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Heat conduction in a chain of colliding particles with a stiff repulsive potential
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One-dimensional billiards, i.e., a chain of colliding particles with equal masses, is a well-known example
of a completely integrable system. Billiards with different particle masses is generically not integrable, but
it still exhibits divergence of a heat conduction coefficient (HCC) in the thermodynamic limit. Traditional
billiards models imply instantaneous (zero-time) collisions between the particles. We relax this condition of
instantaneous impact and consider heat transport in a chain of stiff colliding particles with the power-law
potential of the nearest-neighbor interaction. The instantaneous collisions correspond to the limit of infinite
power in the interaction potential; for finite powers, the interactions take nonzero time. This modification of
the model leads to a profound physical consequence—the probability of multiple (in particular triple) -particle
collisions becomes nonzero. Contrary to the integrable billiards of equal particles, the modified model exhibits
saturation of the heat conduction coefficient for a large system size. Moreover, the identification of scattering
events with triple-particle collisions leads to a simple definition of the characteristic mean free path and a kinetic
description of heat transport. This approach allows us to predict both the temperature and density dependencies
for the HCC limit values. The latter dependence is quite counterintuitive—the HCC is inversely proportional to
the particle density in the chain. Both predictions are confirmed by direct numerical simulations.

DOI: 10.1103/PhysRevE.94.052137

A microscopic description of heat conduction in dielectrics
remains an open and elusive problem despite a rather long
history [1–4] and intensive research efforts over the past two
decades [5–12]. One of the most intriguing questions involves
the convergence of the heat conduction coefficient (HCC) in
the thermodynamic limit [5,11,12]. A common understanding
achieved as a result of these efforts suggests that in lattices with
low-order polynomial nonlinearity (for instance, the famous
Fermi-Pasta-Ulam lattice [5]), the behavior of HCC strongly
depends on dimensionality. Namely, in one-dimensional lat-
tices it diverges in the thermodynamic limit as Lδ , 0.3 �
δ � 0.4, where L is the size (or number of particles) in the
system. For two-dimensional models, the HCC is believed to
behave as ln(L) [11,13], and for three dimensions, finally, it
converges [14]. This common understanding is supported by
solid theoretical arguments based on a combination of different
approaches [10,15–18]. These approaches provide somewhat
different estimations for the divergence exponent α (within the
range of measured values for different model potentials), but
in general this part of the picture seems self-consistent.

At the same time, it has long been claimed that in
some one-dimensional chains, for instance in the chain of
rotators [19,20], the HCC converges in the thermodynamic
limit despite the momentum conservation. More recent results
of this sort, namely the HCC convergence in a Lennard-Jones
(LJ) chain, were reported in [21]. In this paper, similar
convergent behavior has been claimed also for the α-β FPU
chain and attributed to the asymmetry of the interaction
potential. This latter claim for the α-β FPU has been disproved
in [22]; the LJ chain has not been addressed there.

From a physical point of view, the low-order polynomial
nonlinearity of the FPU and similar models arises as Taylor
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truncation of the complete interaction potential. The possibility
of such truncation, “self-evident” at least for low temperatures,
seems, however, problematic in the thermodynamic limit;
recall that the latter corresponds to the infinite size of the
system and infinite time. Any realistic physical potential of
interaction should tend to zero as the interacting atoms are
separated by a large distance—in other words, it should allow
dissociation, as in the LJ chain. The polynomial truncation
definitely fails to describe this feature and yields instead an
unphysical infinite attraction force at large distances. In a
realistic system, the dissociation or formation of abnormally
long links between particles has an exponentially small but
nonzero probability even at low temperatures. The polynomial
truncation precludes this phenomenon. Such long links can
presumably scatter phonons quite efficiently, and thus they
could modify the HCC convergence properties. Further results
on the HCC convergence in many one-dimensional models
with the possibility of dissociation were reported in [23,24].
The HCC convergence in systems of LJ particles and particles
with an elastic shell has been observed in a number of
additional studies [25].

At the same time, a recent treatise on the nonequilibrium
hydrodynamics of anharmonic chains [26] pointed to an
important difference between the aforementioned model of
rotators and the models similar to the FPU or LJ chains. The
difference is a number of conservation laws; for the chain of
rotators, only the total momentum and energy are conserved.
In addition, in FPU, LJ, and similar chains, a total length
of the system is conserved. This additional conservation law
obviously does not depend on the possibility of dissociation.
This qualitative difference is believed to lead to a difference in
the HCC convergence properties [26]. From this point of view,
in the thermodynamic limit, all nonintegrable chains with the
three conservation laws mentioned above should behave in a
qualitatively similar manner and thus have the divergent HCC.
From this viewpoint, the observed convergence in the LJ chain,
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a chain of semielastic particles, and similar dissociating chains
may be interpreted as the finite-size effect. Such “finite-size”
saturation of the HCC with resumed growth for larger system
sizes has been demonstrated in α-β FPU [22] and in a chain of
rigid particles with alternating masses [27]. To the best of our
knowledge, no “resumed” growth of the HCC in LJ or similar
models has been reported so far. At the same time, one should
admit that any numerical simulation in general cannot prove
(or disprove) the HCC convergence in the thermodynamic
limit for any model. To be on the safe side, we refer to
the observed phenomenon as saturation of the HCC for a
certain large scale of the system, without an explicit claim of
convergence. In the LJ and similar models with dissociation,
this saturation occurs at a scale of 104–105 particles. For typical
interatomic distances, such a specimen will have a length of
order 1–10 μm.

The HCC saturation in the LJ chain and the chain
of semielastic particles have one more important common
feature. The HCC behavior in the saturation regime can be
interpreted in terms of simple kinetic theory [24]. For the
chain of semielastic particles, one can predict the dependence
of the HCC on the temperature and other system parameters.
Similar estimations (to a lesser extent) are available also for the
LJ chain. This simple kinetics seems related to the observed
exponential decay of the autocorrelation of the heat flux in the
saturation regime.

The claim of HCC saturation in dissociating chains has a
profound counterexample, or even a group of counterexam-
ples [12]. One-dimensional (1D) billiards of perfectly rigid
colliding particles with equal masses has obviously divergent
heat conductivity. Moreover, this model is completely inte-
grable and therefore unable to form even a linear temperature
profile when attached to thermostats. For the point 1D billiards,
this integrability is preserved even in the presence of an on-site
potential [28]. Other billiards models are not integrable, but
they also exhibit divergent heat conductivity [29].

The current paper addresses this group of counterexamples.
In traditional billiards models, the collisions between the
particles are instantaneous, i.e., they take zero time. Such
behavior requires an infinitely large interaction force. So,
the potential of interaction between such particles includes
a vertical potential wall. Such instantaneous collisions are
apparently unphysical, since a repulsive core of any realistic
interatomic potential grows rapidly, but with a finite rate
at nonzero distances. Therefore, the realistic interparticle
collision will take some finite, maybe very small, but nonzero
time. We claim that this peculiarity leads to a drastic change
in the transport properties of the 1D chain, since it makes
the probability of triple collisions nonzero. In the case of
equal particle masses, the double collisions, even with finite
interaction time, do not violate integrability. The reason is
that, as a result of momentum and energy conservation,
the colliding particles with equal mass just exchange their
momenta, similarly to the instantaneous collisions. The triple
collisions, however, do violate the integrability. We are going
to demonstrate that they also bring about HCC saturation
in the 1D case. So, similarly to the case of the FPU-type
chains, correction of the unphysical features of the interaction
potential may lead to a significant modification of the heat
transport properties, at least at the saturation mesoscale.

To demonstrate that, we consider a chain of one-
dimensional particles with the following purely repulsive
potential of the nearest-neighbor interaction:

V (r) = 0 for r > D,

V (r) = Vl(r) = K|D − r|α for r � D. (1)

Here, α � 2 is the parameter that governs the growth of
the repulsive force, r is the distance between the centers of
neighbor particles, and D is the size of the rod. The case
α = 2 corresponds to the semielastic particles considered
in [24]; α = 5/2 corresponds to the case of Hertzian contact.
Without restricting generality, we further use the nondimen-
sional parameters D = 1 and K = 1. Then, the limit α → ∞
corresponds to the case of a perfect instantaneous elastic
collision as r = 1.

To avoid numerical problems related to the nonanalyticity
of potential (1) at r = 1, it is substituted in the simulations by
a smoothed potential function,

Vh(r) = 2−α[
√

ρ2 + hf (ρ) − ρ]α, ρ = r − 1, (2)

where the function f (ρ) = 1/(1 + 5ρ2)6, and the parameter
h > 0. In the limit h → 0, the smoothed potential (2) tends to
the nonanalytic potential (1).

We perform a traditional numerical simulation of equi-
librium heat transport in a one-dimensional model, and we
consider a segment of length L parallel to the x axis. N =
p(L − 1) + 1 particles are packed along this segment, where
p (0 < p < 1) stands for the packing “density” of the chain.
Fixed boundary conditions are imposed on both ends of the
chain, i.e., x1 ≡ 0, xN ≡ (N − 1)a, where a = 1/p stands for
the period of the unperturbed chain. Fixed boundaries enforce
the density conservation. The particles 1 < n < N are then
restricted to move in the x direction. The Hamiltonian of the
chain in this case is expressed as

H =
N−1∑
n=2

1

2
x ′

n

2 +
N−1∑
n=1

V (xn+1 − xn). (3)

Here {xn}Nn=1 are the coordinates of the rod centers.
To model the heat transfer along the chain under consid-

eration, stochastic Langevin thermostats are used. The left
end (x < L0 = 10) of the chain is attached to the Langevin
thermostat with temperature T+, and the right end of the chain
with the same length [x > (N − 1)a − L0] is attached to the
thermostat with temperature T−. We adopt T± = (1 ± 0.05)T ,
where T is the average temperature of the chain. The
corresponding equations of motion have the following form:

x ′′
n = −∂H/∂xn − γ x ′

n + ξ+
n if xn < L0,

x ′′
n = −∂H/∂xn if L0 � xn � (N − 1)a − L0, (4)

x ′′
n = −∂H/∂xn − γ x ′

n + ξ−
n if xn > (N − 1)a − L0,

where γ = 0.1 is a damping coefficient, ξ±
n is Gaussian white

noise, which models the interaction with the thermostats,
and it is normalized as 〈ξ±

n (τ )〉 = 0, 〈ξ+
n (τ1)ξ−

k (τ2)〉 = 0,
〈ξ±

n (τ1)ξ±
k (τ2)〉 = 2γ T±δnkδ(τ2 − τ1).

The system of Eqs. (4) with initial conditions X(0) =
{xn(0) = (n − 1)a,x ′

n(0) = 0}Nn=1 was integrated numerically
using the velocity Verlet method [30]. Then, after some initial
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transient, a stationary heat flux J and the stationary local
temperature distribution T (x) are achieved.

The total heat flux J was measured as the average work
produced by the thermostats over unit time. For this purpose,
at each step of numerical integration 
τ new coordinates of
the particles were calculated without taking into account the
interaction with thermostats X0(τ + 
τ ), and then the same
coordinates were calculated for a chain interacting with the
thermostats, denoted as X(τ + 
τ ). We define E+ as the
energy of the leftmost segment of the chain, which consists
of particles with coordinates xn < L/2, and we define E− as
the energy of the rightmost segment, where the particles have
coordinates xn > L/2. Then the work done by the external
forces in the time interval [τ,τ + 
τ ] is expressed as

j± = {E±[X(τ + 
τ )] − E±[X0(τ + 
τ )]}/
τ. (5)

By taking the time average J± = 〈j±〉τ , we obtain the
average value of the energy flux-out from the left “hot”
thermostat and the average value of the energy flux-in into
the right “cold” thermostat. The value of the energy flux along
the chain is J = J+ = −J−. The accuracy of this balance is
considered one of the criteria for the validity of the numerical
procedure.

The local heat flux, i.e., the energy flow from particle n to
the neighboring particle n + 1, is defined as Jn = 〈jn〉τ , where

jn = (xn+1 − xn)(x ′
n+1 + x ′

n)F (xn+1 − xn)/2 + x ′
nhn,

the function F (r) = −dV (r)/dr , and the energy density
distribution along the chain is

hn = [
x ′

n

2 + V (xn − xn−1) + V (xn+1 − xn)
]
/2

(see [11]).
Thermal equilibrium requires all local fluxes to be equal to

the total heat flux multiplied by the chain period, Jn = aJ . The
fulfillment of this requirement may be considered a criterion
for the stationary regime of heat transport.

The local temperature distribution of the chain is calculated
from the kinetic energy of the rod. We divide the line segment
L, which consists of N particles, into unit-length cells [i −
1,i], i = 1, . . . ,L, and we define the following quantities: the
average number of particles in the ith cell is n̄i , and the average
kinetic energy in the cell is Ēi . Then the temperature of the cell
is defined as T (i) = 2Ēi/n̄i . This latter definition is caused by
a classical consideration of the heat transport in the current
work. In quantum simulations, the definition of temperature
causes major problems since the system sometimes does not
thermalize under its own dynamics, even if it is attached to the
thermostats [31,32].

Between the thermostats we observe a linear temperature
gradient T (n) and constant thermal flux J . So, the heat
conduction coefficient of the free fragment of the chain
between the thermostats (of length L − 20) can be estimated
as follows:

κ(L) = J [T (11) − T (L − 10)]/(L − 20). (6)

A well-known alternative way to evaluate the heat con-
duction coefficient is based on the well-known Green-Kubo

0 5 10 15

−14

−13

−12

−11

ln
 C

(t
)

t10−4

1
2

3

4

FIG. 1. Exponential decay of the autocorrelation function C(t)
for the chain of length N = 10 000 for temperature T = 0.033 and
density p = 0.25. Curves 1, 2, 3, and 4 correspond to α = 2, 2.5, 4,
and 6, respectively.

formula

κ = lim
τ→∞ lim

N→∞
1

NT 2

∫ τ

0
C(s)ds, (7)

where C(s) = 〈Jtot(t)Jtot(t − s)〉t is the autocorrelation func-
tion of the total heat flux in the chain with periodic boundary
conditions Jtot(t) = ∑N

n=1 jn(t).
To compute the autocorrelation function C(t), we consider

a cyclic chain consisting of N = 104 particles. Initially all the
particles in this chain are coupled to the Langevin thermostat
with temperature T . After achieving thermal equilibrium, the
system is detached from the thermostat, and the Hamiltonian
dynamics is simulated. To improve the accuracy, the results
were averaged over 104 realizations of the initial thermal
distribution.

Numerical simulation of the thermalized cyclic chain of the
particles had demonstrated that the autocorrelation function
of the heat flux C(t) decreases exponentially as t → ∞;
see Fig. 1. Consequently, the integral in the Green-Kubo
formula (7) converges, yielding a finite value for the HCC
in the chain. Direct numerical simulation of the heat transport
between the thermostats also yields saturation of κ(L) for
large values of L; see Fig. 2. Both methods of simulation yield
similar values of the HCC in the saturation regime.

As was mentioned before, we hypothesize that the observed
HCC saturation may be attributed to the triple collisions
between the particles. To describe the transport process, it
is convenient to define a set of quasiparticles associated with
the momenta of individual particles [28]. The quasiparticles
are not affected by the double collisions (the momenta just
hop to the next particles), but they are scattered by the triple
collisions. Therefore, at the phenomenological level, one can
evaluate the HCC in terms of kinetic theory in the following
way:

κ ∼ cλv ∼ pλv. (8)

Here v is the characteristic velocity of the quasiparticles, c is
the heat capacity of the system, and λ is the mean free path
of the quasiparticles. Scattering events are related to triple
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FIG. 2. Dependence of the heat conduction coefficient κ on the
distance between thermostats L for temperatures T = 0.001 (curve
1), 0.01 (curve 2), 0.1 (curve 3), and fixed density. The system includes
particles with diameter d = 1 and density p = 0.5 (the average
distance between the particles a = 1/p = 2), where the power of
the potential function is α = 5/2. Straight dashed lines correspond to
the results obtained from the Green-Kubo formula.

collisions, so the mean free path corresponds to the distance
traveled by the quasiparticle between such triple collisions:

λ ∼ 1/pPtr, (9)

where Ptr is the probability that a given collision is triple. This
probability can be estimated as

Ptr ∼ τc/τf . (10)

Here τf is the time of flight between two successive collisions,
and τc is the characteristic time of collision. One can also
estimate τf ∼ L/pv and therefore

κ ∼ 1/pτc. (11)

Evaluation of the time of collision is simple due to the
finite range of interaction. If the particles collide with relative
velocity v0 at infinity, then the integral of energy for the two-
particle system reads

1
2 ẋ2 + xα = 1

2v2
0, (12)

where x(t) is the non-negative relative displacement of the
particles. The relative velocity becomes zero at the distance
xm = (v2

0/2)1/α . The time of collision is presented as

τc = 2
∫ xm

0

dx√
v2

0 − xα

= 21−1/αv
2/α−1
0

∫ 1

0

dξ√
1 − ξα

, ξ = x/xm. (13)

Summarizing Eqs. (10), (11), and (13), and adopting v0 ∼
T 1/2, one obtains

τc ∼ v
2/α−1
0 ∼ T 1/α−1/2 ⇒ κ ∼ f (α)p−1T 1/2−1/α. (14)
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FIG. 3. Temperature dependence of the HCC for density (a) p =
0.375 and (b) p = 0.25. Curves 1, 2, 3, and 4 correspond to α = 2,
2.5, 4, and 6, respectively. Straight dashed lines correspond to the
power functions κ = bT β .

Equation (14) predicts two important features of the HCC
in the considered model. First, it has a nontrivial temperature
dependence. Second, quite surprisingly, it is inversely propor-
tional to the concentration of the particles.

Predictions for the scaling exponents in simulations of
Eq. (14) completely conform to the numerical results presented
in Figs. 3 and 4. At the same time, the scaling function
f (α) in (14) remains undetermined. We suggest that it is
completely governed by the intricate dynamics of the three-
particle collisions and thus depends solely on exponent α. To
verify that, we plot the function f (α) = κpT 1/α−1/2 versus
exponent α.

Figure 5 presents a clear collapse of all available numerical
data according to the above scaling function; the results suggest
the power law f ≈ 1.12α3.6. As expected, the HCC rapidly
increases as a power function of α.

For all explored values of α, we observe the HCC
saturation. Moreover, the observed scaling with concentration
and temperature allows us to conclude that the observed
saturation is caused by the triple-particle collisions. Therefore,
modification of the billiards model and removal of unphysical
instantaneous collisions lead to a drastic modification of the
transport properties, namely the observed HCC saturation. As
was mentioned above, it is not possible to claim convergence
in the thermodynamic limit on the basis of numeric data for
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FIG. 4. Dependence of the HCC on inverse density a = 1/p for
fixed temperature and parameter (a) α = 4 and (b) α = 6. Curves 1,
2, 3, and 4 correspond to T = 0.01, 0.033, 0.1, and 0.33, respectively.
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FIG. 5. Dependence of the scaling function f (α) on power α for
all simulated values of temperatures and particle densities p = 0.125,
0.1875, 0.25, 0.375, and 0.5 (curves 1, 2, 3, 4, and 5, respectively, to
guide the eye). The fine details of the data collapse are presented in
the inset. The best linear fit (dashed line 6) corresponds to f (α) =
1.12α3.6.

a finite system. Still, we do not observe any trend toward
“resumed growth” of the HCC, similar to what was observed in
the asymmetric FPU chain [22] and billiards with alternating
masses [27]. Of course, it might happen that simulations of
even longer chains would demonstrate such growth also in the
considered chain of stiff colliding particles. However, contrary
to the asymmetric FPU and alternating-mass billiards, the
considered model also enables a clear and verifiable definition
of the basic kinetic parameters. The chains with a possibility
of dissociation possess a similar property [24]. Intuitively, as
the mean free path can be defined, longer chains are expected
to conform even better to the simple kinetic estimation of
the heat conduction coefficient. Needless to say, this latter
argument also does not prove anything, and further explo-
rations are required to verify whether the considered model
belongs to a universality class that is different from the FPU
chain.
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