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Recent papers have shown that spatial (quenched) disorder can suppress discontinuous absorbing phase
transitions. Conversely, the scenario for temporal disorder is still unknown. To shed some light in this direction,
we investigate its effect in three different two-dimensional models which are known to exhibit discontinuous
absorbing phase transitions. The temporal disorder is introduced by allowing the control parameter to be time
dependent p → p(t), either varying as a uniform distribution with mean p̄ and variance σ or as a bimodal
distribution, fluctuating between a value p and a value pl � p. In contrast to spatial disorder, our numerical
results strongly suggest that such uncorrelated temporal disorder does not forbid the existence of a discontinuous
absorbing phase transition. We find that all cases are characterized by behaviors similar to their pure (without
disorder) counterparts, including bistability around the coexistence point and common finite-size scaling behavior
with the inverse of the system volume, as recently proposed [M. M. de Oliveira et al., Phys. Rev. E 92, 062126
(2015)]. We also observe that temporal disorder does not induce temporal Griffiths phases around discontinuous
phase transitions, at least not for d = 2.
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I. INTRODUCTION

Nonequilibrium phase transitions are considered a key
feature of a countless number of phenomena, such as magnetic
systems, biological and ecological models, and many others
[1–4]. Recently, considerable interest has been devoted to the
inclusion of more realistic ingredients in order to describe (or
mimic) the effects of impurities or external fluctuations, as
well as their effects in the phase transition [5–10].

Commonly, these ingredients are introduced by allowing
the control parameter to assume distinct values in space
and/or time. The former case, regarded as quenched disor-
der, affects drastically the phase transitions, leading to the
existence of a new universality classes and local regions in
the absorbing phases, characterized by large activities with
slow decays toward extinction. These rare zones typically
arise when the activation rate λ lies between the clean value
λ0

c (without disorder) and the dirty (disordered) critical point
λc; i.e., λ0

c < λ < λc. Moreover, in these domains the system
may exhibit nonuniversal exponents toward full extinction
[11–13]. Heuristically, the Harris criterion [14] establishes that
quenched disorder is a relevant perturbation if dν⊥ < 2, where
d is the system dimensionality and ν⊥ is the spatial correlation
length exponent. For models belonging to the directed per-
colation (DP) universality class ν⊥ = 1.096854(4), 0.734(4),
and 0.581(5) in d = 1, 2, and 3, respectively. Consequently,
the Harris criterion indicates that spatial disorder is a relevant
perturbation for continuous absorbing phase transitions in all
dimensions.

Conversely, the Imry-Ma [15] and Aizenman-Wehl [16]
criteria establish that quenched disorder suppresses the phase
coexistence in equilibrium systems for d � 2. Afterward, it
was shown [17–19] that the discontinuous transition in the Ziff-
Gulari-Barshad (ZGB) model becomes continuous when the
disorder strength is large enough. More recently, Villa-Martı́n
et al. [9] have suggested that the Imry-Ma-Aizenman-Wehl
conjecture should be extended for discontinuous absorbing

phase transitions for d � 2, irrespective of the disorder
magnitude.

Although less studied than spatial disorder, the influence
of temporal disorder has also been considered in some
cases [20–22]. In contrast to the quenched disorder, here
the control parameter becomes time dependent, resulting in a
temporarily active (ordered) as well as absorbing (disordered)
phases, whose effect of variability becomes pronounced at the
emergence of the phase transition. In particular, the available
results have shown that temporal disorder is a highly relevant
perturbation [23], suppressing the DP phase transitions in all
dimensions. For systems with up-down symmetry they are
relevant only for d � 3. Temporal Griffiths phases (TGPs),
regions in the active phase characterized by power-law spatial
scaling and generic divergences of susceptibility, have also
been reported for absorbing phase transitions [21,23–25],
but not found in low-dimensional systems with up-down
symmetry [22]. On the other hand, the effect of temporal
disorder for discontinuous absorbing phase transitions is still
unknown.

To shed some light in this direction, here we investigate
the effects of temporal disorder in discontinuous absorbing
phase transition. Our study aims to answer three fundamental
questions: (i) Is the occurrence of phase coexistence forbidden
under the presence of temporal disorder? (ii) If not, which
changes does it provoke with respect to the pure (without
disorder) version? (iii) Does the temporal disorder induce
temporal Griffiths phases around these phase transitions?
These ideas will be tested in three models which are known
to yield discontinuous absorbing phase transitions in two- and
infinite-dimensional systems, namely, the ZGB model for CO
oxidation [26] and two lattice versions of the second Schlögl
model (SSM) [12,27]. As we will show, in all cases the phase
transition is characterized by a behavior similar to their pure
(without disorder) counterparts, including bistability around
the coexistence point and common finite-size scaling behavior
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with the inverse of the system volume, as recently proposed
in [28].

This paper is organized as follows: In Sec. II we review
the models studied and the simulation methods employed.
Results and discussion are shown in Sec. III and conclusions
are presented in Sec. IV.

II. MODELS AND METHODS

The SSM is a single-species autocatalytic reaction model
defined by the reactions 2A → 3A and A → 0, which occurs
with transition rates 1 and α, respectively. Such a system dis-
plays a discontinuous phase transition that can be qualitatively
reproduced under a mean-field treatment. The first reaction
predicts particle growth following a quadratic dependence on
the density, which makes the low-density (active) state unstable
and thus a jump to a nonzero (large) density arises as the
creation probability 1/(1 + α) increases to a threshold value
α0 = 1/4 [1]. Nonetheless, distinct works have claimed that
these reaction rules are not sufficient to exhibit a discontinuity
in a regular lattice [29]. In particular, the system dimensionality
and the geometrical constraint of requiring the presence of a
pair of adjacent particles surrounding an empty site (in order
to fill the reaction 2A → 3A) are essential ingredients for the
emergence of phase coexistence [30,31].

Here, we consider two square lattice versions of the SSM.
The first one (SSM1), proposed by Windus and Jensen [32]
and afterward reconsidered in Ref. [9], is defined as follows:
A given particle i is chosen (with equal probability) from a list
of currently occupied sites and is annihilated with probability
pa = α/(1 + α). Or, with probability (1 − pa)/4, a nearest
neighbor site of i, called site j , is also chosen at random. If
the site j is empty, the particle i will diffuse for it. If j is
filled by a particle, an offspring will be created at one of the
neighboring sites of i and j (chosen with equal possibility)
with probability pb provided it is empty; otherwise nothing
happens. The value pb = 0.5 has been considered to directly
compare our results with previous studies [9,28,32]. After the
above dynamics, the time is incremented by 1/N , where N is
the number of occupied sites.

For the second version, SSM2, the selection of particle i, its
annihilation probability, and the choice of the nearest neighbor
site j are identical to SSM1. However, in the SSM2 when a
neighboring site j is chosen, its number of nearest neighbor
occupied sites nn will be evaluated. A new offspring will be
created at j with rate nn/4 provided nn � 2 and it is empty.
More specifically, if nn = 1 no particle will be created in the
vacant site. On the contrary, if nn = 2, 3, or 4, the creation
will occur with probability nn/4.

It is worth mentioning that in the SSM1, the discontinuous
transition is caused by both the diffusion and the creation of
offsprings in the presence of two particles. Conversely, in the
SSM2 model it is caused by the creation of offsprings in the
presence of at least two species.

The third system we investigate is the ZGB model [26],
which qualitatively reproduces some features of the oxidation
of carbon monoxide on a catalytic surface. The surface is
modeled as a square lattice, in which each site can be empty
(∗), or occupied by an oxygen (Oads) or a carbon monoxide

(COads). It is summarized by the following reactions:

COgas + ∗ → COads,

O2 gas + 2∗ → 2Oads,

COads + Oads → CO2 + 2 ∗ .

In practice, molecules of COgas and O2 gas hit the surface with
complementary probabilities Y and (1 − Y ), respectively, at
any time the chosen site is empty. At the surface, the O2

molecule dissociates into two independent O atoms, each one
occupying two adjacent empty sites. If a COadsOads pair is
placed at neighboring sites on the surface, a CO2 molecule
will be formed, desorbing instantaneously and leaving both
sites empty. As in the SSM models, after the above dynamics
is implemented, time is incremented by 1/N where N is the
total number of empty sites.

By changing the parameter Y , the model exhibits two phase
transitions between an active steady state and one of two
absorbing (“poisoned”) states, in which the surface is saturated
either by O or by CO. The O-poisoned transition is found to be
continuous. On the other hand, the CO-poisoned transition is
discontinuous, and in this work we will focus on this specific
case.

For the SSMs, the order parameter φ is the system
density ρ and the transitions take place at α0 = 0.0824(1)
(SSM1) [28,33] and α0 = 0.2007(6) (SSM2) [34]. For the
ZGB, φ is the density of CO and the transition occurs at
Y0 = 0.5250(6) [28].

The temporal disorder is introduced so that at each time
interval ti � t � ti + �t , a generic control parameter p

assumes a value extracted from a uniform distribution with
mean p̄ and width σ . More specifically, p is evaluated using
the formula p = p̄ + (2ξ − 1)σ , where ξ is a random number
drawn at each time interval �t from the standard uniform
distribution in [0,1]. For the SSMs, p̄ corresponds to the
creation probability p̄ = 1 − pa = 1

1+α
, with a similar formula

holding for the ZGB model with 1 − pa replaced by Y .
To locate the transition point and the nature of the phase

transition, we consider three alternative procedures. First, we
follow the time behavior of the order parameter φ(t), starting
from a fully active initial configuration. In the active phase, it
converges to a constant value, signaling the permanent creation
and annihilation of particles. On the other hand, φ(t) decays
exponentially toward extinction (full poisoned state for the
ZGB) in the absorbing phase. In the case of a typical (without
disorder) continuous phase transition, the above regimes are
separated by a power-law decay φ(t) ∼ t−θ , with θ being the
associated critical exponent. For the DP universality class,
θ = 0.4505(10) in two dimensions [4]. In the presence of
temporal disorder, the above critical behavior is replaced
by φ(t) ∼ (ln t)−1 [24,25]. Additionally, one does not expect
similar behavior at the emergence of a discontinuous transition.

The coexistence point can be estimated through a threshold
value α̃, which separates the saturation toward a definite value
from an exponential decay [30,35,36]. Alternatively, a more
reliable procedure is achieved by performing a finite-size
analysis, as recently proposed in Ref. [28]. According to it,
the difference between the pseudotransition point αL and the
transition point α0 scales with L−2, where L2 denotes the
system volume (in two dimensions). The estimation of αL can
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be done in a variety of ways. For instance, as corresponding
to the the peak of the system’s order-parameter variance
χ = L2(〈φ2〉 − 〈φ〉2), or even through the value in which
the bimodal order parameter distribution presents two equal
areas [28]. However, such scaling behavior is verified only
by considering some kind of quasistationary (QS) ensemble,
i.e., an ensemble of states accessed by the original dynamics
at long times conditioned on survival (and restricted to those
which are not trapped into an absorbing state). Here we employ
an efficient numerical scheme given in Ref. [37], in which
configurations are stored and gradually updated during the
evolution of the stochastic process. Whenever the transition to
the absorbing state is imminent, the system is “relocated” to
a saved configuration. This accurately reproduces the results
from the much longer procedure of performing averages only
on samples that have not been trapped in the absorbing state
at the end of their respective runs. The intensive quantities
in a QS ensemble must converge to the stationary ones when
L → ∞.

Finally, in the third procedure, the mean survival time
τ is considered for different system sizes. According to
Refs. [9,38], the coexistence point is the separatrix of an
exponential growth of τ and an exponential increase until
L < Lc followed by a decreasing behavior for L > Lc. Here,
we shall also quantify it, in order to compare with the pure
(not disordered) cases.

III. RESULTS AND DISCUSSION

A. Models in a square lattice

The first analysis of the influence of temporal disorder is
achieved by inspecting the time decay of the order parameter
φ(t) starting from a fully active initial configuration for t = 0.
For the SSM1, Figs. 1(a) and 2(a) show ρ(t) for ρ(0) = 1 for

FIG. 1. Results for the pure SSM1. (a) Time decay of ρ(t) for
ρ(0) = 1 and distinct values of α. (b) Bistable behavior of ρ(t) at α =
0.079 (close to the separatrix point α̃ ∼ 0.0812) for distinct initial
densities ranging from 10−2 from 1. (c) Order-parameter variance χ

vs α; (d) value of αL for which χ is maximum vs 1/L2.

FIG. 2. Same as Fig. 1, but for σ = 0.15 and in (b) α = 0.035 .

the pure versions and for σ = 0.05 (not shown) and σ = 0.15,
with �t = 1.

In all cases there is a threshold value α̃ separating indefinite
activity and exponential decay toward the particle extinction.
They are strongly dependent on σ and occur at α̃ = 0.0812,
0.076 (not shown), and 0.035 for the pure, σ = 0.05, and
0.15, respectively. No indication of a power law has been
verified nor a behavior of type ρ ∼ (ln t)−1. By repeating the
above analysis for distinct initial configurations [Figs. 1(b)
and 2(b)] with distinct densities (10−2 � ρ(0) � 1), at α =
0.079 at 0.035 (very close to the α̃’s) the curves converge to
two well-defined stationary states, with ρ � 1 and ρ ∼ ρ∗,
signaling the bistability of active and absorbing phases, thus
suggesting in all cases a first-order phase transition. For the
pure, σ = 0.05, and 0.15, the ρ∗ read 0.637(2), 0.63(2), and
0.77(2), respectively.

Inspection of quasistationary properties for distinct L reveal
that the αL [Figs. 1(c), 1(d), 2(c), and 2(d)], in which
the order-parameter variance χ is maximum, scales with
1/L2 and gives α0 = 0.0824(2), 0.0823(2) (not shown), and
0.0680(2) for the pure, σ = 0.05 (not shown), and σ = 0.15,
respectively. In particular for L = 100, the peak in χ occurs at
0.0827(1), 0.0826(1), and 0.0684(1), respectively. Therefore,
both previous analyses suggest that temporal disorder does
not forbid a discontinuous phase transition. However, it
increases the metastable region at the emergence of the phase
coexistence, i.e., αL − α̃ increases with σ . This feature shares
similarities with some procedures studied for characterizing
the first-order transition in the ZGB and allied models close to
the coexistence by taking different initial configurations [39].

An important point is that above the transition points
decreases substantially with increasing σ , revealing a sup-
pression (absence) of a phase transition for σ > 0.22, which is
a rather small disorder weight. To strengthen (i.e., to increase)
the influence of disorder in the SSM1, we perform two
changes. First we increase the disorder duration �t . Since
no larger values of σ are possible for this model, we change
to a bimodal disorder distribution, where, at each �t , the
creation probability is chosen from two values, p = 1/(1 + α)
and pl = 1/(1 + 20α), with rates 1 − q and q, respectively.
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FIG. 3. SSM1 with bimodal temporal disorder distribution. (a)
Log-log time decay of ρ for distinct α and �t = 6. (b) Bistable
behavior of ρ at α = 0.007 (very close to the separatrix point α̃ ∼
0.008) for distinct initial densities ranging from 10−3 to 1. (c) Same
analysis as in (a), but for the SSM2 with uniform distribution for
σ = 0.4 and �t = 1. (d) Bistable behavior of ρ at α = 0.001, close
to the transition point α̃ ∼ 0.005, for distinct initial densities ranging
from 10−3 to 1.

The results are presented in Figs. 3(a) and 3(b) for q = 0.2,
L = 200, and �t = 6. Second, the analysis of the SSM2 for
a larger value σ = 0.4 (with �t = 1) is considered. Since its
pure version yields a larger transition point, it is possible to
increase substantially the value of σ (in contrast to the SSM1).
These results are presented in Figs. 3(c) and 3(d).

In both systems, the phase transitions obey the same pattern
as the previous cases: separatrix points at α̃ ∼ 0.008 (α̃ ∼
0.005) and bistable behaviors of ρ(t) at the vicinity of the
transition points [exemplified here for α = 0.007 (and α =
0.001)]. In both cases, the α̃ are very small, highlighting the
relevance of disorder. As for the SSM1, the phase transition
is suppressed for sufficiently large σ , whose results reveal the
absence of a phase transition for σ > 0.4.

We now turn our attention to the ZGB model. In Figs. 4
and 5 we show the results for different disorder strengths,
σ = 0.05 and σ = 0.10, respectively. In particular, we have
considered rather small disorder strengths, in order not to
“mix” both phase transitions. In both cases, results similar to
the SSMs have been obtained. Figures 4(a) and 5(a) show once
again the onset point Ỹ separating activity from a exponential
growth toward a full carbon monoxide poisoning. The values
of Ỹ decrease by raising the disorder parameter σ , and read
Ỹ = 0.527(1), 0.523(1), 0.516(1), and 0.500(2) for the pure,
σ = 0.05, 0.1 and 0.2 (not shown), respectively. In addition,
YL, obtained from the maximum of the order-parameter
variance χ , scales with 1/L2 as seen in the pure version [28].
For the pure, σ = 0.05, 0.1, and 0.2 (not shown) versions,
we obtain Y0 = 0.5253(3), 0.524(1), 0.520(1), and 0.509(2),
respectively. Although less pronounced than for the previous

FIG. 4. Results for the ZGB model for σ = 0.05. (a) Time decay
of ρCO for ρC0(0) = 0 and distinct values of Y . (b) Bistable behavior
of ρCO for Y = 0.522 for distinct initial densities equispaced in the
interval [0.1,0.9] (linear system size: L = 800). (c) Order-parameter
variance χ vs Y ; (d) YL, in which χ is maximum, vs 1/L2.

example, note that the difference Y0 − Ỹ increases with σ ,
reinforcing that disorder increases the spinodal region around
the phase coexistence.

Figure 6 shows the mean lifetime of the QS state (defined
as the time between two absorbing attempts during the QS
regime), for the pure and disordered systems. We observe
in all cases the same behavior (in similarity with Ref. [9]):
a threshold value separating exponential growth of τ up to
a maximum system size Lc, followed by a decrease of τ for
L > Lc. For the pure cases, from such analysis the coexistence
points are located within the interval 0.0805 < α < 0.081
(SSM1) and 0.5256 < Y < 0.5258 (ZGB). In the presence of
temporal disorder, they are in the interval 0.066 < α < 0.067
(SSM1 for σ = 0.15) and 0.515 < Y < 0.518 (ZGB for σ =
0.1), which agrees with previous estimates obtained from the
maxima of χ . Thus the above findings suggest that in contrast
with critical transitions, τ does not grow algebraically in a
region within the active phase. These results are similar to those

FIG. 5. Same as Fig. 4, but for σ = 0.10 and in (b) Y = 0.520.
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FIG. 6. For the SSM1 (ZGB) model, panels (a) [(c)] and (b)
[(d)] show the QS lifetime for the pure and disordered versions,
respectively. We take σ = 0.15 and 0.1 for the SSM1 and ZGB
models, respectively.

obtained for the generalized voter model [22], suggesting that
TGPs do not manifest at discontinuous absorbing transitions,
but only at critical ones [23–25]. However, this point still
deserves further studies.

We close this section by remarking that the active-CO poi-
soned transition exhibits a behavior consistent to a continuous
transition for σ > 0.3 (not shown). Thus, in contrast to the
SSMs (at least until σ � 0.4) numerical results indicate that
the increase of σ suppress the phase coexistence for the ZGB.

B. Models in a complete graph

With the purpose of investigating the effects of temporal
disorder in infinite-dimensional structures, the last analysis
considers a mean-field-like description of the above models,
through a complete graph (CG) treatment. In the CG approach,
each site interacts with all others, so that an exact analysis is
allowed. For the SSM, besides the reactions A → 0 and 2A →
3A, one takes the coagulation process 2A → A occurring with
rate ν [9,40]. The discontinuous transitions yield at the exact
points α0 = 1/(2

√
ν) and Y0 = 2/3 [40,41] for the SSM and

ZGB, respectively. Due to the prohibition against 0 − CO
occupying nearest neighbor pairs, only one species (CO or
O) may be present at any moment for the ZGB analysis.
Let ρ = ρCO − ρO with ρCO and ρO denoting the fraction of
sites bearing a CO and O, respectively. This quantity allows
one to describe a system of N sites completely by a single
variable, with ρ = −1 representing the O-poisoned state and
ρ = 1 the CO-poisoned state (see more details in Ref. [41]).
In particular, we take ν = 1 for the SSM and in all cases the
temporal disorder is introduced in a similar fashion way to that
in Sec. II.

Our results for ρ for the SSM and ZGB models are shown
in Figs. 7(a) and 8(a), respectively. In both cases, the analysis
in the complete graph predicts behaviors which are similar
to the numerical studies: the reduction of the active region,
when compared to their pure counterparts, and the occurrence
of bimodal probability distributions [see, e.g., Figs. 7(c), 7(d),

FIG. 7. For the SSM on a complete graph, the QS density ρ

for (a) the pure model and (b) with temporal disorder strength
σ = 0.1. (c) QS probability distributions for the pure model, with
α ranging from 0.475 to 0.525. (d) Same as (c) but for σ = 0.1, and
α = 0.4750–0.5625. System size: N = 10 000 in (c) and (d).

8(c), and 8(d)]. In particular, for disorder strength σ = 0.1,
the transition points are shifted from α0 = 0.5 to α0 = 0.526
(SSM), and from Y0 = 2/3 to Y0 = 0.635 (ZGB). Thus, the
inclusion of low disorder maintains the phase coexistence.
However, by increasing σ the active-phase peaks become
broader, suggesting the appearance of a continuous transition
as shown in Figs. 9(a) and 9(b). Despite this, there are
some differences when compared to their low-dimensional
counterparts. There is a region in the active phase [see,
e.g., Figs. 9(c) and 9(d)], in which τ grows slower than
exponential, and then it saturates at a finite value. This
behavior is related to the abrupt transition that occurs when
the noise takes the control parameter to a value that drives
the system to the absorbing state. Since configurations with
intermediary densities are unstable in these systems, one
observes a bimodal QS probability distribution in this region.
This behavior is remarkably distinct from TGPs, in which τ

FIG. 8. Same as Fig. 7, but for the ZGB model on a complete
graph, and Y = 0.60–0.70.
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FIG. 9. For the complete graph, QS order-parameter ρ for the
(a) SSM and (b) ZGB models, for distinct σ and N = 10 000. (c)
τ vs N for the SSM model on a complete graph for σ = 0.1 and
α = 0.458,0.467,0.472,0.476,0.481,0.490, and 0.500 (from top to
bottom). (d) Same as (c), but for the ZGB with σ = 0.1 and Y =
0.55–0.61 (equispaced from top to bottom).

increases algebraically with the system size L and it has been
observed only in continuous (absorbing) phase transitions.

IV. CONCLUSIONS

We studied the influence of temporal disorder in the context
of discontinuous absorbing phase transitions. We investigated
extensively three models by means of distinct numerical proce-
dures. Our results strongly suggest that in contrast to the spatial
disorder, discontinuous absorbing transitions are not forbidden
by the presence of temporal disorder in low-dimensional
systems. In particular, the behavior of quantities are similar to
their pure counterparts. However, temporal disorder increases
the metastable region close to phase coexistence.

Our results also suggest the absence of temporal Griffiths
phases (TGPs). Some remarks over their existence are in
order: Earlier results for different systems have shown that

the inclusion of temporal disorder does not necessarily lead
to the presence of TGPs [22]. Although it suppresses the
DP universality class in all dimensions, the appearance of
a TGP depends on σ and/or �t [24,25]. Similar conclusions
continue to be valid for distinct up-down systems, in which
only for d � 3 are TGPs observed. Recent results for a
one-dimensional example [42] confirm the absence of TGPs
when the phase transition is discontinuous.

For the complete graph versions (d → ∞), we observe
the maintenance of the phase coexistence for small disorder.
However, in contrast to the lattice versions, there is a region
in the active phase in which the lifetime grows slower than
exponential and then saturates at a finite value.

It is worth emphasizing that our results do not exclude a
discontinuous transition becoming continuous from a disorder
threshold σc. Except for the SSMs, in which the transition
points decrease substantially as σ increases, results for the
ZGB model indicate the suppression of phase coexistence for
σ > 0.3. Again, the CG approach and the above-mentioned
one-dimensional case also reveal similar trends. This last case
shows that the crossover to criticality is also followed by
appearance of TGPs within the active phase [42].

Possible extensions of this work include the study of the
effect of the temporal correlated disorder and the more general
case of spatiotemporal disorder, i.e., how the discontinuous
phase transition is affected by an external perturbation that
fluctuates in both space and time [43]. Both cases appear to
be of particular interest in the context of ecosystems, where
the effects of noise on the extinction of a population due
to environmental changes have been attracting considerable
attention recently [44]. Also, the extension of both models to
larger dimensions is intended to be investigated, in order to
confirm the above hypotheses.
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