terms in the previous equation using the auxiliary
variables, wα , yα , zα , and z∗

α , to disentangle the replica indices. Then we can write∫ ∏
η,α

dHη
α

∫ ∏
η,α

dxη
α

∑
η

(· · · ) =
[∫ ∏

α

dHα

∫ ∏
α

dxα(· · · )

]n

. (A11)

By explicitly evaluating limn→0 n−1 ln I , we obtain

g(ε) = m

{
λχ̄ + 1

2
χ̄2 − εu − 1

2
v2 − A

2m
+ 1

2
(AA∗ + B2)

}
+
∫ ∏

α

dwα√
2π

∫ ∏
α

dyα√
2π

∫ ∏
α

dzαdz∗
α

2π

× exp

[
−1

2

∑
α

(
w2

α + y2
α + |zα|2)

]
ln J, (A12)

where

J =
∫ ∏

α

dHα

∫ i∞

−i∞

∏
α

dxα

2πi

(
1 − χ̄

H

)m−1

× exp

[
1 − mA∗

2m

∑
α

(xα)2 + (v − B)
∑

α

xαĤα +
∑

α

xαHα − (m − 1)λ(H − χ̄)−1 − m

2
uH

]

× exp

[√
A∗ + h2

r

m

∑
α

wαxα +
√

A + mh2
r

4
u2
∑

α

yαĤα +
√

1

2

(
B + h2

r

2
u

)∑
α

(zαxα + z∗
αĤα)

]
. (A13)

Now we change the integration variable in J from H to h ≡ H − χ̄ Ĥ = (H − χ̄)Ĥ . The lower limit of the integral for h now
becomes 0 and the Jacobian exactly cancels the factor of (1 − χ̄/H )m−1. Let us also use the new variable 
, where v = −χ − 


so that H + v = h − 
. Extremizing with respect to χ in g(ε) yields λ − 
 − u/2 = 0. We finally have

g(ε) = m

{
− 
2

2
− εu − A

2m
+ 1

2
(AA∗ + B2)

}
+
∫

dmw

(2π )m/2

∫
dm y

(2π )m/2

∫
dmzdmz∗

(2π )m

× exp

[
−1

2

∑
α

(
w2

α + y2
α + |zα|2)

]
ln K(w, y,z,z∗), (A14)

where

K =
∫
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∫ i∞

−i∞

dmx
2πi

exp

[
1 − mA∗

2m
x2 + (h − 
 − B)x · ĥ − (m − 1)


 + u/2

h
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2
uh

]

× exp
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w · x +
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u2 y · ĥ +
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. (A15)
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